JPS60211118A - Gaseous bearing device and machining method thereof - Google Patents

Gaseous bearing device and machining method thereof

Info

Publication number
JPS60211118A
JPS60211118A JP59065865A JP6586584A JPS60211118A JP S60211118 A JPS60211118 A JP S60211118A JP 59065865 A JP59065865 A JP 59065865A JP 6586584 A JP6586584 A JP 6586584A JP S60211118 A JPS60211118 A JP S60211118A
Authority
JP
Japan
Prior art keywords
journal
dynamic pressure
bearing
bearing device
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59065865A
Other languages
Japanese (ja)
Inventor
Yoshihide Suwa
好英 諏訪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59065865A priority Critical patent/JPS60211118A/en
Publication of JPS60211118A publication Critical patent/JPS60211118A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/105Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one bearing surface providing angular contact, e.g. conical or spherical bearing surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1005Construction relative to lubrication with gas, e.g. air, as lubricant
    • F16C33/101Details of the bearing surface, e.g. means to generate pressure such as lobes or wedges
    • F16C33/1015Pressure generating grooves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H2200/00Specific machining processes or workpieces
    • B23H2200/10Specific machining processes or workpieces for making bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/02Sliding-contact bearings
    • F16C23/04Sliding-contact bearings self-adjusting
    • F16C23/043Sliding-contact bearings self-adjusting with spherical surfaces, e.g. spherical plain bearings
    • F16C23/048Sliding-contact bearings self-adjusting with spherical surfaces, e.g. spherical plain bearings for axial load mainly

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To facilitate manufacture of a gaseous bearing by forming the gaseous bearing by a journal portion having a curved surface symmetrical about the axis, a bearing portion bearing the journal portion, and dynamic pressure grooves radially formed on both portions. CONSTITUTION:A spherical journal portion 21 is disposed on the end portion of a rotor 20, and there is provided a bearing portion 22 having a concave portion 25 supporting the journal portion 21. Dynamic pressure grooves 26 are formed on the hemispherical surface 24 opposite to the concave portion 25 of the journal portion 21. Accordingly, gas is sucked in a space between the journal portion 21 and the concave portion 25, and forced to flow relatively perpendicular to the dynamic pressure grooves 26 to form two axial and radial straight lines. Further, the simple structure can facilitate production.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は回転体1%に高速で回転する回転体を動圧効果
によシ高精度で軸支できる気体軸受装置およびその加工
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a gas bearing device capable of supporting a rotating body rotating at a high speed of 1% with high precision using a hydrodynamic effect, and a method for processing the gas bearing device.

〔発明の技術的背景〕[Technical background of the invention]

近時、半導体レーザを応用したレーザプリンタが開発さ
れている。このレーザプリンタにおいては、原稿などの
情報を電気信号に変換するために多面体鏡を用いた光偏
向器が用いられている。この多面体鏡は一般的に薄板正
多角形状をしておシ。
Recently, laser printers using semiconductor lasers have been developed. In this laser printer, an optical deflector using a polyhedral mirror is used to convert information such as a document into an electrical signal. This polyhedral mirror generally has a thin regular polygonal shape.

その側面にそれぞれ鏡面加工を施された反射面を有して
いる。多面体鏡は回転可能なスピンドルに同軸に設けら
れておシ、このスピンドルにより回転し入射する光を異
方向に反射する。この時、上記の電気信号の変換におい
て、高い分解能を得るためには、スピンドルの回転数を
高速(lQ’rpm以上)にし、光の偏向速度を高める
必要がある。さらに。
Each side has a mirror-finished reflective surface. The polyhedral mirror is installed coaxially with a rotatable spindle, and is rotated by the spindle to reflect incident light in different directions. At this time, in order to obtain high resolution in the electrical signal conversion described above, it is necessary to increase the rotation speed of the spindle (1Q'rpm or higher) and increase the light deflection speed. moreover.

変換手段として光学系を用いるので、多面体鏡の位置精
度を非常に高精度に保つ必要があり、このためにはスピ
ンドルの回転精度を高精度にし々ければならない。
Since an optical system is used as the conversion means, it is necessary to maintain the positional accuracy of the polyhedral mirror at a very high level of accuracy, and for this purpose, the rotational accuracy of the spindle must be maintained at a high level of accuracy.

