JPH1096077A - Functionally gradient thin coating and its production - Google Patents

Functionally gradient thin coating and its production

Info

Publication number
JPH1096077A
JPH1096077A JP25167196A JP25167196A JPH1096077A JP H1096077 A JPH1096077 A JP H1096077A JP 25167196 A JP25167196 A JP 25167196A JP 25167196 A JP25167196 A JP 25167196A JP H1096077 A JPH1096077 A JP H1096077A
Authority
JP
Japan
Prior art keywords
thin film
composition
functionally graded
fine crystalline
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25167196A
Other languages
Japanese (ja)
Inventor
Akihisa Inoue
明久 井上
Kazuhiko Kita
和彦 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp filed Critical YKK Corp
Priority to JP25167196A priority Critical patent/JPH1096077A/en
Publication of JPH1096077A publication Critical patent/JPH1096077A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a thin coating having a gradient function. SOLUTION: This is a thin coating with >=0.1mm thickness composed of Al (the main element) and M (the elements to be added) [where M denotes one or more kinds of elements selected from Cr, Mn, Fe, Co, Ni, Cu, Ti, Zr, Y, rare earth elements and Mm (misch metal)], in which, as for the compsn. in the coating thickness direction, the ratio of M to Al continuously increases toward the coating surface, and the hardness of the coating surface is regulaetd to the value of >360DPN. Moreover, as for the method for producing the same, a crucible is charged with a prescribed amt. of the homogeneous material having the aforesaid compsn. by the total content, which is deposited on a substrate by an electron beam depositing method to execute coating formation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、膜表面の硬度が3
60DPNを超える高い傾斜機能薄膜に関する。
The present invention relates to a film having a hardness of 3
High functionally graded thin films over 60 DPN.

【0002】[0002]

【従来の技術】従来の急冷凝固されたアルミニウム合金
の微細結晶組織は、急冷凝固法による組織の微細化によ
り高強度化されている。さらに微細結晶組織ではなく、
特定組成において急冷して非晶質相(アモルファス相)
を得ることにより、より高強度な材料が得られている。
2. Description of the Related Art The fine crystal structure of a conventional rapidly solidified aluminum alloy has been increased in strength by the refinement of the structure by a rapid solidification method. Furthermore, instead of a fine crystal structure,
Amorphous phase (amorphous phase) by quenching with specific composition
As a result, a material having higher strength is obtained.

【0003】しかしながら、急冷凝固法、メカニカルア
ロイング法又は気相蒸着法などの手法で得られた微細組
織を有する合金は、通常、薄帯、粉末あるいは薄膜に形
状が限定されていた。薄帯および粉末の場合は、熱間押
出法、鍛造法等によって集成固化させることにより、比
較的肉厚なあるいは大きな部材を作製している。薄膜の
場合は、スパッタ法、イオンプレーティング法などの気
相蒸着法により基材に対して比較的膜厚の小さな(数μ
m〜数十μm)ものをコーティングして作製している。
前者の場合、集成固化の際の熱履歴等の問題により、製
品の形状に制約があり、大面積の板状(薄膜)の作製は
困難である。又、後者の場合、膜厚が小さくなるが、膜
厚を大きくする場合には、蒸着速度や装置の関係によ
り、かなり長時間の蒸着時間が必要となる。
However, alloys having a fine structure obtained by a method such as a rapid solidification method, a mechanical alloying method, or a vapor phase deposition method are usually limited in shape to a ribbon, a powder, or a thin film. In the case of ribbons and powders, relatively thick or large members are produced by consolidating and solidifying them by hot extrusion, forging, or the like. In the case of a thin film, a relatively small film thickness (several μ) is applied to a substrate by a vapor deposition method such as a sputtering method or an ion plating method.
m to several tens of μm).
In the former case, the shape of the product is limited due to problems such as heat history at the time of solidification and solidification, and it is difficult to produce a large area plate (thin film). In the latter case, the film thickness is small. However, when the film thickness is large, a considerably long deposition time is required depending on the deposition rate and the apparatus.

【0004】又、傾斜機能薄膜としては、特開平5−3
39702号公報および特開平6−122958号公報
に開示のものが知られている。しかしながら、これらの
ものも、スパッタ法あるいはイオンプレーティング法な
どの気相蒸着法により作製されるものであるから、上述
のように、膜厚は60μm程度の比較的薄肉のものであ
る。そして、組成的には、反応ガス(例えばN,O)と
の反応による組成の変化のみであり、組織的には非晶質
を含む金属構造からセラミックス構造へ変化したもので
ある。
As a functionally graded thin film, Japanese Patent Application Laid-Open No.
The ones disclosed in 39702 and JP-A-6-122958 are known. However, these are also produced by a vapor deposition method such as a sputtering method or an ion plating method, and therefore have a relatively thin film thickness of about 60 μm as described above. The composition is only a change in composition due to a reaction with a reaction gas (for example, N, O), and the composition is a change from a metal structure containing amorphous to a ceramic structure.

