JPH0240410A - Automatic combustion control of municipal waste incinerating furnace - Google Patents

Automatic combustion control of municipal waste incinerating furnace

Info

Publication number
JPH0240410A
JPH0240410A JP19189788A JP19189788A JPH0240410A JP H0240410 A JPH0240410 A JP H0240410A JP 19189788 A JP19189788 A JP 19189788A JP 19189788 A JP19189788 A JP 19189788A JP H0240410 A JPH0240410 A JP H0240410A
Authority
JP
Japan
Prior art keywords
calorific value
incinerator
moisture content
amount
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19189788A
Other languages
Japanese (ja)
Inventor
Seiichiro Ueda
上田 誠一郎
Satoshi Wada
和田 聰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP19189788A priority Critical patent/JPH0240410A/en
Publication of JPH0240410A publication Critical patent/JPH0240410A/en
Pending legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)

Abstract

PURPOSE:To control exactly without delay an incinerating furnace according to a variation in the qualities of refuse by calculating the low calorific value based on the moisture content in the exhaust gas that is produced by the combustion and the concentration of oxygen. CONSTITUTION:An air discharge port 15 in an incinerating furnace 1 communicates with a wet type gas washing device 19 via an electric precipitater 18. At the outlet of a fast cooling and washing section 20 in the wet type gas washing device 19 a first temperature sensor 23 is provided, and at the inlet of a wet type gas washing device 19 an oxygen sensor 25 and second temperature sensor 26 are provided, and they are connected to a calculator 27. In the calculator 27 the amount of the dry gas that is generated during the combustion of dry refuse is calculated from the concentration of oxygen, and from this and the moisture content in the exhaust gas the moisture content in the dusts are calculated, and from the correlation beforehand provided between the moisture content and low calorific value the low calorific value of the refuse that is thrown in is calculated to control the incinerating furnace.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は都市こみ焼却炉の自動燃焼制御方法に関する。[Detailed description of the invention] Industrial applications The present invention relates to an automatic combustion control method for a municipal waste incinerator.

従来の技術 従来の都市ごみ焼却炉の自動燃焼制御は、たとえば第5
図のフローチャートに示すような手順にて行われていた
。まず、都市ごみ焼却炉の各プロセスにおける各種プロ
セスデータ(温度、圧力、流量等)を収集し、このプロ
セスデータから熱収支計算を行い、設定蒸気発生量を算
出する。そして、算出された設定蒸気発生量と蒸気発生
量とからPID演算を行い、演算された値を、燃切点、
こみ厚、かさ比重などに基づいて補正演算し、この補正
演算された値によってブツシャおよびストーカの速度制
御を行い、あるいは燃焼空気ダンパの開閉制御を行って
いた。そして、ごみ質(低位発熱量)の変動に適宜に対
応したオペレーションを行うためには、低位発熱量を適
確に把握することが必要であるが、低位発熱量を実測す
ることは不可能であり、このために従来は、低位発v!
、量を推定する手法として熱収支計算を以下のように行
なっていた。
Conventional technology Conventional automatic combustion control of municipal waste incinerators
The procedure was as shown in the flowchart in the figure. First, various process data (temperature, pressure, flow rate, etc.) for each process of the municipal waste incinerator is collected, heat balance is calculated from this process data, and the set amount of steam generation is calculated. Then, PID calculation is performed from the calculated set steam generation amount and steam generation amount, and the calculated value is used as the burn-out point,
Correct calculations were performed based on the thickness, bulk specific gravity, etc., and the speeds of the bushings and stokers were controlled based on the calculated values, or the opening and closing of the combustion air damper was controlled. In order to perform operations that appropriately respond to changes in waste quality (lower calorific value), it is necessary to accurately understand the lower calorific value, but it is impossible to actually measure the lower calorific value. For this reason, conventionally, low-level V!
As a method for estimating the amount, heat balance calculation was performed as follows.

