JPH109260A - Dynamic pressure type fluid bearing device - Google Patents

Dynamic pressure type fluid bearing device

Info

Publication number
JPH109260A
JPH109260A JP15935796A JP15935796A JPH109260A JP H109260 A JPH109260 A JP H109260A JP 15935796 A JP15935796 A JP 15935796A JP 15935796 A JP15935796 A JP 15935796A JP H109260 A JPH109260 A JP H109260A
Authority
JP
Japan
Prior art keywords
sleeve
shaft
dynamic pressure
center
bearing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15935796A
Other languages
Japanese (ja)
Inventor
Tsutomu Hamada
力 浜田
Takafumi Asada
隆文 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15935796A priority Critical patent/JPH109260A/en
Publication of JPH109260A publication Critical patent/JPH109260A/en
Pending legal-status Critical Current

Links

Landscapes

  • Support Of The Bearing (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a dynamic pressure type fluid bearing device at a low cost by supporting a sleeve by the spherical part and receive surface installed on this outer periphery and a pushpress spring rotatably and further posiotioning the center of the spherical part of the outer periphery of the sleeve on the center line of plural dynamic pressure generation grooves installed on the shaft. SOLUTION: The center of the spherical part of the outer periphery of a sleeve 11 is positioned on the center line of plural dynamic pressure generation grooves 15. Accordingly, as a force for adjusting the center of a clearance between the sleeve 11 and a shaft 14 generated when the shaft 14 is rotated 15 transmitted to the sleeve 11 effectively, the center adjustment is possible after assembly. Thereby, as a left outer frame 12 and a right outer frame 13 are replaced to a pressed part by a sheet plate with a bad accuracy but a low cost, a dynamic pressure type fluid bearing device with a low cost is possible. Further, when the center is adjusted once, a stable dynamic pressure fluid bearing device in which this state becomes hardly wrong extremely is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、モータの軸受など
に用いられる動圧型流体軸受装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrodynamic bearing device used for a motor bearing or the like.

【0002】[0002]

【従来の技術】以下図面を参照しながら、上述した従来
の動圧型流体軸受装置の1例について説明する。図9は
従来の動圧型流体軸受装置の断面を示す。図9におい
て、1はスリーブ、2は左支持枠、3は右支持枠、4は
軸、5は軸4に設けられた複数の動圧発生溝、6は潤滑
油である。ここで、2つのスリーブ1はそれぞれ左支持
枠2と右支持枠3に、また左支持枠2は右支持枠3に、
それぞれがはめあい構造で位置決めされつつ、図示しな
いネジ等で固定されている。更にスリーブ1と軸4の隙
間には潤滑油6が注入されている。なお、軸4は図示し
ない回転手段により矢印A方向へ回転可能に設けられて
いる。
2. Description of the Related Art An example of the above-mentioned conventional hydrodynamic bearing device will be described with reference to the drawings. FIG. 9 shows a cross section of a conventional hydrodynamic bearing device. In FIG. 9, 1 is a sleeve, 2 is a left support frame, 3 is a right support frame, 4 is a shaft, 5 is a plurality of dynamic pressure generating grooves provided on the shaft 4, and 6 is lubricating oil. Here, the two sleeves 1 are on the left support frame 2 and the right support frame 3, respectively, and the left support frame 2 is on the right support frame 3,
Each of them is fixed by a screw or the like (not shown) while being positioned by the fitting structure. Further, a lubricating oil 6 is injected into a gap between the sleeve 1 and the shaft 4. The shaft 4 is provided so as to be rotatable in the direction of arrow A by rotating means (not shown).

【0003】以上のように構成された従来の動圧型流体
軸受装置について、以下その動作について説明する。図
9において、図示しない回転手段により軸4が矢印A方
向へ回転すると、軸4に設けた複数の動圧発生溝5によ
り潤滑油6が複数の動圧発生溝5の中央に集められよう
とするので、この中央部の潤滑油6の圧力が高まり、結
果軸4は左右のスリーブ1に対して非接触で回転するこ
ととなる。
The operation of the conventional hydrodynamic bearing device configured as described above will be described below. In FIG. 9, when the shaft 4 is rotated in the direction of arrow A by rotating means (not shown), the lubricating oil 6 is likely to be collected at the center of the plurality of dynamic pressure generating grooves 5 by the plurality of dynamic pressure generating grooves 5 provided on the shaft 4. Therefore, the pressure of the lubricating oil 6 at the center increases, and as a result, the shaft 4 rotates without contact with the left and right sleeves 1.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記のよ
うに構成された従来の動圧型流体軸受装置では、以下の
ような問題点があった。一般に動圧型流体軸受装置にお
ける軸4とスリーブ1との隙間は、この隙間が狭い方が
より大きな軸受負荷に耐えられることから、通常10μ
m前後で構成していた。またこの狭い隙間を確実に確保
するために、従来の動圧型流体軸受装置ではスリーブ
1、左支持枠2、右支持枠3を、それぞれのはめあい部
も含めて、施盤で高精度に加工することが不可欠であっ
た。すなわち従来の動圧型流体軸受装置は、施盤で各部
品を高精度に切削加工する必要性があったので、極めて
コストが高いという問題があった。
However, the conventional hydrodynamic bearing device configured as described above has the following problems. Generally, the gap between the shaft 4 and the sleeve 1 in the hydrodynamic bearing device is usually 10 μm because a narrower gap can endure a larger bearing load.
m. In order to ensure this narrow gap, the sleeve 1, the left support frame 2, and the right support frame 3 are processed with high precision by a lathe in the conventional hydrodynamic bearing device, including the fitting portions thereof. Was indispensable. That is, the conventional hydrodynamic bearing device has a problem that the cost is extremely high because it is necessary to cut each component with high accuracy on a lathe.