【0005】[0005]

【発明が解決しようとする課題】そこで本発明は、微細
結晶質および/又は非晶質からなる金属構造を有し、こ
れらの非平衡相からなる合金の優れた特性を維持でき、
比較的膜厚の大きな薄膜を提供できると共に、膜厚方向
に組成を傾斜させることによって、膜の各表面に要求さ
れる特性にあった新規な薄膜を提供することを目的とす
る。
SUMMARY OF THE INVENTION Accordingly, the present invention has a metal structure composed of fine crystalline and / or amorphous, and can maintain the excellent properties of an alloy composed of these non-equilibrium phases.
It is an object of the present invention to provide a thin film having a relatively large film thickness and to provide a novel thin film having characteristics required for each surface of the film by inclining the composition in the film thickness direction.

【0006】[0006]

【課題を解決するための手段】本発明は、主元素Alと
添加元素M(ただし、MはCr,Mn,Fe,Co,N
i,Cu,Ti,Zr,Y,希土類元素およびMmから
選ばれる少なくとも1種の元素)とからなる厚さ0.1
mm以上の薄膜であって、膜厚方向の組成が、膜表面に
向って主元素Alに対する添加元素Mの割合が連続的に
増加しており、膜表面の硬度が360DPNを超える値
であることを特徴とする傾斜機能薄膜である。本発明は
又、上記主元素Alと添加元素Mとからなる均質材料の
所定量をるつぼ内に全量装入し、これを電子ビーム蒸着
法により基材に堆積させて成膜を行い、膜方向の組成が
膜表面に向って主元素に対する添加元素の割合が連続的
に増加するようになし、膜厚が0.1mm以上で膜表面
の硬度が360DPNを超える値である薄膜とすること
を特徴とする傾斜機能薄膜の製造方法である。
According to the present invention, there is provided a method for producing a semiconductor device comprising a main element Al and an additional element M (where M is Cr, Mn, Fe, Co, N
i, Cu, Ti, Zr, Y, at least one element selected from rare earth elements and Mm).
mm or more, the composition in the thickness direction is such that the ratio of the additive element M to the main element Al is continuously increased toward the film surface, and the hardness of the film surface is a value exceeding 360 DPN. It is a functionally graded thin film characterized by the following. The present invention also provides a crucible in which a predetermined amount of a homogeneous material composed of the main element Al and the additive element M is entirely charged and deposited on a substrate by electron beam evaporation to form a film. The composition is such that the ratio of the added element to the main element is continuously increased toward the film surface, and the film thickness is 0.1 mm or more, and the film surface hardness is a value exceeding 360 DPN. This is a method for producing a functionally graded thin film.

【0007】M元素は主元素のAlより蒸発しにくい元
素であるため、蒸着工程の当初は蒸発のしやすさによ
り、始め主元素の割合が添加元素に比べて大きな組成で
基材上に堆積し、その後、徐々に添加元素の蒸発量が大
きくなり最終的に初期に比べ添加元素の割合が多いもの
が基板上に堆積する。M元素は、主元素であるAlより
蒸発しにくい元素であるとともに、主元素のAlに添加
することにより過飽和固溶体からなる微細結晶質相を安
定に形成する元素、さらにはナノ結晶あるいは非晶質相
を形成する元素であり、硬度、強度、耐摩耗性の向上に
寄与する元素である。
[0007] Since the M element is an element that is less likely to evaporate than the main element Al, it is easy to evaporate at the beginning of the vapor deposition process, so that the ratio of the main element is initially deposited on the substrate in a composition larger than that of the additive element. After that, the evaporation amount of the additional element gradually increases, and finally, the one in which the ratio of the additional element is higher than that in the initial stage is deposited on the substrate. The M element is an element that is less likely to evaporate than the main element Al, and an element that, when added to the main element Al, stably forms a fine crystalline phase composed of a supersaturated solid solution, and furthermore, has a nanocrystalline or amorphous structure. It is an element that forms a phase and contributes to improvement in hardness, strength, and wear resistance.