W′ :ごみ焼却量(t/h) G′ :ボイラーにおける蒸気発生量(t / h、 
)He:ごみの低位発熱量(推定量)(にcal/+q
r)K :燃焼空気流量など他のプロセスデータより決
定されるパラメータ cr’=KxHeXW′ G’ He−て7w・ 発明が解決しようとする課題 しかし、ごみ焼却量W′は焼却炉に投入されたごみ履で
あり、ごみはごみクレーンにより間欠的に焼却炉に投入
されるために、こみ焼却量を連続して測定することは不
可能であった。そのために、1〜2時間をかけてデータ
を収集せねばならず、短時間に現在の燃焼状態を把握す
ることができないために、制御に時間遅れが生じるとと
もに制御精度が悪くなる問題があった。そして、このた
めに、急激なごみ質の変動に対して追従することができ
す、[ごみ山盛パターン」、すなわちごみ質が急に悪化
し、ストーカ上でごみが山盛となって燃焼せず、蒸気の
低下および熱灼減量の増加を招く状態となったり、ある
いは、「ごみ切パターン」すなわち、ごみ質が急に良く
なり、ストーカ上で燃焼しているごみが少なくなって、
蒸気量の急激な低下、およびNOx′a度の増加を招く
状態となる問題があった。
W': Amount of waste incinerated (t/h) G': Amount of steam generated in the boiler (t/h,
)He: Lower calorific value (estimated amount) of waste (Nical/+q
r) K: Parameter determined from other process data such as combustion air flow rate cr' = KxHe It was impossible to continuously measure the amount of trash incinerated, as the trash was dumped into the incinerator intermittently by a trash crane. To do this, data had to be collected over a period of 1 to 2 hours, making it impossible to grasp the current combustion status in a short period of time, resulting in a time delay in control and poor control accuracy. . For this reason, it is possible to follow sudden changes in the quality of the garbage, resulting in a ``heaped garbage pattern'', in which the quality of garbage suddenly deteriorates and the garbage piles up on the stoker and does not burn. , resulting in a decrease in steam and an increase in burnout loss, or a "garbage cutting pattern", in which the quality of the waste suddenly improves and the amount of waste being burned on the stoker decreases.
There was a problem in that the amount of steam suddenly decreased and the NOx'a degree increased.

本発明は上記課題を解決するもので、短時間内にごみの
低位発熱量を算出して、時間遅れをなくし、こみ質の変
動に対して適確に対処することができる都市こみ焼却炉
の自動燃焼制御方法を提供することを目自勺とする。
The present invention solves the above problems by providing a municipal waste incinerator that can calculate the lower calorific value of waste within a short period of time, eliminate time delays, and accurately deal with fluctuations in waste quality. The aim is to provide an automatic combustion control method.

課題を解決するための手段 上記課題を解決するために、本発明は、焼却炉より排出
された排ガス中の水分および酸素濃度を求め、この酸素
濃度から乾燥ごみの燃焼時に生ずるドライガス量を求め
、このドライガス量と排ガス中の水分との関係から焼却
炉に投入されたごみの水分含有率を求め、あらかじめ統
計モデルとして求められたごみの水分含有率と低位発熱
量の相関から、投入されたごみの水分含有率に対応する
低位発熱量の推算を行い、推算された低位発熱量に基づ
いて焼却炉を適宜に操作する構成とするものである。
Means for Solving the Problems In order to solve the above problems, the present invention calculates the moisture and oxygen concentrations in the exhaust gas discharged from the incinerator, and calculates the amount of dry gas generated when dry waste is combusted from this oxygen concentration. The moisture content of the waste put into the incinerator is determined from the relationship between the amount of dry gas and the moisture in the exhaust gas, and from the correlation between the moisture content of the waste and the lower calorific value, which was determined in advance as a statistical model, The structure is such that the lower calorific value corresponding to the moisture content of the garbage is estimated, and the incinerator is operated appropriately based on the estimated lower calorific value.