【0005】[0005]

【課題を解決するための手段】上記問題点を解決するた
めの本発明の第1の発明の動圧型流体軸受装置は、スリ
ーブを、この外周に設けた球面部と受け面、および押圧
バネで回転自在に支持し、更に軸に設けた複数の動圧発
生溝の中心線上にスリーブの外周の球面部の中心を位置
させた構成である。
According to a first aspect of the present invention, there is provided a hydrodynamic bearing device for solving the above-mentioned problems, in which a sleeve is formed by a spherical portion provided on an outer periphery thereof, a receiving surface, and a pressing spring. The sleeve is rotatably supported, and the center of the spherical portion on the outer periphery of the sleeve is positioned on the center line of the plurality of dynamic pressure generating grooves provided on the shaft.

【0006】また上記問題点を解決するための本発明の
第2の発明の動圧型流体軸受装置は、スリーブを、この
外周に設けた球面部と受け面、および押圧バネで回転自
在に支持し、更に軸に設けた複数の動圧発生溝の中心線
よりスリーブの球面部の中心位置をずらした構成であ
る。
According to a second aspect of the present invention, there is provided a hydrodynamic bearing device in which a sleeve is rotatably supported by a spherical portion provided on an outer periphery thereof, a receiving surface, and a pressing spring. Further, the center position of the spherical portion of the sleeve is shifted from the center line of the plurality of dynamic pressure generating grooves provided on the shaft.

【0007】本発明の第1の発明は、上記した構成によ
って、スリーブの調芯状態を狂わす力が発生せず調芯状
態を安定して維持することができるとともに、第2の発
明においてはスリーブの傾きを元へ戻そうとするトルク
が作用するため、軸とスリーブとの隙間を、部品精度で
はなく組立後の調整で確保できるので、高価な切削加工
部が減らせ、また支持枠等を低コストな板金プレス加工
品とすることもできるので、動圧型流体軸受装置を低コ
ストで実現できることになる。
According to the first aspect of the present invention, with the above-described structure, the alignment state of the sleeve can be stably maintained without generating a force that disturbs the alignment state of the sleeve. The torque between the shaft and the sleeve can be secured by adjusting after assembly instead of component accuracy, so that expensive cutting parts can be reduced and the supporting frame etc. can be reduced. Since a cost-effective sheet metal pressed product can be used, a hydrodynamic bearing device can be realized at low cost.

【0008】[0008]

【発明の実施の形態】以下本発明の第1の実施の形態に
ついて、図1を参照しながら説明する。図1において、
11はスリーブである。12は左外枠、13は右外枠で
例えば板金のプレス加工で作られている。14は軸、1
5は軸14に設けられた複数の動圧発生溝で、この中心
とスリーブ11の外周の球面の中心は一致して設けてい
る。16は軸14とスリーブ11間の隙間に注油された
潤滑油で、17は左外枠12、右外枠13にそれぞれ設
けられた受け面である。この受け面17にはスリーブ1
1の外周の球面部が、図示しない例えばネジなどにより
左外枠12、右外枠13に固定された押圧バネ18で押
圧されている。なお、押圧バネ18も例えば板金のプレ
ス加工で作ることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIG. In FIG.
Reference numeral 11 denotes a sleeve. Reference numeral 12 denotes a left outer frame, and 13 denotes a right outer frame, which is formed by, for example, pressing a sheet metal. 14 is the axis, 1
Reference numeral 5 denotes a plurality of dynamic pressure generating grooves provided on the shaft 14, the center of which is provided so as to coincide with the center of the spherical surface on the outer periphery of the sleeve 11. Reference numeral 16 denotes lubricating oil injected into a gap between the shaft 14 and the sleeve 11, and 17 denotes receiving surfaces provided on the left outer frame 12 and the right outer frame 13, respectively. This receiving surface 17 has a sleeve 1
A spherical portion on the outer periphery of 1 is pressed by a pressing spring 18 fixed to the left outer frame 12 and the right outer frame 13 by, for example, screws (not shown). The pressing spring 18 can also be made by, for example, pressing a sheet metal.

【0009】以上のように構成された本発明の第1の実
施の形態における動圧型流体軸受装置について、図1〜
図6を用いてその動作を説明する。まず図1では軸14
とスリーブ11との隙間がすでに確保された状態を示し
ている。しかしながら特に本実施の形態における左外枠
12、右外枠13を板金のプレス加工で加工し、更に左
外枠12と右外枠13をはめあいに依らずに組み立てた
場合、組立直後は通常図2に示すような、軸14とスリ
ーブ11が擦れた状態となっているので、軸14とスリ
ーブ11との隙間を調整する必要がある。
The hydrodynamic bearing device according to the first embodiment of the present invention configured as described above is shown in FIGS.
The operation will be described with reference to FIG. First, in FIG.
This shows a state where a gap between the sleeve 11 and the sleeve 11 has already been secured. However, in particular, when the left outer frame 12 and the right outer frame 13 in the present embodiment are processed by pressing a sheet metal, and the left outer frame 12 and the right outer frame 13 are assembled without depending on the fitting, a normal drawing immediately after the assembly is used. Since the shaft 14 and the sleeve 11 are rubbed as shown in FIG. 2, it is necessary to adjust the gap between the shaft 14 and the sleeve 11.