【0008】薄膜の膜厚は、組成の傾斜を円滑に行い、
上述の元素の特性を活かすためには0.1mm以上であ
る必要がある。さらに本発明においては膜厚1mm以上
の薄膜も容易に作製可能である。薄膜の組成を微細結晶
質相又は/および非晶質相の非平衡相とし、微細結晶質
相から非晶質相あるいはこれらの混相へ組織構造を傾斜
させることにより、一方側表面が他方側より低い硬度で
あるが延性に富み、密着性を高め、応力を緩和すること
ができ、他方側表面が非常に高硬度すなわち360DP
Nを超える値(好ましくは380DPN以上、更に好ま
しくは400DPN以上)で、かつ耐摩耗性に優れたも
のとすることができる。
[0008] The thickness of the thin film, the composition gradient is smoothly performed,
In order to take advantage of the characteristics of the above-described elements, the thickness needs to be 0.1 mm or more. Further, in the present invention, a thin film having a thickness of 1 mm or more can be easily produced. By making the composition of the thin film a non-equilibrium phase of the fine crystalline phase and / or the amorphous phase, and inclining the structure from the fine crystalline phase to the amorphous phase or a mixed phase thereof, one surface is more than the other side. Low hardness but rich in ductility, high adhesion, capable of relieving stress, and the other surface has very high hardness, ie, 360 DP
It can be a value exceeding N (preferably 380 DPN or more, more preferably 400 DPN or more) and excellent in abrasion resistance.

【0009】さらに、M元素をM1元素(M1:Cr,M
n,Fe,Co,Ni,Cuから選ばれる少なくとも1
種の元素)とM2元素(M2:Ti,Zr,Y,希土類元
素、Mmから選ばれる少なくとも1種の元素)とに分
け、3元素以上の合金に特定することにより、微細結晶
質相又は/および非晶質相の非平衡相がより安定な形
で、かつ容易に得られる。特にM1元素は強度、硬度な
どの特性を向上させるのにより有効な元素であり、M2
元素は上記非平衡相の形成および安定化により優れた元
素である。
Further, the M element is replaced by the M 1 element (M 1 : Cr, M
at least one selected from n, Fe, Co, Ni, Cu
Species) and M 2 elements (M 2 : at least one element selected from Ti, Zr, Y, rare earth elements, and Mm), and by specifying an alloy of three or more elements, the fine crystalline phase And / or the non-equilibrium phase of the amorphous phase is obtained in a more stable form and easily. Especially M 1 element is effective element by improving strength, properties such as hardness, M 2
The element is an element that is more excellent in the formation and stabilization of the non-equilibrium phase.

【0010】そこで本発明では薄膜の一方側表面の組成
が一般式:Albal1a2b(ただし、a,bは原子パ
ーセントで0<a<30,0<b<30)で示され、組
織が過飽和固溶体からなる微細結晶質相であり、他方側
表面の組成が、一般式:Albal1c2d(ただし、
c,dは原子パーセントで5<c<30,5<d<30
でかつc>a,d>b)で示され、組織が非晶質相と過
飽和固溶体からなる微細結晶質相とからなる混相である
傾斜機能薄膜である。上記、a,b,c,dの規定範囲
は、前述の特性をより効果的に発揮できる範囲である。
そして、a+b<10at%とすることにより、主元素
Alの影響により延性に優れるとともに、平均結晶粒径
の非常に小さな結晶(ナノ結晶)によって硬度、強度な
どの特性にもより優れたものが形成できる。又、c+d
>20at%とすることにより、非晶質相がより容易に
かつ安定に形成でき、上述した非晶質相の特性をより有
効に利用できる。
Therefore, in the present invention, the composition of one surface of the thin film is represented by a general formula: Al bal M 1a M 2b (where a and b are 0 <a <30, 0 <b <30) in atomic percent; The structure is a fine crystalline phase composed of a supersaturated solid solution, and the composition of the other surface is represented by a general formula: Al bal M 1c M 2d (however,
c and d are 5 <c <30 and 5 <d <30 in atomic percent.
And c> a, d> b), and the functionally graded thin film is a mixed phase composed of an amorphous phase and a fine crystalline phase composed of a supersaturated solid solution. The specified ranges of a, b, c, and d are ranges in which the above-described characteristics can be more effectively exhibited.
By setting a + b <10 at%, a material having excellent ductility due to the influence of the main element Al and having excellent characteristics such as hardness and strength due to a crystal having a very small average crystal grain size (nanocrystal) are formed. it can. Also, c + d
By setting> 20 at%, the amorphous phase can be formed more easily and stably, and the characteristics of the amorphous phase can be more effectively utilized.

【0011】微細結晶質相の結晶粒径は強度、硬度など
の機械的特性を考慮した場合、平均結晶粒径100nm
以下であることがより好ましい。堆積したマクロ構造に
おける粒子の大きさは1〜10μmであることが薄膜の
相対密度を95%以上とするのに必要である。
In consideration of mechanical properties such as strength and hardness, the average crystal grain size of the fine crystalline phase is 100 nm.
It is more preferred that: It is necessary that the size of the particles in the deposited macrostructure be 1 to 10 μm in order to make the relative density of the thin film 95% or more.