作用 上記構成により、燃焼によって生ずる排ガス中の水分と
酸素濃度を指標として低位発熱量を推算するので、現時
点で燃焼するごみの低位発熱量が短時間内に算出される
。このことにより、こみ質の変動に対して焼却炉の制御
が時間遅れを伴なわずに、適確に行われる6 実施例 以下、本発明の一実施例を図面に基づいて説明する。第
1図において、焼却炉1の一側にはごみ2を投入するた
めのホッパー3が形成されており、ホッパー3の投入口
3aの上方にはこみクレーン4が設けられている。そし
て、焼却炉1の内部には、ごみ2を保持して燃焼させる
ためのストーカ5が設けられており、このストーカ5は
、ごみ2の燃焼段階に応じて、ホンパー3の側から乾燥
ストーカ5aと燃焼ストーカ5bと後燃焼ストーカ5C
の三段階に分割して形成されている。また、ホッパー3
の底部には、ブツシャ6が設けられており、ブツシャ6
はごみ2を乾燥ストーカ5a上に押出すためのものであ
る。そして、ストーカ5の下部にはフード7が設けられ
ており、このフード7はストーカ5を通して焼却炉1内
に一次空気を導くとともに、灰を灰ビット8に導くよう
に形成されている。また、フード7に連通して押込送風
機9が設けられている。そして、焼却炉1の他側には、
後燃焼ストーカ5Cに隣接して灰排出口10が形成され
ており、この灰排出口10の近傍には焼却炉1内の燃焼
状態を観察するための観察窓1aが形成されている。ま
た、観察窓1aに対応して工業用テレビカメラ(ITV
)11が配置されている。そして、焼却炉1にはスター
トバーナ12と、このスタートバーナ12の燃焼状態を
観察するITV13が設けられている。さらに、焼却炉
1の上方の内部に連通して二次空気送風機14が設けら
れており、また、焼却炉1内の排風口15の近傍に位置
して廃熱ボイラ16が配置されている。そして、廃熱ボ
イラ16がタービン発電l117に連通するとともに、
排風口15が電気業![1gを介して湿式ガス洗浄装置
19に連通している。そして、この湿式カス洗浄装置1
9は急冷洗浄部20と減湿部21とを有しており、湿式
ガス洗浄装置19の内部には、急冷洗浄部20の出口に
位置して温度検出装置22の第1温度センサ23が設け
られている。また、湿式ガス洗浄装置19の入口には、
酸素濃度検出装置24の酸素センサ25と、温度検出装
置22の第2温度センサ26が設けられている。そして
、温度検出装置22と酸素濃度検出装置24はともに演
算装置27に接続されている。
Effect With the above configuration, the lower calorific value is estimated using the moisture and oxygen concentrations in the exhaust gas generated by combustion as indicators, so the lower calorific value of the garbage currently being combusted can be calculated within a short time. As a result, the incinerator can be properly controlled without any time delay in response to fluctuations in waste quality.6 Embodiments An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, a hopper 3 for charging garbage 2 is formed on one side of an incinerator 1, and a garbage crane 4 is provided above an input port 3a of the hopper 3. A stoker 5 for holding and burning the waste 2 is provided inside the incinerator 1, and the stoker 5 is connected to a dry stoker 5a from the side of the homper 3 according to the combustion stage of the waste 2. and combustion stoker 5b and after-combustion stoker 5C
It is divided into three stages. Also, hopper 3
A button 6 is provided at the bottom of the button 6.
is for pushing the waste 2 onto the drying stoker 5a. A hood 7 is provided below the stoker 5, and the hood 7 is formed to guide primary air into the incinerator 1 through the stoker 5 and to guide ash to the ash bit 8. Further, a forced air blower 9 is provided in communication with the hood 7. And on the other side of the incinerator 1,
An ash discharge port 10 is formed adjacent to the after-combustion stoker 5C, and an observation window 1a for observing the combustion state within the incinerator 1 is formed near the ash discharge port 10. In addition, an industrial television camera (ITV) is installed corresponding to the observation window 1a.
) 11 are arranged. The incinerator 1 is provided with a start burner 12 and an ITV 13 for observing the combustion state of the start burner 12. Further, a secondary air blower 14 is provided in communication with the upper interior of the incinerator 1, and a waste heat boiler 16 is arranged near the exhaust port 15 in the incinerator 1. Then, the waste heat boiler 16 communicates with the turbine power generation unit 117,
Exhaust port 15 is electrical! [Communicated with the wet gas cleaning device 19 via 1g.] And this wet scum cleaning device 1
9 has a quenching cleaning section 20 and a dehumidification section 21, and inside the wet gas cleaning device 19, a first temperature sensor 23 of a temperature detection device 22 is provided at the outlet of the quenching cleaning section 20. It is being In addition, at the entrance of the wet gas cleaning device 19,
An oxygen sensor 25 of the oxygen concentration detection device 24 and a second temperature sensor 26 of the temperature detection device 22 are provided. Both the temperature detection device 22 and the oxygen concentration detection device 24 are connected to a calculation device 27.