【0010】調整の具体的な手段として、複数の動圧発
生溝15こそ無いが、ほぼ図1と同じ構成の外周に球面
部を有する焼結軸受の場合、軸14が停止した状態で右
外枠12、または左外枠13を図示しないハンマ等で加
振する方法が用いられる。この方法は組立直後に軸14
とスリーブ11が強く接触している、すなわち大きな接
触力が発生している場合、この接触力と押圧バネ18が
加振で瞬間緩むことでスリーブ11が接触力が少なくな
る方へ微動し結果擦れの力が弱まるので、本来多数擦れ
ていても使える焼結軸受では有効であった。なおこの加
振方法は、軸14とスリーブ11との接触力が弱い場合
や、瞬間はあるが不均一な場合、スリーブ11には調芯
するための力が何ら働いていないので、いくら加振して
もより均一な隙間は得られない。一方動圧型流体軸受装
置では、スリーブ11に比較的焼き付き易い真鍮系の材
料を用いる場合が多いので、擦れの力を弱めるだけでな
く、軸14をスリーブ11に対して十分な隙間を保ちつ
つ非接触で回転させる、すなわちスリーブ11と軸14
を十分に調芯する必要がある。
As a specific means of adjustment, there is no plurality of dynamic pressure generating grooves 15, but in the case of a sintered bearing having a spherical portion on the outer periphery having substantially the same configuration as that of FIG. A method of exciting the frame 12 or the left outer frame 13 with a hammer (not shown) or the like is used. This method uses the shaft 14 immediately after assembly.
When the sleeve 11 is in strong contact with the sleeve 11, that is, when a large contact force is generated, the contact force and the pressing spring 18 are momentarily loosened by the vibration, so that the sleeve 11 is slightly moved to a position where the contact force is reduced, resulting in rubbing. Therefore, a sintered bearing that can be used even if it originally rubs a lot was effective. In this vibration method, when the contact force between the shaft 14 and the sleeve 11 is weak, or when there is a moment but unevenness, no force for centering works on the sleeve 11, so Even so, a more uniform gap cannot be obtained. On the other hand, in a hydrodynamic bearing device, since a brass-based material that is relatively easy to seize is often used for the sleeve 11, not only the frictional force is reduced, but also the shaft 14 is secured while maintaining a sufficient clearance with respect to the sleeve 11. Rotate by contact, ie sleeve 11 and shaft 14
Needs to be fully aligned.

【0011】以上のことから、動圧系流体軸受装置で
は、左外枠12、右外枠13、押圧バネ18を単にプレ
ス加工で安く作ることだけでなく、どのような構造で軸
14とスリーブ11の調芯を確実に行うかが極めて重要
であり、本発明はこの点を考慮した発明である。より具
体的には、スリーブ11の調芯を確実に行うために、軸
14の回転と複数の動圧発生溝15の効果で発生する潤
滑油16の圧力を、スリーブ11自体を調芯させる力と
して有効に利用できるよう考案したものであり、以下に
説明を続ける。
As described above, in the hydrodynamic bearing device, not only the left outer frame 12, the right outer frame 13, and the pressing spring 18 can be formed cheaply by press working, but also by any structure, It is extremely important that the alignment of 11 is performed reliably, and the present invention has been made in consideration of this point. More specifically, in order to surely align the sleeve 11, the pressure of the lubricating oil 16 generated by the rotation of the shaft 14 and the effect of the plurality of dynamic pressure generating grooves 15 is reduced by the force for aligning the sleeve 11 itself. It has been devised so that it can be used effectively, and the description will be continued below.

【0012】まず図1には、複数の動圧発生溝15がス
リーブ11の外周の球面部中心と対称に設けられ、かつ
軸14とスリーブ11の隙間が均一、すなわち軸14と
スリーブ11た調芯された状態が示されている。この状
態で軸14が矢印A方向へ回転すると、潤滑油16には
複数の動圧発生溝16の効果で圧力が発生する。この様
子を詳細に説明するために、図3に、図1のスリーブ1
1、軸14の位置関係と潤滑油16の圧力分布を重ねて
示す。図3に示すようなスリーブ11と軸14との隙間
が均一な場合の潤滑油16の圧力分布は、動圧発生溝1
5の中心線に対して対称な分布となる。よって本実施の
形態のようにスリーブ11の外周球面部の中心を複数の
動圧発生溝15の中心線上に設けていれば、調芯された
後に軸14を回転しても、スリーブ11の調芯状態を狂
わす力が発生しない安定した動圧型流体軸受装置とな
る。
First, in FIG. 1, a plurality of dynamic pressure generating grooves 15 are provided symmetrically with respect to the center of the spherical portion on the outer periphery of the sleeve 11, and the gap between the shaft 14 and the sleeve 11 is uniform, that is, the adjustment of the shaft 14 and the sleeve 11 is performed. The centered state is shown. When the shaft 14 rotates in the direction of arrow A in this state, pressure is generated in the lubricating oil 16 by the effect of the plurality of dynamic pressure generating grooves 16. In order to explain this situation in detail, FIG.
1. The positional relationship of the shaft 14 and the pressure distribution of the lubricating oil 16 are shown in an overlapping manner. When the gap between the sleeve 11 and the shaft 14 is uniform as shown in FIG.
5 has a symmetric distribution with respect to the center line. Therefore, if the center of the outer peripheral spherical portion of the sleeve 11 is provided on the center line of the plurality of dynamic pressure generating grooves 15 as in the present embodiment, even if the shaft 14 is rotated after the alignment, the adjustment of the sleeve 11 is performed. A stable hydrodynamic bearing device that does not generate a force that disturbs the core state is provided.