すなわち、この多面体鏡が設けられたスピンドルのよう
な回転体は高速回転するとともに高精度な回転精度が要
求ぜれる。このため、従来ではスピンドルの軸受1では
へリングボーン型又はティルティングパッド型の動圧効
果により軸支する気体軸受装置が半径方向に対する支持
のために、また、永久磁石を用いた磁気軸受装置が軸方
向に対する支持のために用いられている。(例えば特願
昭57−107529号)この2つの軸受を併用するこ
とによって上記の条件が満足される他、摩擦トルク損失
が小さい、潤滑油が不要などの利点が得られる。
That is, a rotating body such as a spindle provided with this polyhedral mirror is required to rotate at high speed and to have high rotation accuracy. For this reason, conventionally, in the spindle bearing 1, a herringbone type or tilting pad type gas bearing device that supports the shaft by a dynamic pressure effect is used for radial support, and a magnetic bearing device using a permanent magnet is used. Used for axial support. (For example, Japanese Patent Application No. 57-107529) By using these two bearings together, the above conditions are satisfied, and other advantages such as low frictional torque loss and no need for lubricating oil can be obtained.

また、第1図に示すような構造となり回転体の半径方向
および軸方向の支持を同じ動圧効果によって行なう気体
軸受装置がある。すなわち1回転体(1)の端部に球面
形状のジャーナル部(2)が同一軸上に一体に設けられ
ている。また、このジャーナル部(2)の下方には軸受
部(3)が備えられているが。
There is also a gas bearing device having a structure as shown in FIG. 1, which supports a rotating body in the radial and axial directions using the same dynamic pressure effect. That is, a spherical journal portion (2) is integrally provided on the same axis at the end of one rotating body (1). Further, a bearing portion (3) is provided below the journal portion (2).

この軸受部(3)はジャーナル部(2)を周面(4)の
下方半球面(5)と対向して受ける半球形状の四部(6
)を有している。一方、ジャーナル部(2)の局面(3
)の凹部(6)と対向する半球面(5)にはスパイラル
状の動圧溝(7)が円周方向に等間隔に刻設されている
。一般的には、動圧溝(力の溝深さは5μm前後二また
。半球面(5)と四部(6)との半径差も5μm前後で
ある。このような構造よシなる気体軸受装置は以下のよ
うに作動する。図示しない駆動装置で回転体(1)を回
転すると、動圧溝(7)が巻き込む周囲の気体が半球面
(5)と凹部(6)とのすき間で圧力上昇を起こす。こ
のため、ジャーナル部(2)は凹部(6)に非接触で回
転体(1)と一体となって回転する。このとき、動圧溝
(力によって起こされた圧力は半球面(5)に垂直に作
用する。すなわち、この圧力は回転体(1)の半径方向
と軸方向の2方向成分を有するため1回転体(1)はこ
の圧力によって半径方向と軸方向の支持を受ける。
This bearing part (3) has four hemispherical parts (6) that receive the journal part (2) facing the lower hemispherical surface (5) of the circumferential surface (4).
)have. On the other hand, the aspect (3) of the journal part (2)
) Spiral dynamic pressure grooves (7) are carved at equal intervals in the circumferential direction on the hemispherical surface (5) facing the recess (6). In general, the dynamic pressure groove (the depth of the force groove is about 5 μm and bifurcates. The radius difference between the hemispherical surface (5) and the four parts (6) is also about 5 μm. A gas bearing device with such a structure operates as follows.When the rotating body (1) is rotated by a drive device (not shown), the pressure of the surrounding gas, which is drawn in by the dynamic pressure groove (7), increases in the gap between the hemispherical surface (5) and the recess (6). Therefore, the journal part (2) rotates together with the rotating body (1) without contacting the recessed part (6).At this time, the pressure caused by the dynamic pressure groove (force) is applied to the hemispherical surface ( 5).In other words, this pressure has components in two directions, the radial and axial directions of the rotating body (1), so the rotating body (1) is supported in the radial and axial directions by this pressure. .

よって、このような気体軸受装置は回転体(1)を半径
方向と軸方向の両支持を兼ね備えて軸支するため、この
装置を用いることによって上述の磁気軸受装置を省略す
ることができる。
Therefore, since such a gas bearing device supports the rotating body (1) in both radial and axial directions, the above-described magnetic bearing device can be omitted by using this device.