【0012】前記本発明の製造方法に用いる電子ビーム
蒸着装置の具体例を模式的に示したのが図1である。真
空装置内において、蒸着源材料(出発材料)2の所定量
を銅製のるつぼ1内に配し、これに電子銃3により電子
ビーム4を照射し、蒸発源材料を加熱溶融させ、さらに
蒸発させる。蒸発した粒子5はるつぼ1と対向して設け
られた堆積基板(基材)6上に蒸着堆積し、堆積層(薄
膜)7を形成する。又、るつぼ1と堆積基板6との間に
はシャッタ8が設けられ、基板温度および蒸着粒子が適
した条件となった場合に開くようになっている。電子銃
3は1つだけ示してあるが、複数個設けることも可能で
ある。このような電子ビーム蒸着は、高い冷却状態が得
られ、蒸着速度が速いため、他の物理蒸着技術(スパッ
タ法、イオンプレーティング法など)に比して本発明の
薄膜を得るのに適している。
FIG. 1 schematically shows a specific example of an electron beam evaporation apparatus used in the manufacturing method of the present invention. In a vacuum device, a predetermined amount of an evaporation source material (starting material) 2 is arranged in a copper crucible 1, which is irradiated with an electron beam 4 by an electron gun 3 to heat and melt the evaporation source material and further evaporate it. . The evaporated particles 5 are deposited on a deposition substrate (substrate) 6 provided facing the crucible 1 to form a deposition layer (thin film) 7. Further, a shutter 8 is provided between the crucible 1 and the deposition substrate 6, and is opened when the substrate temperature and the vapor deposition particles become suitable conditions. Although only one electron gun 3 is shown, a plurality of electron guns can be provided. Such electron beam evaporation is suitable for obtaining the thin film of the present invention as compared with other physical vapor deposition techniques (sputtering, ion plating, etc.) because a high cooling state is obtained and the deposition rate is high. I have.

【0013】蒸着源材料2は、主元素と添加元素とを高
周波溶解炉により溶融して合金化したものを用いるのが
好ましいが、各元素からなる粉体を混合してるつぼ内に
配してもかまわない。真空装置内の真空度は1×10-5
〜1×10-7Torrが適当である。又、前記組織を得
るためには、蒸着物堆積基板温度を150〜350℃に
制御することがよい。150℃より低温であると非平衡
な状態が得られるが、緻密な膜が得にくく、柱状になり
易い等の問題があり、350℃より高温であると、結晶
粒径が大きくなり、強度特性が劣化するとともに、金属
間化合物の析出・晶出現象が起り、延性、靭性、加工性
が低下してしまう。蒸着の際の電子銃のガン出力は6〜
30KWとすることが好ましい。
As the deposition source material 2, it is preferable to use a material obtained by melting and alloying a main element and an additive element with a high-frequency melting furnace. However, a powder composed of each element is mixed and placed in a crucible. It doesn't matter. The degree of vacuum in the vacuum device is 1 × 10 -5
11 × 10 −7 Torr is appropriate. Further, in order to obtain the above structure, the temperature of the substrate on which the deposit is deposited is preferably controlled at 150 to 350 ° C. If the temperature is lower than 150 ° C., a non-equilibrium state can be obtained. However, there is a problem that it is difficult to obtain a dense film and the columnar shape is easily obtained. And the phenomenon of precipitation and crystallization of the intermetallic compound occurs, and the ductility, toughness, and workability decrease. Gun output of electron gun at the time of vapor deposition is 6 ~
Preferably, it is 30 kW.

【0014】[0014]

【発明の実施の形態】以下実施例に基づいて本発明を具
体的に説明する。 実施例1 図1に示す電子ビーム蒸着装置により、Al70Ni15
15(at%)からなる組成の材料を用いて、装置内の
真空度3.6×10-6Torr、蒸着物堆積基板温度1
00℃、電子銃のガン出力10KWの蒸着条件により薄
膜の作製を行った。このようにして膜厚約350μmの
薄膜が得られ、その薄膜の組成をEDX分析により、
又、薄膜の硬度を25g荷重の微小ビッカース硬度計に
より測定した。この結果を図2に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be specifically described based on examples. Example 1 Al 70 Ni 15 C was deposited using the electron beam evaporation apparatus shown in FIG.
Using a material having a composition of e 15 (at%), the degree of vacuum in the apparatus was 3.6 × 10 −6 Torr, and the temperature of the substrate on which the deposit was deposited was 1
A thin film was produced under the conditions of 00 ° C. and a gun output of an electron gun of 10 KW. Thus, a thin film having a thickness of about 350 μm was obtained, and the composition of the thin film was determined by EDX analysis.
Further, the hardness of the thin film was measured by a minute Vickers hardness meter with a load of 25 g. The result is shown in FIG.