【0013】一方図2に示す、調芯される前の潤滑油1
6の圧力分布は、複数の動圧発生溝15の中心線と対称
な圧力分布に、スリーブ11と軸14との隙間の効果を
加えた分布となる。なお隙間の効果を単純に説明すると
以下のようになる。図2において軸14の矢印A方向へ
回転すると、この回転方向へ潤滑油16も流れる。この
時、一般に潤滑油16は圧縮性のある油を用いるので、
潤滑油16が軸14とスリーブ11との隙間の狭いとこ
ろを通ると潤滑油16の圧力が上がり、隙間が広い所を
通過すると圧力が下がることになる。よって図2での潤
滑油16の圧力分布は、図4に示すように軸15とスリ
ーブ11の隙間が狭い所で高く、隙間が広い所で低い、
複数の動圧発生溝15の中心線に関し非対称な分布とな
る。この分布を図2のスリーブ11に適応すると、この
非対称な潤滑油16の圧力分布がスリーブ11を複数の
動圧発生溝15を中心に矢印C方向へ、すなわち隙間が
均等になる方向へ回転させる力として働くこととなる。
一方この力は、スリーブ11の外周の球面部の中心が複
数の動圧発生溝15の中心線上に位置しているので、直
接スリーブ11を矢印C方向へ回そうとする力となるた
め、非対称の圧力分布が有効に活用されスリーブ11を
回そうとする力となる。
On the other hand, the lubricating oil 1 before alignment shown in FIG.
The pressure distribution 6 is a distribution obtained by adding the effect of the gap between the sleeve 11 and the shaft 14 to the pressure distribution symmetrical with the center line of the plurality of dynamic pressure generating grooves 15. The effect of the gap is simply described as follows. When the shaft 14 rotates in the direction of arrow A in FIG. 2, the lubricating oil 16 also flows in this direction of rotation. At this time, since the lubricating oil 16 generally uses a compressible oil,
When the lubricating oil 16 passes through a narrow space between the shaft 14 and the sleeve 11, the pressure of the lubricating oil 16 increases, and when the lubricating oil 16 passes through a wide space, the pressure decreases. Therefore, the pressure distribution of the lubricating oil 16 in FIG. 2 is high when the gap between the shaft 15 and the sleeve 11 is narrow as shown in FIG.
The distribution becomes asymmetric with respect to the center line of the plurality of dynamic pressure generating grooves 15. When this distribution is applied to the sleeve 11 of FIG. 2, this asymmetric pressure distribution of the lubricating oil 16 causes the sleeve 11 to rotate around the plurality of dynamic pressure generating grooves 15 in the direction of arrow C, that is, in the direction in which the gap becomes uniform. It will work as power.
On the other hand, since the center of the spherical portion on the outer periphery of the sleeve 11 is located on the center line of the plurality of dynamic pressure generating grooves 15, this force is a force for directly rotating the sleeve 11 in the direction of arrow C. The pressure distribution is effectively used to provide a force for rotating the sleeve 11.

【0014】なお、特に本実施例の応用例として、軸1
4の正転、逆転の回転に対応可能な動圧型流体軸受を図
5に示す。なお、図5において図1と同機能部品に付い
ては同一番号に付している。また図5においては、軸1
4と外周に球面部をもつスリーブ11、複数の動圧発生
溝15、潤滑油16のみを示している。図1からの具体
的な変形の内容は、軸14が図示しない回転手段によ
り、矢印A方向と矢印D方向へ回転する事と、複数の動
圧発生溝15を溝E、溝F、溝G、溝Hで構成したこと
である。上記構成により、軸14が矢印A方向へ回転す
るときは溝Eと溝F、溝Gと溝Hの2箇所で、また軸1
4が矢印D方向へ回転するときは、溝Fと溝Gで、潤滑
油16の圧力が高まるので、軸14が矢印A方向、矢印
D方向どちらへ回転しても、軸14とスリーブ11は非
接触で回転できる事になる。この図5に示すような動圧
発生溝15に、第1の発明を適用するときは、単純にス
リーブ11の外周の球面部中心を、溝Fと溝Gとの交点
を連ねた線上に位置させれば良い。これは軸14が矢印
A方向へ回転しても、矢印D方向へ回転しても、この溝
Fと溝Gの交点を中心に潤滑油16の圧力が対称に発生
するためであり、この様な観点から、図5の構成は第1
の実施例の単純な変形といえる。
In particular, as an application example of this embodiment, the shaft 1
FIG. 5 shows a hydrodynamic fluid bearing capable of coping with the forward and reverse rotations of No. 4. In FIG. 5, the same functional components as those in FIG. 1 are denoted by the same reference numerals. Also, in FIG.
4, only a sleeve 11 having a spherical portion on the outer periphery, a plurality of dynamic pressure generating grooves 15, and a lubricating oil 16 are shown. The specific contents of the deformation from FIG. 1 are that the shaft 14 is rotated in the directions of arrows A and D by rotating means (not shown), and the plurality of dynamic pressure generating grooves 15 are formed in the grooves E, F, and G. , Groove H. With the above configuration, when the shaft 14 rotates in the direction of the arrow A, the shaft 14 is rotated at two positions of the groove E and the groove F and the groove G and the groove H.
When the shaft 4 rotates in the direction of the arrow D, the pressure of the lubricating oil 16 increases in the groove F and the groove G, so that the shaft 14 and the sleeve 11 can be moved regardless of whether the shaft 14 rotates in the direction of the arrow A or the direction of the arrow D. It can be rotated without contact. When the first invention is applied to the dynamic pressure generating groove 15 as shown in FIG. 5, the center of the spherical portion on the outer periphery of the sleeve 11 is simply positioned on a line connecting the intersections of the groove F and the groove G. You can do it. This is because the pressure of the lubricating oil 16 is generated symmetrically around the intersection of the groove F and the groove G regardless of whether the shaft 14 rotates in the direction of arrow A or in the direction of arrow D. In view of the above, the configuration of FIG.
It can be said that this is a simple modification of the embodiment.