以下、上記構成における作用について説明する。The effects of the above configuration will be explained below.

まず、ごみクレーン4にてホッパー3内に投入されたご
み2は、ブツシャ6にて乾燥ストーカ5aの上に押出さ
れ、焼却炉1内の熱によって乾燥される。そして、続い
て投入されるごみ2に押されて、乾燥したごみ2が燃焼
ストーカ5b上に移動し、押込送風R9から供給される
空気を受けて燃焼する。また、燃焼するごみは後燃焼ス
トーカ5cに移動しながらさらに燃焼し、灰が灰排出口
9から灰ピント8に排出される。そして、燃焼ガスは二
次空気送風l1114から供給される空気を受けてさら
に燃焼し、廃熱ボイラ16で熱交換された後に、電気集
塵機18を通って湿式ガス洗浄袋r!119に送られる
。さらに、湿式ガス洗浄装置19に送られた排ガスは、
急冷洗浄部20で冷却され、減湿部21を通って次の処
理系に送られる。そして、湿式ガス洗浄装置19の入口
にて酸素センサ25および第2温度センサ26が排ガス
中の酸素濃度および温度を検出し、酸素濃度が酸素濃度
検出装置24から演算装置27に電気信号として送られ
、温度が温度検出装置22から演算装置27に電気信号
として送られる。
First, the garbage 2 put into the hopper 3 by the garbage crane 4 is pushed onto the drying stoker 5a by the busher 6, and is dried by the heat in the incinerator 1. Then, the dried garbage 2 is pushed by the garbage 2 that is subsequently thrown in, moves onto the combustion stoker 5b, receives air supplied from the forced air blower R9, and burns. Further, the combustible garbage is further combusted while moving to the post-combustion stoker 5c, and ash is discharged from the ash outlet 9 to the ash pinto 8. Then, the combustion gas receives air supplied from the secondary air blower l1114 and is further combusted, and after heat exchange in the waste heat boiler 16, it passes through the electrostatic precipitator 18 and the wet gas cleaning bag r! Sent to 119. Furthermore, the exhaust gas sent to the wet gas cleaning device 19 is
It is cooled in the quenching washing section 20 and sent to the next processing system through the dehumidification section 21. Then, at the entrance of the wet gas cleaning device 19, the oxygen sensor 25 and the second temperature sensor 26 detect the oxygen concentration and temperature in the exhaust gas, and the oxygen concentration is sent as an electrical signal from the oxygen concentration detection device 24 to the calculation device 27. , the temperature is sent from the temperature detection device 22 to the calculation device 27 as an electrical signal.

また、急冷洗浄部20の出口にて第1温度センサ23が
排ガスの温度を検出し、この温度が温度検出装置22か
ら演算装置27に電気信号として送られる。
Further, the first temperature sensor 23 detects the temperature of the exhaust gas at the outlet of the quenching cleaning section 20, and this temperature is sent as an electrical signal from the temperature detection device 22 to the calculation device 27.

そして、演算装置27においては、下記に示す手)1n
に従って計算が行われる。
Then, in the arithmetic unit 27, the following hand) 1n
Calculations are made according to

まず、湿式ガス洗浄装置19の急冷洗浄部20の出口に
おける排ガス温度は湿式ガス洗浄装置19の入口におけ
る排ガスの断熱飽和温度である。したがって、出口にお
ける排ガス温度をTt(’C)、出口における排ガスモ
ル湿度をHl (水分hgnol /ドライガスkgn
ol )とし、入口における排カス温度をT2 、排ガ
ス湿度をN2とすれば、第2図に示すような関係が存在
する。第2図において、モル飽和湿度曲線Xは、アンド
ニーの式よりPs −10A−7 で表わすことができる。ただし、A、B、Cは定数であ
り、Psは圧力値である。また、断熱冷却線Yは近似的
に、 H=DT+E         ・・・・・・・・・(
2)で表わすことができる。ただし、D、Eはパラメー
タである。したがって、(1)式に、実測した′「1を
代入することによってHlが求まる。そして、(2)式
に、実測したT2を代入することによってN2が求まる
First, the exhaust gas temperature at the outlet of the quenching cleaning section 20 of the wet gas cleaning device 19 is the adiabatic saturation temperature of the exhaust gas at the inlet of the wet gas cleaning device 19. Therefore, the exhaust gas temperature at the outlet is Tt ('C), and the exhaust gas molar humidity at the outlet is Hl (moisture hgnol/dry gas kgn
ol), the exhaust gas temperature at the inlet is T2, and the exhaust gas humidity is N2, then a relationship as shown in FIG. 2 exists. In FIG. 2, the molar saturation humidity curve X can be expressed as Ps -10A-7 from Andonie's equation. However, A, B, and C are constants, and Ps is a pressure value. Also, the adiabatic cooling line Y is approximately as follows: H=DT+E ・・・・・・・・・(
2). However, D and E are parameters. Therefore, Hl can be found by substituting the actually measured 1 into equation (1). N2 can then be found by substituting the actually measured T2 into equation (2).