【0015】図2に示すように、薄膜の組成は、基板側
より表面側に向って添加元素であるNiおよびCe成分
が増加したものであり、硬度もこれにともなって増加し
ていることが分る。又、薄膜の組成も、基板側が平均結
晶粒径が100nm以下の微細な結晶質相からなるもの
であり、表面側が非晶質相からなるものであって、組織
的にも傾斜していることがX線回折およびTEM観察に
よって確認された。
As shown in FIG. 2, the composition of the thin film is such that Ni and Ce, which are additional elements, are increased from the substrate side toward the surface side, and the hardness is also increased accordingly. I understand. Also, the composition of the thin film should be such that the substrate side is composed of a fine crystalline phase having an average crystal grain size of 100 nm or less, the surface side is composed of an amorphous phase, and the composition is also tilted. Was confirmed by X-ray diffraction and TEM observation.

【0016】又、上記蒸着条件のうち、電子銃のガン出
力を6KWとし、その他の条件は上記と同様にして薄膜
の作製を行い、又、測定を行った。この結果を図3に示
す。図2と同様に添加元素の割合および硬度が基板側か
ら表面側に増加していることが分った。ただ、ガン出力
の相違から組成の傾斜は急であった。組織についても図
2の場合と同様であった。
In the above evaporation conditions, the gun output of the electron gun was set to 6 KW, and the other conditions were the same as those described above to produce a thin film and to perform measurement. The result is shown in FIG. As in FIG. 2, it was found that the ratio of the added element and the hardness increased from the substrate side to the surface side. However, the composition gradient was steep due to the difference in gun output. The tissue was the same as in FIG.

【0017】実施例2 図1に示す電子ビーム蒸着装置によりAl50Ni25Ce
25(at%)からなる組成の材料を用いて装置内の真空
度4.5×10-6Torr、蒸着物堆積基板温度100
℃、電子銃のガン出力10KWの蒸着条件により薄膜の
作製を行った。実施例1と同様に薄膜の組成をEDX分
析で、薄膜の硬度を微小ビッカース硬度計により測定し
た。この結果を図4に示す。薄膜の厚さは150μmで
ある。
Example 2 Al 50 Ni 25 Ce was deposited by the electron beam evaporation apparatus shown in FIG.
Using a material having a composition of 25 (at%), the degree of vacuum in the apparatus is 4.5 × 10 −6 Torr, and the temperature of the substrate on which the deposit is deposited is 100
A thin film was produced under the conditions of ° C and a gun output of an electron gun of 10 KW. As in Example 1, the composition of the thin film was measured by EDX analysis, and the hardness of the thin film was measured by a fine Vickers hardness meter. The result is shown in FIG. The thickness of the thin film is 150 μm.

【0018】図4に示すように、薄膜の組成は基板側よ
り表面側に向って添加元素であるNiおよびCe(Ni
+Ce)成分が増加したものであり、硬度も組成の変化
にともなって増加していることが分かる。又、その組織
について、X線回折を行った結果を図5,6に示す。図
5は基板側の組織構造を示すものであり、図6は表面側
の組織構造を示すものである。図5より基板側は微細な
結晶質相からなるものであり、図6より表面側は微細な
結晶質相と非晶質相との混相からなっていることが分か
る。TEM観察によれば上記の平均結晶粒径は100n
m以下であった。
As shown in FIG. 4, the composition of the thin film is such that Ni and Ce (Ni
+ Ce) component increases, and it can be seen that the hardness also increases with a change in the composition. In addition, FIGS. 5 and 6 show the results of X-ray diffraction of the structure. FIG. 5 shows the structure on the substrate side, and FIG. 6 shows the structure on the front side. FIG. 5 shows that the substrate side is composed of a fine crystalline phase, and FIG. 6 shows that the surface side is composed of a mixed phase of a fine crystalline phase and an amorphous phase. According to TEM observation, the average crystal grain size is 100 n
m or less.

【0019】又、上記蒸着条件のうち電子銃のガン出力
を6KWとし、その他の条件は上記と同様にして薄膜の
作製を行った。実施例1と同様に測定を行った。この結
果を図7に示す。図7に示すように、図5と同様に添加
元素の割合および硬度が基板側から表面側に増加してい
ることが分った。組織についても上記と同様であった。
A thin film was prepared in the same manner as above except that the gun output of the electron gun was set to 6 KW among the above evaporation conditions. The measurement was performed in the same manner as in Example 1. The result is shown in FIG. As shown in FIG. 7, as in FIG. 5, it was found that the ratio of the added element and the hardness increased from the substrate side to the surface side. The same was applied to the tissue.

【0020】上記実施例1及び2を含むAl−Ni−C
e合金、一般式AlbalNixCey(5<x,y<4
5)についてAlの含有量に基づく硬度の変化を測定し
た結果を図8に示す。なお、Al−Ni−La、Al−
Ni−Y、Al−Ni−Cu−Ceなどでも同様の結果
を得た。
Al—Ni—C containing Examples 1 and 2 above
e alloy, general formula Al bal Ni x Ce y (5 <x, y <4
FIG. 8 shows the result of measuring the change in hardness based on the Al content for 5). In addition, Al-Ni-La, Al-
Similar results were obtained with Ni-Y, Al-Ni-Cu-Ce, and the like.