【0015】次に本発明の第2の実施の形態について、
図6を参照しながら説明する。図6において図1と同一
機能部品に付いては同一番号を付している。11はスリ
ブ、12は左外枠、13は右外枠、14は軸、15は軸
14に設けられた複数の動圧発生溝、16は潤滑油、1
7は左外枠12、右外枠13それぞれに設けたスリーブ
11の外周の球面部を支持する受け面、18は押圧バネ
である。なお、図2に示した第1の実施形態と異なると
ころは、複数の動圧発生溝15の中心線上にスリーブ1
1の外周の球面部中心を位置させていない点である。
Next, a second embodiment of the present invention will be described.
This will be described with reference to FIG. 6, the same functional parts as those in FIG. 1 are denoted by the same reference numerals. 11 is a slab, 12 is a left outer frame, 13 is a right outer frame, 14 is a shaft, 15 is a plurality of dynamic pressure generating grooves provided on the shaft 14, 16 is lubricating oil,
Reference numeral 7 denotes a receiving surface that supports the spherical portion on the outer periphery of the sleeve 11 provided on each of the left outer frame 12 and the right outer frame 13, and 18 denotes a pressing spring. The difference from the first embodiment shown in FIG. 2 is that the sleeve 1 is placed on the center line of the plurality of dynamic pressure generating grooves 15.
1 is that the center of the spherical portion on the outer periphery is not located.

【0016】以上のように構成された第2の実施形態に
ついて、図6〜図8を用いてその動作を説明する。図6
は第1の実施形態における図2に対応する断面図ある
が、基本的な動作は図2に示す場合と同じであるので、
第1の実施形態と異なる点を中心に説明する。第1の実
施形態と異なる点は、スリーブ11の外周の球面部中心
が、軸14に設けた複数の動圧発生溝15の中心線上に
位置していない点にある。しかしながらこの様な構成で
も、軸14が矢印A方向へ回転すると、潤滑油16の圧
力分布でスリーブ11をその外周球面部で回転させる調
芯力が働く。この理由を図7を用いて説明する。スリー
ブ11と軸16との隙間が不均等な場合、潤滑油16の
圧力分布は隙間が狭い方に圧力の中心位置が偏った非対
称な圧力分布となる事は既に第1の実施形態で示した
が、図7に於いても全く同じ現象が発生する。ここで圧
力分布による合成力をI、J、またスリーブ11の外周
の球面部中心からI、Jまでの距離をK、Lとする。ま
ずIとJの大きさについては、軸14とスリーブ11と
の隙間が対称であることから、潤滑油16の圧力分布は
複数の動圧発生溝15の中心線に対して対称で方向だけ
が違う同じ大きさの圧力分布となるため、圧力分布によ
る合成力I、Jも当然同じ大きさとなる。一方スリーブ
11を矢印C方向へ回転させようとするトルクはI×
K、逆方向へ回転させようとする力はJ×Lとなるが、
K>Lであるので、結果スリーブ11には矢印C方向へ
回転させようとする力が働く。なお、このスリーブ11
を回転させようとする力の大きさは、結果として第1の
実施形態における大きさと全く変わらない大きさとな
る。しかしながら第2の実施形態における構成は、第1
の実施形態における動圧発生溝15の中心とスリーブ1
1の外周球面部の中心とを合致させるという制約条件が
無いことから、この動圧型流体軸受装置に例えば図示し
ないスラスト軸受や防塵、油溜まり等を設けようとする
とき、極めて自由度が高い構成といえる。
The operation of the second embodiment configured as described above will be described with reference to FIGS. FIG.
Is a sectional view corresponding to FIG. 2 in the first embodiment, but since the basic operation is the same as that shown in FIG. 2,
The following description focuses on the differences from the first embodiment. The difference from the first embodiment is that the center of the spherical portion on the outer periphery of the sleeve 11 is not located on the center line of the plurality of dynamic pressure generating grooves 15 provided on the shaft 14. However, even in such a configuration, when the shaft 14 rotates in the direction of the arrow A, the pressure distribution of the lubricating oil 16 exerts a centering force for rotating the sleeve 11 at the outer peripheral spherical portion. The reason will be described with reference to FIG. When the gap between the sleeve 11 and the shaft 16 is unequal, the pressure distribution of the lubricating oil 16 becomes an asymmetric pressure distribution in which the center position of the pressure is biased toward the narrower gap as already described in the first embodiment. However, the same phenomenon occurs in FIG. Here, the combined forces due to the pressure distribution are I and J, and the distances from the center of the spherical portion on the outer periphery of the sleeve 11 to I and J are K and L. First, regarding the sizes of I and J, since the gap between the shaft 14 and the sleeve 11 is symmetric, the pressure distribution of the lubricating oil 16 is symmetric with respect to the center line of the plurality of dynamic pressure generating grooves 15 and only the direction is changed. Since the pressure distributions are different and have the same magnitude, the resultant forces I and J due to the pressure distribution naturally have the same magnitude. On the other hand, the torque for rotating the sleeve 11 in the direction of arrow C is I ×
K, the force to rotate in the opposite direction is J × L,
Since K> L, a force for rotating the sleeve 11 in the direction of the arrow C is applied. Note that this sleeve 11
As a result, the magnitude of the force to rotate is substantially the same as the magnitude in the first embodiment. However, the configuration in the second embodiment is the same as that of the first embodiment.
Of the dynamic pressure generating groove 15 and the sleeve 1 in the first embodiment.
Since there is no restriction condition that the center of the outer peripheral spherical portion 1 is matched with the center of the outer peripheral spherical portion, when a thrust bearing (not shown), dust proof, oil reservoir, etc. are provided in the hydrodynamic bearing device, the degree of freedom is extremely high. It can be said that.