〔背景技術の問題点〕[Problems with background technology]

第1図に示した上述の気体軸受装置は、以下に述べるよ
うな欠点があった。すなわち、半球面(5)に刻設され
た動圧溝(7)の加工が非常に困難であった。この動圧
溝(力の加工はこの溝自体の形状、溝深さなどが直接に
軸支持性能を決定する要因となるため、非常に高精度が
要求される。よって、上述のように動圧溝(力が球面に
しかもスパイラル状に刻設する場合、高精度な加工は非
常に内体となる。従来、この球面にスパイラル状の溝を
加工する方法として特公昭59−331号にその詳細が
記載されている。
The above-described gas bearing device shown in FIG. 1 has the following drawbacks. In other words, it was extremely difficult to process the dynamic pressure grooves (7) cut into the hemispherical surface (5). This dynamic pressure groove (force machining) requires extremely high precision because the shape of the groove itself, groove depth, etc. directly determine the shaft support performance. Grooves (when force is applied to a spherical surface and in a spiral shape, high-precision machining becomes extremely difficult. Conventionally, a method for machining spiral grooves on a spherical surface is described in detail in Japanese Patent Publication No. 59-331). is listed.

すなわち、第2図に示すようにこの加工方法はスパイラ
ル状の動圧溝(7)の形状に相当する加工面(10)を
有する突出部αυが形成された電極u渇を、ジャーナル
部(2)の周面(4)の所定位置に加工面(1@が位置
するように位置決めを行ない、放電加工によシ動圧溝(
力を加工するものである。これによって、局面(4)に
は1個の動圧溝(力が刻設され、次にジャーナル部(2
)を軸まわりに所定の角度だけ回転させて。
That is, as shown in FIG. 2, in this processing method, the electrode u, in which the protruding portion αυ having the processed surface (10) corresponding to the shape of the spiral dynamic pressure groove (7) is formed, is connected to the journal portion (2). ) is positioned so that the machined surface (1@) is located at a predetermined position on the circumferential surface (4), and the dynamic pressure groove (
It processes force. As a result, one dynamic pressure groove (force) is carved in the curved surface (4), and then the journal part (2
) by a given angle around the axis.

再び電極(17Jで放電加工を行なうことにより動圧溝
(7)を加工する。この動作を繰り返すことによって。
The dynamic pressure groove (7) is machined by performing electrical discharge machining again with the electrode (17J). By repeating this operation.

、胸回(4)には所定数のスパイラル状の動圧溝(7)
を刻設することができる。
, a predetermined number of spiral dynamic pressure grooves (7) in the thoracic gyrus (4).
can be engraved.

また、ジャーナル部(2)の半球面(5)に相当する半
球形状のマスクに1記の電極(1カを用いて同様に放電
加工を行ない、所定数の動圧溝(力の形状に相当する穴
をあけた後、このマスクをジャーナル部(2)の半球面
(5)に密着させ、フォトエツチング加工を行なう方法
も記載されている。この結果、マスクの穴のあいた部分
だけが加工され、ジャーナル部(2)に所定数のスパイ
ラル状の動圧溝(7)が刻設される。
In addition, electric discharge machining is performed in the same manner using one electrode (one electrode) on a hemispherical mask corresponding to the hemispherical surface (5) of the journal part (2), and a predetermined number of dynamic pressure grooves (corresponding to the shape of the force) are formed. The document also describes a method for photo-etching by making a hole in the mask and then placing the mask in close contact with the hemispherical surface (5) of the journal part (2).As a result, only the hole in the mask is processed. A predetermined number of spiral dynamic pressure grooves (7) are carved in the journal portion (2).