そして、ごみ2は、第3図に示すような構成である。た
だし、 C:処理物中の可燃分炭素量(−) h:    Jl   水素量 0:    ノl   酸素量 S 二         ノI       硫黄量N
 :          1ノ       窒  素
Cl 二         ツノ       塩  
素である。ここで、乾燥されなごみ2の組成は同一であ
り、水分Wのみ変動する。また、ごみ2がl ki燃え
たときのガス組成、は、下記に示す通りである。
The garbage 2 has a configuration as shown in FIG. However, C: Amount of combustible carbon in the treated material (-) h: Jl Hydrogen amount 0: Nol Oxygen amount S 2 No I Sulfur amount N
: 1 nitrogen Cl 2 salt
It is basic. Here, the composition of the dried garbage 2 is the same, and only the water content W varies. Furthermore, the gas composition when the garbage 2 is burned is as shown below.

理論空気量 Low =8.89C+26.7fh−0/8) +3
.333−13)空気比−mとすると、 C02= 1.87x C・・・・・・・・・(4)0
2 =0.21X (m −1) X Low −−−
−・・・・・f5)N2 =0.79X tov X 
m     −−−−・−・−(6)N20=11.2
Xh+1.244 W  ・・・・・・・・・(7)ド
ライガス量DG=CO2+02 +N2・・・・・・・
・・(8) よって、実測した024度を(9)式に代入してDGを
求め、求めたDGと先に求めたH2  (排ガス湿度)
とを(10)式に代入してH20を求め、求めたト■2
0を(7)式に代入してWを求める。
Theoretical air amount Low = 8.89C + 26.7fh - 0/8) +3
.. 333-13) If the air ratio is -m, then C02= 1.87x C・・・・・・・・・(4)0
2 = 0.21X (m −1) X Low ---
-... f5) N2 = 0.79X tov
m −−−−・−・−(6) N20=11.2
Xh+1.244 W ・・・・・・・・・(7) Dry gas amount DG=CO2+02 +N2・・・・・・・・・
...(8) Therefore, DG is obtained by substituting the actually measured 024 degrees into equation (9), and the obtained DG and previously obtained H2 (exhaust gas humidity)
Substituting and into equation (10) to find H20, the obtained t■2
W is determined by substituting 0 into equation (7).

また、ごみ2の水分Wと低位発熱量Heの間には、第4
図に示すように統計的に明確な相関がある。したがって
、先に求めた水Wに対応する低位発熱量Heが、第4図
から推算される。
In addition, there is a fourth
As shown in the figure, there is a statistically clear correlation. Therefore, the lower calorific value He corresponding to the water W determined previously is estimated from FIG.

そして、求められた低位発熱iHeに基づいてブツシャ
6などを操作し、焼却炉1の燃焼を制御する。
Then, the combustion in the incinerator 1 is controlled by operating the bushing 6 and the like based on the obtained lower heat generation iHe.