【0017】なお、第1の実施の形態とあえて比較する
と、次のような問題点がある。すなわち調芯が完了した
図6の状態で、軸14の自重や図示しない例えば換気扇
の羽根重量などの軸受負荷は、単純に考えるとに動圧発
生溝15の中央部で受けるので、この力に、複数の動圧
発生溝15の中心からスリーブ11の外周の球面部中心
までの距離を掛けたトルクがスリーブ11の調芯状態を
狂わす力となる。しかしながら現実にはこの様な力が働
いても、押圧バネ18の力を増大したり、スリーブ11
の外周の球面部の半径を大きくする等で十分対策でき
る。
In comparison with the first embodiment, there are the following problems. That is, in the state of FIG. 6 in which the alignment is completed, the bearing load such as the weight of the shaft 14 and the weight of the blades of the ventilation fan (not shown) is received at the central portion of the dynamic pressure generating groove 15 when simply considered. The torque obtained by multiplying the distance from the center of the plurality of dynamic pressure generating grooves 15 to the center of the spherical portion on the outer periphery of the sleeve 11 is a force that disturbs the alignment of the sleeve 11. However, in reality, even if such a force acts, the force of the pressing spring 18 is increased,
A sufficient measure can be taken, for example, by increasing the radius of the spherical portion on the outer periphery of the lens.

【0018】なお、特に第2の実施の形態の変形とし
て、正転、逆転の回転に対応可能な動圧型流体軸受への
応用例を図8に示す。なお、図8において図6と同機能
部品に付いては同一番号を付している。また図8におい
ては、軸14と外周が球面状のスリーブ11、複数の動
圧発生溝15、潤滑油16のみを示している。図6から
の具体的な変形部位は、複数の動圧発生溝15を、溝
M、溝N、溝Oで構成した点である。このことにより、
軸14が矢印A方向へ回転するときは溝Mと溝Nで、ま
た軸14が矢印D方向へ回転するときは、溝Nと溝O
で、潤滑油16の圧力が高まるので、軸14が矢印A方
向、矢印D方向どちらへ回転しても、軸14とスリーブ
11は非接触で回転できる事になる。しかしながら図8
では、軸14の回転方向により複数の動圧発生溝15の
実質的な中心位置が、溝Mと溝Nの交点、溝Nと溝Oの
交点の2箇所発生する。よってこの様な複数の動圧発生
溝15の場合、第1の発明を適用する事はできない。一
方第2の発明によれば、例えば図8に示すように単純に
複数の動圧発生溝15の中心線をスリーブ11の外周の
球面の中心位置に合致させることができる。なお、図8
の固有の特徴を以下に簡単に説明する。軸14の自重や
図示しない例えば換気扇の羽根重量などの軸受負荷は、
単純に考えると、軸14が矢印A方向へ回転するときは
溝Mと溝Nの交点、矢印D方向へ回転するときは溝Nと
溝Oの交点で受ける事になる。ここで受けた軸受負荷
に、スリーブ11の外周の球面部中心までの距離を掛け
たトルクが、スリーブ11と軸14の隙間が調芯された
状態を崩そうとする力となる。図8の特徴は、軸14が
矢印A方向、矢印D方向いずれの方向へ回転する場合
も、調芯を狂わす力を最小にできることにある。
FIG. 8 shows, as a modification of the second embodiment, an application to a dynamic pressure type fluid bearing capable of coping with forward rotation and reverse rotation. In FIG. 8, the same components as those in FIG. 6 are denoted by the same reference numerals. FIG. 8 shows only the shaft 14, the sleeve 11 having a spherical outer periphery, the plurality of dynamic pressure generating grooves 15, and the lubricating oil 16. A specific deformed portion from FIG. 6 is that a plurality of dynamic pressure generating grooves 15 are configured by grooves M, grooves N, and grooves O. This allows
When the shaft 14 rotates in the direction of the arrow A, the grooves M and N are used. When the shaft 14 rotates in the direction of the arrow D, the grooves N and O are used.
Since the pressure of the lubricating oil 16 increases, the shaft 14 and the sleeve 11 can rotate in a non-contact manner regardless of whether the shaft 14 rotates in the arrow A direction or the arrow D direction. However, FIG.
In this case, two substantial positions of the center of the plurality of dynamic pressure generating grooves 15 occur at the intersections of the grooves M and N and the intersections of the grooves N and O depending on the rotation direction of the shaft 14. Therefore, in the case of such a plurality of dynamic pressure generating grooves 15, the first invention cannot be applied. On the other hand, according to the second aspect, for example, as shown in FIG. 8, the center lines of the plurality of dynamic pressure generating grooves 15 can be simply made to coincide with the center positions of the spherical surfaces on the outer periphery of the sleeve 11. FIG.
The unique features of are described briefly below. The bearing load such as the weight of the shaft 14 and the weight of the fan (not shown) of the ventilation fan, for example,
To put it simply, when the shaft 14 rotates in the direction of the arrow A, it is received at the intersection of the groove M and the groove N, and when it rotates in the direction of the arrow D, it is received at the intersection of the groove N and the groove O. The torque obtained by multiplying the bearing load received here by the distance to the center of the spherical portion on the outer periphery of the sleeve 11 becomes a force for breaking the state where the gap between the sleeve 11 and the shaft 14 is aligned. The feature of FIG. 8 is that the force which disturbs the alignment can be minimized when the shaft 14 rotates in any of the directions of arrow A and arrow D.

【0019】以上のように本発明の第1の実施の形態に
よれば、複数の動圧発生溝15の中心線上にスリーブ1
1の外周の球面部の中心を位置させているので、軸14
を回転させる時に発生するスリーブ11と軸14間との
隙間を調芯させる力が有効にスリーブ11に伝わるので
組立後に調芯が可能となる。これにより左外枠12、右
外枠13等を精度に悪いがコストが安い板金のプレス加
工品に置き換えられるので、低コストの動圧型流体軸受
装置が可能となる。更に一旦調芯されると、その状態が
極めて狂いにくい安定した動圧型流体軸受装置となる。
As described above, according to the first embodiment of the present invention, the sleeve 1 is placed on the center line of the plurality of dynamic pressure generating grooves 15.
1 is located at the center of the spherical portion on the outer periphery of
Since the force for aligning the gap between the sleeve 11 and the shaft 14 that is generated when the shaft is rotated is effectively transmitted to the sleeve 11, the alignment can be performed after the assembly. As a result, the left outer frame 12, the right outer frame 13 and the like can be replaced with a stamped product made of a sheet metal having low accuracy but low cost, so that a low-cost hydrodynamic bearing device can be realized. Further, once the alignment is performed, a stable dynamic pressure type hydrodynamic bearing device in which the state is hardly deviated is obtained.