【0021】[0021]

【発明の効果】本発明によれば、非平衡相からなる合金
の優れた特性を維持でき、比較的膜厚の大きなものを提
供できるとともに、膜厚方向に組成が傾斜していること
によって、膜の各表面に要求される特性にあった薄膜が
得られる。すなわち、表面側にあっては、添加元素の量
が多く360DPNを超える値の高硬度で、高強度、高
耐摩耗性を示し、基材側においては他部材に対する密着
性に優れた薄膜を提供できる。又、本発明の製造方法に
よれば、均質材料の所定量をるつぼ内に全量投入し、こ
れを電子ビーム蒸着法により基材に堆積させて成膜を行
うので、材料中の蒸発温度の低い成分から順次蒸着して
行き、途中の段階で材料の追加がないので、一定の出発
材料であれば傾斜機能も一定となり、表面側には蒸発温
度が高く硬度の高い部分が集中して蒸着される。したが
って、基板側は密着性が優れ、表面側は高硬度、高強
度、高耐摩耗性となる薄膜が効率良く製造することがで
きる。
According to the present invention, the alloy comprising a non-equilibrium phase can maintain its excellent characteristics, can provide a relatively thick film, and can have a composition inclined in the film thickness direction. A thin film that meets the characteristics required for each surface of the film is obtained. In other words, on the surface side, a thin film with a high amount of added elements and a high hardness exceeding 360 DPN, showing high strength and high wear resistance, and providing a thin film with excellent adhesion to other members on the substrate side it can. Further, according to the production method of the present invention, a predetermined amount of the homogeneous material is put into the crucible in its entirety, and is deposited on the substrate by electron beam evaporation to form a film. The components are deposited sequentially, and no additional material is added in the middle of the process.Therefore, if the starting material is constant, the gradient function will be constant, and high evaporation temperature and high hardness will be concentrated on the surface side. You. Therefore, a thin film having excellent adhesion on the substrate side and high hardness, high strength and high abrasion resistance on the surface side can be efficiently produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法を実施する装置の概要を示す
説明図である。
FIG. 1 is an explanatory diagram showing an outline of an apparatus for implementing a manufacturing method of the present invention.

【図2】実施例のAl70Ni15Ce15を用いて得られた
薄膜の組成とビッカース硬度の傾斜を示すグラフであ
る。
FIG. 2 is a graph showing the composition of a thin film obtained using Al 70 Ni 15 Ce 15 of the example and the slope of Vickers hardness.

【図3】図2の場合と同じ組成でガン出力を変えた場合
の同様のグラフである。
FIG. 3 is a similar graph when the gun output is changed with the same composition as in FIG. 2;

【図4】Al50Ni25Ce25を用いて得られた薄膜の組
成とビッカース硬度の傾斜を示すグラフである。
FIG. 4 is a graph showing the composition of a thin film obtained using Al 50 Ni 25 Ce 25 and the slope of Vickers hardness.

【図5】実施例2における基板側の組織構造を示すX線
回折結果を示すグラフである。
FIG. 5 is a graph showing an X-ray diffraction result showing a tissue structure on the substrate side in Example 2.

【図6】実施例2における表面側の組織構造を示すX線
回折結果を示すグラフである。
FIG. 6 is a graph showing an X-ray diffraction result showing a tissue structure on the surface side in Example 2.

【図7】図4の場合と同じ組成でガン出力を変えた場合
の同様のグラフである。
FIG. 7 is a similar graph when the gun output is changed with the same composition as in FIG. 4;