このように、kJJFf:、溝(力の加工を行なうこと
ができるが、この加工方法には以下に述べるような欠点
がある。まず第1に電極(12+に形成された突出部a
υ自体の加工が非常に複雑であシ困難であるということ
である。上述のように、この突出部+tnはスパイラル
状になり、さらに加工面(10)では球面形状となって
いる。この加工方法もまだ上記従来例に詳細に記載され
ているが、結果的に突出部01)は複雑な三次元的曲面
形状であるため、加工工程が多く高精度に加工するには
非常に困難かつ熟練を袈すことになる。特に、ジャーナ
ル部(2)が小型になる場合には、動圧溝(7)を形成
するだめの突出部(lυの形状を高精度に加工するのは
さらに困難になる。
In this way, kJJFf:, groove (force machining) can be performed, but this machining method has the following drawbacks.First of all, the protrusion a formed on the electrode (12+)
The processing of υ itself is extremely complicated and difficult. As described above, this protrusion +tn has a spiral shape, and further has a spherical shape on the processed surface (10). This processing method is also described in detail in the conventional example above, but as a result, the protrusion 01) has a complex three-dimensional curved shape, so it requires many processing steps and is extremely difficult to process with high precision. And it will take away the skill. In particular, when the journal portion (2) becomes smaller, it becomes even more difficult to form the shape of the protrusion (lυ) forming the dynamic pressure groove (7) with high precision.

第2の欠点としては、ジャーナル部(2)の局面(4)
に所定数の動圧溝(力を加工するために、いちいちジャ
ーナル部(2)を軸まわりに回転させ、所定数回放電加
工を繰り返す必要があるということである。
The second drawback is the aspect (4) of the journal part (2).
In order to machine a predetermined number of dynamic pressure grooves (force), it is necessary to rotate the journal part (2) around the axis each time and repeat electric discharge machining a predetermined number of times.

すなわち、第2図に示す方法では1個のジャーナル部(
2)を完成させるために、動圧溝(7)の数だけ放電加
工を行なわなければならない。このため、加工に時間が
かかり住所性の劣るものとなり、さらには、ジャーナル
部(2)を回転させるときに、電極Q冬とジャーナル部
の相対位置がずれ、動圧溝(力が所定の位置に刻設され
なくなることもある。
That is, in the method shown in Fig. 2, one journal part (
In order to complete 2), electrical discharge machining must be performed for the number of dynamic pressure grooves (7). For this reason, machining takes time and the addressability is poor.Furthermore, when the journal part (2) is rotated, the relative position of the electrode Q and the journal part deviates, causing the dynamic pressure groove (the force is not Sometimes it is no longer engraved.

また、第3の欠点として、フォトエツチングによる加工
方法ではマスクを形成する際にト述の第1、第2の欠点
が現われるとともに、電極鰺からジャーナル部(2)に
動圧溝(力を形成するまでに、溝形状を2度転写するこ
とになシ、高精度な動圧溝(力が得られないという点が
ある。
In addition, as a third drawback, when forming a mask with the photoetching method, the first and second drawbacks mentioned above appear, and the formation of dynamic pressure grooves (force) from the electrode to the journal part (2). The problem is that the groove shape has to be transferred twice, and highly accurate dynamic pressure grooves (force) cannot be obtained.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に着目してなされたもので。 The present invention has been made with attention to the above points.

製造が容易で量産が可能であり、しかも回転体を軸支持
する性能を損なうことのない気体軸受装置及びその加工
方法を提供することにある。
It is an object of the present invention to provide a gas bearing device that is easy to manufacture, can be mass-produced, and does not impair the performance of supporting a rotating body axially, and a method for processing the same.

〔発明の概要〕[Summary of the invention]

本発明は1回転体の端部に同一軸上に設けられる軸対称
曲面形状のジャーナル部と、ジャーナル部を受ける軸対
称曲面形状の凹部を有する軸受部と、ジャーナル部と四
部の両方あるいはいずれか一方に回転軸を中心として放
射状に刻設された動圧溝とを具備した気体軸受装置であ
って1回転体が回転するとき、上記の動圧溝の動圧効果
によって回転体を軸支するものである。
The present invention provides a journal portion with an axisymmetric curved surface shape provided on the same axis at the end of a rotating body, a bearing portion having a recessed portion with an axisymmetric curved surface shape for receiving the journal portion, and both or any of the journal portion and the four parts. A gas bearing device is equipped with dynamic pressure grooves carved radially around a rotating shaft on one side, and when a rotating body rotates, the rotating body is pivotally supported by the dynamic pressure effect of the dynamic pressure grooves. It is something.