【0020】また本発明の第2の実施の形態によれば、
動圧発生溝15の中心線上にスリーブ11の外周の球面
部の中心を位置させていないが、軸14を回転させる時
に発生するスリーブ11と軸14間との隙間を調芯させ
る力が有効にスリーブ11に伝わるので組立後に調芯が
可能となる。これにより左外枠12、右外枠13等を精
度は悪いがコストが安い板金のプレス加工品に置き換え
られるので、低コストの動圧型流体軸受装置が可能とな
り、更に動圧型流体軸受装置を各種商品に適用するとき
の、設計の自由度が極めて高くなる。更に第1の実施の
形態に比べて極めて設計の自由度が高い動圧型流体軸受
装置となる。
According to a second embodiment of the present invention,
Although the center of the spherical portion on the outer periphery of the sleeve 11 is not located on the center line of the dynamic pressure generating groove 15, the force generated when the shaft 14 is rotated to align the gap between the sleeve 11 and the shaft 14 is effectively used. Since it is transmitted to the sleeve 11, alignment can be performed after assembly. As a result, the left outer frame 12, the right outer frame 13 and the like can be replaced with a sheet metal stamped product with low accuracy but low cost, so that a low-cost hydrodynamic bearing device can be realized. When applied to products, the degree of freedom in design becomes extremely high. Further, the hydrodynamic bearing device has a very high degree of freedom in design as compared with the first embodiment.

【0021】なお、第1の実施の形態、第2の実施の形
態では、複数の動圧発生溝15を軸14に設けたが、ス
リーブ11に設けても良い。また複数の動圧発生溝を構
成する各溝の軸方向長さは同じ長さで示したが、長さを
変えても良い。また、スリーブ11の外周全面を球面部
として示したが、受け面17の大きさに調芯範囲を加え
た最小範囲としても良い。またスリーブ11の外周と受
け面17は共に球面の一部として示したが、スリーブ1
1が略球面内で回転自在に支持できるような他の支持方
法を用いても良い。また押圧バネ17は板バネで示した
が、コイルバネ等の他の手段を用いても良い。更にスリ
ーブ11を調芯させる力は動圧型流体軸受が本質的に持
っている潤滑油16の圧力を活用しているので、この力
だけで調芯される場合もあるが、不足する場合もある。
よってより確実な調芯方法として、軸14を回転させた
状態で、図示しないハンマ等による加振を併用しても良
い。また加振の手段は、ハンマ以外の、例えば圧電素子
等を用いても良い。
In the first and second embodiments, the plurality of dynamic pressure generating grooves 15 are provided on the shaft 14, but they may be provided on the sleeve 11. Although the axial length of each of the plurality of dynamic pressure generating grooves is the same, the length may be changed. Further, although the entire outer periphery of the sleeve 11 is shown as a spherical portion, it may be a minimum range obtained by adding the centering range to the size of the receiving surface 17. Although the outer periphery of the sleeve 11 and the receiving surface 17 are both shown as part of a spherical surface, the sleeve 1
Other support methods that allow the 1 to be rotatably supported within a substantially spherical surface may be used. Further, although the pressing spring 17 is shown as a leaf spring, other means such as a coil spring may be used. Further, since the force for aligning the sleeve 11 utilizes the pressure of the lubricating oil 16 inherently possessed by the hydrodynamic bearing, the sleeve 11 may be aligned by itself, but may be insufficient. .
Therefore, as a more reliable alignment method, vibration with a hammer (not shown) may be used in combination with the shaft 14 being rotated. Further, as the vibration means, for example, a piezoelectric element or the like other than the hammer may be used.

【0022】[0022]

【発明の効果】以上のように本発明の第1の発明は、複
数の動圧発生溝の中心線上にスリーブの外周の球面部中
心を位置させた構成により組立後の調芯ができるので、
支持枠等の低コスト化が可能な、かつ調芯後は調芯状態
が狂いにくい動圧型流体軸受装置が実現できる。
As described above, according to the first aspect of the present invention, since the center of the outer peripheral surface of the sleeve is located on the center line of the plurality of dynamic pressure generating grooves, the centering after assembly can be performed.
It is possible to realize a hydrodynamic bearing device in which the cost of the support frame and the like can be reduced and the alignment state after alignment is less likely to be out of order.

【0023】また本発明の第2の発明は、複数の動圧発
生溝の中心線上よりスリーブの外周の球面部中心をずら
した構成により組立後の調芯ができるので、支持枠等の
低コスト化が可能な、かつ設計の自由度が高い動圧型流
体軸受装置が実現できる。
Further, according to the second aspect of the present invention, the center of the outer periphery of the sleeve is shifted from the center line of the plurality of dynamic pressure generating grooves with respect to the center of the sleeve. A hydrodynamic bearing device that can be manufactured and has a high degree of freedom in design can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の発明の実施例における断面図FIG. 1 is a sectional view of a first embodiment of the present invention.

【図2】本発明の第1の発明の実施例における調芯前の
断面図
FIG. 2 is a cross-sectional view before alignment in an embodiment of the first invention of the present invention.