発明の効果 以上述べたように、本発明によれば、燃焼によって生ず
る排ガス中の水分と酸素濃度を櫓標として低位発熱量を
推算するので、現時点で燃焼するごみの低位発熱量を、
短時間内に算出することができ、このことによって、こ
み質の変動に対する焼却炉の制御を、時間遅れを伴なわ
ずに、適確に行うことができる。
Effects of the Invention As described above, according to the present invention, the lower calorific value is estimated using the moisture and oxygen concentrations in the exhaust gas generated by combustion as a yardstick.
Calculations can be made within a short period of time, and as a result, the incinerator can be accurately controlled in response to fluctuations in waste quality without any time delay.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す全体構成図、第2図は
排ガス温度とモル湿度の関係を示す図、第3図はごみの
成分構成を示す図、第4図はごみ中の水分と低位発熱量
の関係を示す統計モデル図、第5図は従来の制御を示す
フローチャート図である。 1・・・焼却炉、2・・・ごみ、5・・・ストーカ、6
・・・ブツシャ、18・・・集all!、19・・・湿
式ガス洗浄装置、20・・・急冷洗浄部、22・・−温
度検出装置、23・・・第1温度センサ、24・・・酸
素濃度検出装置、25・・・酸素センサ、26・・・第
2温度センサ、27・・・演算装置。 代理人   森  本  義  弘 帛2 図 第3図 第4 図 已’Hfm’F−/7JXW C’10)第S図 αm1=1四科
Fig. 1 is an overall configuration diagram showing one embodiment of the present invention, Fig. 2 is a diagram showing the relationship between exhaust gas temperature and molar humidity, Fig. 3 is a diagram showing the composition of waste components, and Fig. 4 is a diagram showing the composition of waste gases. A statistical model diagram showing the relationship between moisture and lower calorific value, and FIG. 5 is a flowchart diagram showing conventional control. 1...Incinerator, 2...Garbage, 5...Stoker, 6
... Butsusha, 18... collection all! , 19... Wet gas cleaning device, 20... Rapid cooling cleaning section, 22... Temperature detection device, 23... First temperature sensor, 24... Oxygen concentration detection device, 25... Oxygen sensor , 26... Second temperature sensor, 27... Arithmetic device. Agent Yoshihiro Morimoto 2 Figure 3 Figure 4 Figure 'Hfm'F-/7JXW C'10) Figure S αm1 = 1 4 departments

Claims (1)

【特許請求の範囲】[Claims] 1、焼却炉より排出された排ガス中の水分および酸素濃
度を求め、この酸素濃度から乾燥ごみの燃焼時に生ずる
ドライガス量を求め、このドライガス量と排ガス中の水
分との関係から焼却炉に投入されたごみの水分含有率を
求め、あらかじめ統計モデルとして求められたごみの水
分含有率と低位発熱量の相関から、投入されたごみの水
分含有率に対応する低位発熱量の推算を行い、推算され
た低位発熱量に基づいて焼却炉を適宜に操作することを
特徴とする都市ごみ焼却炉の自動燃焼制御方法。
1. Determine the moisture and oxygen concentrations in the exhaust gas discharged from the incinerator, determine the amount of dry gas generated when dry waste is burned from this oxygen concentration, and calculate the amount of dry gas produced in the incinerator based on the relationship between this amount of dry gas and the moisture in the exhaust gas. The moisture content of the input garbage is determined, and the lower calorific value corresponding to the moisture content of the input garbage is estimated from the correlation between the moisture content of the garbage and the lower calorific value, which has been determined in advance as a statistical model. An automatic combustion control method for a municipal waste incinerator, characterized in that the incinerator is operated appropriately based on the estimated lower calorific value.
JP19189788A 1988-07-29 1988-07-29 Automatic combustion control of municipal waste incinerating furnace Pending JPH0240410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19189788A JPH0240410A (en) 1988-07-29 1988-07-29 Automatic combustion control of municipal waste incinerating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19189788A JPH0240410A (en) 1988-07-29 1988-07-29 Automatic combustion control of municipal waste incinerating furnace

Publications (1)

Publication Number Publication Date
JPH0240410A true JPH0240410A (en) 1990-02-09

Family

ID=16282269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19189788A Pending JPH0240410A (en) 1988-07-29 1988-07-29 Automatic combustion control of municipal waste incinerating furnace

Country Status (1)