【図8】Al−Ni−Ce合金のAlの含有量に基づく
硬度の変化を示すグラフである。
FIG. 8 is a graph showing a change in hardness based on the Al content of an Al—Ni—Ce alloy.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 主元素Alと添加元素M(ただし、Mは
Cr,Mn,Fe,Co,Ni,Cu,Ti,Zr,
Y,希土類元素およびMmから選ばれる少なくとも1種
の元素)とからなる厚さ0.1mm以上の薄膜であっ
て、膜厚方向の組成が、膜表面に向って、主元素Alに
対する添加元素Mの割合が連続的に増加しており、膜表
面の硬度が360DPNを超える値であることを特徴と
する傾斜機能薄膜。
1. A main element Al and an additive element M (where M is Cr, Mn, Fe, Co, Ni, Cu, Ti, Zr,
Y, at least one element selected from the group consisting of rare earth elements and Mm), which has a thickness of 0.1 mm or more, and has a composition in the thickness direction toward the film surface in which the additional element M with respect to the main element Al is added. Is continuously increased, and the hardness of the film surface is a value exceeding 360 DPN.
【請求項2】 薄膜の組織が、膜表面に向って、過飽和
固溶体からなる微細結晶質相からなる組織から、非晶質
相と過飽和固溶体からなる微細結晶質相からなる混相あ
るいは非晶質相に連続的に変化してなる請求項1記載の
傾斜機能薄膜。
2. A structure of a thin film, which is directed toward a film surface, from a structure composed of a fine crystalline phase composed of a supersaturated solid solution to a mixed phase or an amorphous phase composed of an amorphous phase and a fine crystalline phase composed of a supersaturated solid solution. 2. The functionally graded thin film according to claim 1, which continuously changes.
【請求項3】 薄膜の一方側表面の組成が、一般式:A
bal1a2b(ただし、M1:Cr,Mn,Fe,C
o,Ni,Cuから選ばれる少なくとも1種の元素、M
2:Ti,Zr,Y,希土類元素、Mmから選ばれる少
なくとも1種の元素、a,bは原子パーセントで0<a
<30,0<b<30)で示され、組織が過飽和固溶体
からなる微細結晶質相であり、他方側表面の組成が、一
般式:Albal1c2d(ただし、M1,M2は上記と同
じ、c,dは原子パーセントで5<c<30,5<d<
30でかつc>a,d>b)で示され、組織が非晶質相
と過飽和固溶体からなる微細結晶質相とからなる混相で
ある請求項1記載の傾斜機能薄膜。
3. The composition of one surface of a thin film having a general formula: A
l bal M 1a M 2b (where M 1 is Cr, Mn, Fe, C
at least one element selected from o, Ni, and Cu;
2 : at least one element selected from Ti, Zr, Y, rare earth elements and Mm, a and b are 0 <a in atomic percent
<30, 0 <b <30), the structure is a fine crystalline phase composed of a supersaturated solid solution, and the composition of the other surface is represented by the general formula: Al bal M 1c M 2d (where M 1 , M 2 Is the same as above, and c and d are atomic percentages, 5 <c <30, 5 <d <
3. The functionally graded thin film according to claim 1, wherein the thickness is 30 and c> a, d> b), and the structure is a mixed phase composed of an amorphous phase and a fine crystalline phase composed of a supersaturated solid solution.
【請求項4】 a+b<10at%である請求項3記載
の傾斜機能薄膜。
4. The functionally graded thin film according to claim 3, wherein a + b <10 at%.
【請求項5】 c+d>20at%である請求項3記載
の傾斜機能薄膜。
5. The functionally graded thin film according to claim 3, wherein c + d> 20 at%.
【請求項6】 過飽和固溶体からなる微細結晶質相が実
質的に平均結晶粒径が100nm以下である請求項2又
は請求項3のいずれかに記載の傾斜機能薄膜。
6. The functionally graded thin film according to claim 2, wherein the fine crystalline phase composed of a supersaturated solid solution has a substantially average crystal grain size of 100 nm or less.
【請求項7】 平均粒径1〜10μmの粒子によって薄
膜が構成され、その相対密度が95%以上である請求項
1記載の傾斜機能薄膜。
7. The functionally gradient thin film according to claim 1, wherein the thin film is composed of particles having an average particle diameter of 1 to 10 μm, and has a relative density of 95% or more.
【請求項8】 主元素Alと主元素より蒸発しにくい添
加元素M(ただし、MはCr,Mn,Fe,Co,N
i,Cu,Ti,Zr,Y,希土類元素およびMmから
選ばれる少なくとも1種の元素)とからなる均質材料の
所定量をるつぼ内に全量装入し、これを電子ビーム蒸着
法により基材に堆積させて成膜を行い、膜厚方向の組成
が膜表面に向って主元素に対する添加元素の割合が連続
的に増加するようになし、膜厚が0.1mm以上で膜表
面の硬度が360DPNを超える値である薄膜とするこ
とを特徴とする傾斜機能薄膜の製造方法。
8. A main element Al and an additional element M which is less likely to evaporate than the main element (where M is Cr, Mn, Fe, Co, N
i, Cu, Ti, Zr, Y, at least one element selected from rare earth elements and Mm), and a predetermined amount of a homogenous material is charged in a crucible into a crucible. The film is deposited and deposited, so that the composition in the film thickness direction is such that the ratio of the added element to the main element is continuously increased toward the film surface. When the film thickness is 0.1 mm or more, the hardness of the film surface is 360 DPN. A method for producing a functionally graded thin film, characterized in that the thin film has a value that exceeds
【請求項9】 蒸着雰囲気を真空雰囲気とし、基材温度
を150〜350℃とする請求項8記載の傾斜機能薄膜
の製造方法。
9. The method for producing a functionally graded thin film according to claim 8, wherein the vapor deposition atmosphere is a vacuum atmosphere, and the substrate temperature is 150 to 350 ° C.
JP25167196A 1996-09-24 1996-09-24 Functionally gradient thin coating and its production Pending JPH1096077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25167196A JPH1096077A (en) 1996-09-24 1996-09-24 Functionally gradient thin coating and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25167196A JPH1096077A (en) 1996-09-24 1996-09-24 Functionally gradient thin coating and its production