【図3】図1における潤滑油の圧力分布の説明図FIG. 3 is an explanatory diagram of a lubricating oil pressure distribution in FIG. 1;

【図4】図2における潤滑油の圧力分布の説明図FIG. 4 is an explanatory diagram of a lubricating oil pressure distribution in FIG. 2;

【図5】本発明の第1の発明の変形例における断面図FIG. 5 is a sectional view of a modification of the first invention of the present invention.

【図6】本発明の第2の発明の実施例における断面図FIG. 6 is a sectional view of a second embodiment of the present invention.

【図7】図6における潤滑油の圧力分布の説明図FIG. 7 is an explanatory diagram of a pressure distribution of lubricating oil in FIG. 6;

【図8】本発明の第2の発明の変形例における断面図FIG. 8 is a sectional view of a modification of the second invention of the present invention.

【図9】従来の動圧型流体軸受装置の断面図FIG. 9 is a sectional view of a conventional hydrodynamic bearing device.

【符号の説明】[Explanation of symbols]

1、11 スリーブ 2、12 左支持枠 3、13 右支持枠 4、14 軸 5、15 複数の動圧発生溝 6、16 潤滑油 17 受け面 18 押圧バネ 1, 11 Sleeve 2, 12 Left support frame 3, 13 Right support frame 4, 14 Shaft 5, 15 Plural dynamic pressure generating grooves 6, 16 Lubricating oil 17 Receiving surface 18 Press spring

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 軸と、スリーブと、このスリーブの外周
に設けた球面部と、この球面部を回転自在に受ける受け
面と、この受け面を有する支持枠と、前記スリーブの球
面部を前記受け面に押圧する押圧バネと、前記軸もしく
は前記スリーブに設けた複数の動圧発生溝とを有する動
圧型流体軸受装置において、前記複数の動圧発生溝の中
心線上に前記スリーブの前記球面部の中心を位置させた
動圧型流体軸受装置。
1. A shaft, a sleeve, a spherical portion provided on an outer periphery of the sleeve, a receiving surface rotatably receiving the spherical portion, a support frame having the receiving surface, and a spherical portion of the sleeve. In a hydrodynamic bearing device having a pressing spring that presses against a receiving surface and a plurality of dynamic pressure generating grooves provided on the shaft or the sleeve, the spherical portion of the sleeve is provided on a center line of the plurality of dynamic pressure generating grooves. Hydrodynamic bearing device in which the center of is located.
【請求項2】 軸と、スリーブと、このスリーブの外周
に設けた球面部と、この球面部を回転自在に受ける受け
面と、この受け面を有する支持枠と、前記スリーブの球
面部を前記受け面に押圧する押圧バネと、前記軸もしく
は前記スリーブに設けた複数の動圧発生溝とを有する動
圧型流体軸受装置において、前記複数の動圧発生溝の中
心線上より、前記スリーブの前記球面部の中心位置をず
らして設けた動圧型流体軸受装置。
A shaft, a sleeve, a spherical portion provided on an outer periphery of the sleeve, a receiving surface rotatably receiving the spherical portion, a support frame having the receiving surface, and a spherical portion of the sleeve. In a hydrodynamic bearing device having a pressing spring that presses against a receiving surface, and a plurality of dynamic pressure generating grooves provided on the shaft or the sleeve, the spherical surface of the sleeve is positioned from a center line of the plurality of dynamic pressure generating grooves. Hydrodynamic bearing device provided with the center of the part shifted.
JP15935796A 1996-06-20 1996-06-20 Dynamic pressure type fluid bearing device Pending JPH109260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15935796A JPH109260A (en) 1996-06-20 1996-06-20 Dynamic pressure type fluid bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15935796A JPH109260A (en) 1996-06-20 1996-06-20 Dynamic pressure type fluid bearing device

Publications (1)

Publication Number Publication Date
JPH109260A true JPH109260A (en) 1998-01-13

Family

ID=15692085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15935796A Pending JPH109260A (en) 1996-06-20 1996-06-20 Dynamic pressure type fluid bearing device

Country Status (1)

Country Link
JP (1) JPH109260A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351374A (en) * 2004-06-10 2005-12-22 Ntn Corp Dynamic pressure bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351374A (en) * 2004-06-10 2005-12-22 Ntn Corp Dynamic pressure bearing
JP4606781B2 (en) * 2004-06-10 2011-01-05 Ntn株式会社 Hydrodynamic bearing

Similar Documents

Publication Publication Date Title
KR20100100829A (en) Rotation-indexing table apparatus for machine tool
JP3098236B1 (en) Bearing structure of rotary joint
KR100196929B1 (en) Fluid bearing with a clearance error compensation
WO2008072559A1 (en) Micro-spindle
JP2001107964A (en) Fluid bearing
JPH109260A (en) Dynamic pressure type fluid bearing device
JPH11239902A (en) Spindle supporting device for machine tool
JPH0651224A (en) Optical scanning device
JP3609455B2 (en) Static pressure gas bearing
US4393727A (en) Friction drive
JP3240637B2 (en) Bearing device
JPH05280532A (en) Main spindle device
JP3647489B2 (en) Polygon motor
EP0524580B1 (en) Roller supporting structure using a dynamic pressure
JPS61130612A (en) Automatic centering structure for revolving shaft
JP2517557Y2 (en) Hydrostatic bearing for spindle device
JPH01199017A (en) Support structure for rotary shaft and thrust bearing
JPH03178725A (en) Floating holder
JPS60211118A (en) Gaseous bearing device and machining method thereof
JP2533793Y2 (en) Motor bearing device
JP2007051727A (en) Creeping preventing structure
JPH01150112A (en) Rotor supporting device
JP2525841Y2 (en) Drive structure of air spindle
JPH05127115A (en) Method for fixing rotary mirror
JP2001295846A (en) Manufacturing method for thrust dynamic pressure bearing device