Country Link
JP (1) JPH0240410A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0498007A (en) * 1990-08-15 1992-03-30 Shokin Chin Tunnel type refuse incinerator
JPH10332123A (en) * 1997-06-02 1998-12-15 Kubota Corp Method and device for controlling sludge supply in melting furnace
JPH1194227A (en) * 1997-09-26 1999-04-09 Sumitomo Heavy Ind Ltd Method of presuming low heating value of combustible waste and presuming heating value of combustible part of garbage of garbage incinerator
JP5996762B1 (en) * 2015-11-19 2016-09-21 株式会社タクマ Waste combustion control method and combustion control apparatus to which the method is applied
JP2017026172A (en) * 2015-07-16 2017-02-02 株式会社タクマ Waste heat value measuring method and waste processing device using the same
JP2018124010A (en) * 2017-01-31 2018-08-09 株式会社タクマ Measurement method of amount of heat generation of burned object, combustion control method of combustion furnace using measured amount of heat generation, and combustion control device
JP2019202924A (en) * 2018-05-25 2019-11-28 株式会社豊田中央研究所 Flame resistance treatment device of carbon material precursor, and flame resistance treatment method of carbon material precursor
JP2020139720A (en) * 2019-03-01 2020-09-03 三機工業株式会社 Automatic combustion control method for garbage incinerator

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0498007A (en) * 1990-08-15 1992-03-30 Shokin Chin Tunnel type refuse incinerator
JPH10332123A (en) * 1997-06-02 1998-12-15 Kubota Corp Method and device for controlling sludge supply in melting furnace
JPH1194227A (en) * 1997-09-26 1999-04-09 Sumitomo Heavy Ind Ltd Method of presuming low heating value of combustible waste and presuming heating value of combustible part of garbage of garbage incinerator
JP2017026172A (en) * 2015-07-16 2017-02-02 株式会社タクマ Waste heat value measuring method and waste processing device using the same
JP5996762B1 (en) * 2015-11-19 2016-09-21 株式会社タクマ Waste combustion control method and combustion control apparatus to which the method is applied
WO2017085941A1 (en) * 2015-11-19 2017-05-26 株式会社タクマ Waste incineration control method, and incineration control apparatus using same
JP2017096517A (en) * 2015-11-19 2017-06-01 株式会社タクマ Waste material combustion method and combustion control device applying the same
EP3379147A4 (en) * 2015-11-19 2018-12-05 Takuma Co., Ltd. Waste incineration control method, and incineration control apparatus using same
JP2018124010A (en) * 2017-01-31 2018-08-09 株式会社タクマ Measurement method of amount of heat generation of burned object, combustion control method of combustion furnace using measured amount of heat generation, and combustion control device
JP2019202924A (en) * 2018-05-25 2019-11-28 株式会社豊田中央研究所 Flame resistance treatment device of carbon material precursor, and flame resistance treatment method of carbon material precursor
JP2020139720A (en) * 2019-03-01 2020-09-03 三機工業株式会社 Automatic combustion control method for garbage incinerator

Similar Documents

Publication Publication Date Title
KR100304244B1 (en) Combustion control method and apparatus for waste incinerators
JPH0240410A (en) Automatic combustion control of municipal waste incinerating furnace
JPH1068514A (en) Combustion controlling method for refuse incinerating furnace
JP2010216990A (en) Device and method for measurement of moisture percentage in waste
JPH1194227A (en) Method of presuming low heating value of combustible waste and presuming heating value of combustible part of garbage of garbage incinerator
JP3688644B2 (en) Method for estimating in-furnace waste retention distribution in incinerator and combustion control method and apparatus using the method
JPH09273732A (en) Control method of combustion in incinerating furnace
JP3556078B2 (en) Dust supply speed control method for refuse incinerator and refuse incinerator
JP2002147732A (en) Refuse incinerator
JP2004239508A (en) Combustion control method of refuse incinerator, and refuse incinerator
JP2004060992A (en) Waste heat recovery boiler for incinerator
JPH05248618A (en) Co controlling method in incinerator
JP3391614B2 (en) Waste combustion control method in refuse incinerator
JPH09273733A (en) Control method of combustion in incinerating furnace
JP2000320824A (en) Combustion control method for garbage incinerator
JPH10253031A (en) Combustion controller for incinerator
JP3356936B2 (en) Residual waste amount detection method, combustion control method, and waste incinerator
JPH11270829A (en) Combustion control of refuse in refuse incinerator
JPH0157245B2 (en)
JPH11351558A (en) Method and apparatus for controlling combustion of combustion furnace
JPH11257634A (en) Operation-supporting device for combustion controller in waste incinerating furnace
JPH09273731A (en) Control method of combustion in incinerating furnace
JP3850206B2 (en) Combustion control method and combustion control apparatus
JP3176211B2 (en) Combustion control method of garbage incinerator
JP2572189Y2 (en) Dust incinerator