Publications (1)

Publication Number Publication Date
JPH1096077A true JPH1096077A (en) 1998-04-14

Family

ID=17226296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25167196A Pending JPH1096077A (en) 1996-09-24 1996-09-24 Functionally gradient thin coating and its production

Country Status (1)

Country Link
JP (1) JPH1096077A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000037713A1 (en) * 1998-12-22 2000-06-29 MTU MOTOREN- UND TURBINEN-UNION MüNCHEN GMBH Antiabrasion coating
EP1197577A2 (en) * 2000-10-10 2002-04-17 General Electric Company Apparatus and method for introducing small amounts of refractory elements into a vapor deposition coating
WO2003064085A1 (en) * 2002-01-31 2003-08-07 Mitsubishi Materials Corporation Coated cutting tool member having hard coating layer and method for forming the hard coating layer on cutting tool

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000037713A1 (en) * 1998-12-22 2000-06-29 MTU MOTOREN- UND TURBINEN-UNION MüNCHEN GMBH Antiabrasion coating
US6773817B1 (en) 1998-12-22 2004-08-10 Mtu Aero Engines Gmbh Antiabrasion coating
EP1197577A2 (en) * 2000-10-10 2002-04-17 General Electric Company Apparatus and method for introducing small amounts of refractory elements into a vapor deposition coating
EP1197577A3 (en) * 2000-10-10 2004-01-02 General Electric Company Apparatus and method for introducing small amounts of refractory elements into a vapor deposition coating
US6849299B2 (en) 2000-10-10 2005-02-01 General Electric Company Apparatus and method for introducing small amounts of refractory elements into a vapor deposition coating
WO2003064085A1 (en) * 2002-01-31 2003-08-07 Mitsubishi Materials Corporation Coated cutting tool member having hard coating layer and method for forming the hard coating layer on cutting tool
US7144639B2 (en) 2002-01-31 2006-12-05 Mitsubishi Materials Corporation Surface-coated cutting tool member having hard coating layer and method for forming the hard coating layer on surface of cutting tool
CN1325212C (en) * 2002-01-31 2007-07-11 三菱麻铁里亚尔株式会社 Coated cutting tool member having hard coating layer and method for forming the hard coating layer on cutting tool

Similar Documents

Publication Publication Date Title
JP4351212B2 (en) Sputtering target and manufacturing method thereof
JP3962690B2 (en) Pt-Co sputtering target
JP4836136B2 (en) Sputtering target for producing metal glass film and method for producing the same
US20070269330A1 (en) Enhanced sputter target manufacturing method
US20080083616A1 (en) Co-Fe-Zr BASED ALLOY SPUTTERING TARGET MATERIAL AND PROCESS FOR PRODUCTION THEREOF
JP5305137B2 (en) Ni-W sintered target material for forming Ni alloy intermediate layer of perpendicular magnetic recording medium
WO2015022963A1 (en) Fe-Co-BASED ALLOY SPUTTERING TARGET MATERIAL, SOFT MAGNETIC THIN FILM LAYER, AND VERTICAL MAGNETIC RECORDING MEDIUM PRODUCED USING SAID SOFT MAGNETIC THIN FILM LAYER
JP4515596B2 (en) Bulk amorphous alloy, method for producing bulk amorphous alloy, and high strength member
TW593704B (en) Annealing-induced extensive solid-state amorphization in a metallic film
JPH05345961A (en) Manufacture of high toughness and high strength amorphous alloy material
JP3372129B2 (en) High-strength aluminum alloy solidified material and method for producing the same
JPH1096077A (en) Functionally gradient thin coating and its production
US20230203622A1 (en) Aluminum-Scandium Composite, Aluminum-Scandium Composite Sputtering Target And Methods Of Making
JPH05247642A (en) Target member and manufacture therefor
Hohl et al. A comparative high-resolution electron microscope study of Ag clusters produced by a sputter-gas aggregation and ion cluster beam technique
US20050183797A1 (en) Fine grained sputtering targets of cobalt and nickel base alloys made via casting in metal molds followed by hot forging and annealing and methods of making same
JP2006274311A (en) Aluminum based alloy
JP3744713B2 (en) High strength solidified aluminum alloy
JP3744729B2 (en) High strength solidified aluminum alloy
JP2004099940A (en) Method for producing magnesium based alloy
JP2903106B2 (en) Ultra-fine gold-copper alloy particles having a regular icosahedral structure and method for producing the same
JP2004211117A (en) High strength and high heat resistant aluminum alloy hardened material, and its producing method
JP2001123255A (en) Method of manufacturing high strength aluminum alloy material
JP2003277866A (en) High strength aluminum alloy solidified material and production method therefor