また、加工方法としての発明は、動圧溝の形状に相当す
る加工面を有する突出部を所定数、所定位置に電極に形
成し、この電極とジャーナル部あるいは軸受部の凹部と
を同一軸上に位置決めした後、電極によって放電加工を
行なうことによシ動圧溝を刻設することを特徴とするも
のである。
In addition, the invention as a processing method involves forming a predetermined number of protrusions having a machined surface corresponding to the shape of the dynamic pressure groove on the electrode at a predetermined position, and aligning the electrode and the journal part or the recess of the bearing part on the same axis. After positioning, the dynamic pressure groove is carved by performing electrical discharge machining using an electrode.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を以下1図面を用いて説明する。第3
図は本実施例装置を示す正面図である。
An embodiment of the present invention will be described below with reference to one drawing. Third
The figure is a front view showing the device of this embodiment.

回転体(種の端部には球面形状のジャーナル部Qηが同
一軸上に一体に設けられている。よって、このジャーナ
ル部0υは回転体(2)と同軸で回転する。また、この
ジャーナル部(2〃の下方部には、このジャーナル部e
1)を支持する軸受部(221が備えられているが、こ
の軸受部c2りはジャーナル部(2υを局面(至)の下
方半球面(2)と対向して受けるほぼ同一形状の凹部(
ハ)を有している。なお、ジャーナル部Cυの四部(2
!′9に対向する半球面C4Iには動圧溝(26)が刻
設されている。この動圧溝(ハ)は、第4図に示すジャ
ーナル部Q→を下方から投影した平面図を見るとわかる
ように1回転軸を中心として放射状に等間隔で複数設け
られている。本実施例では動圧溝(ハ)の数は12本で
ある。との動圧溝(2119の溝深さは5μmとなって
いる。また、ジャーナル部(21)と凹部(ハ)の球面
半径は5μm程度凹部(ハ)の方が大きい。すなわち、
ジャーナル部(21)と凹部(ハ)とのすきまは5μm
程度となる。
A spherical journal part Qη is integrally provided on the same axis at the end of the rotating body (seed).Therefore, this journal part 0υ rotates coaxially with the rotating body (2). (In the lower part of 2, this journal part e
A bearing part (221) is provided to support the journal part (221), and this bearing part c2 is a recess (221) of almost the same shape that receives the journal part (2υ) facing the lower hemispherical surface (2) of the curved surface (to).
c). In addition, the four parts of the journal part Cυ (2
! A dynamic pressure groove (26) is carved in the hemispherical surface C4I opposite to '9. As can be seen from a plan view of the journal portion Q→ shown in FIG. 4 projected from below, a plurality of these dynamic pressure grooves (c) are provided radially at equal intervals around one rotation axis. In this embodiment, the number of dynamic pressure grooves (C) is twelve. The groove depth of the dynamic pressure groove (2119) is 5 μm. Also, the spherical radius of the journal portion (21) and the concave portion (C) is approximately 5 μm, with the concave portion (C) being larger.
The gap between the journal part (21) and the concave part (c) is 5μm
It will be about.

このように、構成された気体軸受装置の動作を説明する
。回転体(澗が図示しない駆動装置により回転すると、
ジャーナル部(21)も一体となって回転する。このと
き、ジャーナル部0υと四部(■とのすきまにはこのす
きまに引き込まれた気体すなわち空気が相対的に動圧溝
弼と直角方向に流れることになる。この流れの流路は動
圧溝Q6)の列を横切るので1周期的に断面積が変化す
ることになる。この結果、動圧溝t2G)と動圧溝(ハ
)との間の流路面積が小さいところでは流れの圧力が上
昇する。また。
The operation of the gas bearing device configured in this way will be explained. When the rotating body (the wheel) is rotated by a drive device (not shown),
The journal portion (21) also rotates together. At this time, the gas drawn into the gap between the journal part 0υ and the fourth part (■) flows in a direction perpendicular to the dynamic pressure groove. Since it crosses the column Q6), the cross-sectional area changes periodically. As a result, the flow pressure increases where the flow path area between the dynamic pressure groove t2G) and the dynamic pressure groove (c) is small. Also.

ジャーナル部(2I)の半球面(財)における動圧溝(
ホ)が存在しない底部では、引き込まれた気体によシ圧
力上昇が生じる。このため1回転しているジャーナル部
01)は凹部(25)から浮き、軸受部e2によって非
接触で支持される。このとき、気体がおよぼす圧力はジ
ャーナル部(2I)の局面(めに垂直に働くから1回転
体(1)は半径方向と軸方向の2方向について支持を受
ける。このように1本実施例装置は回転体(1)を半径
方向を軸方向の2方向支持を兼ね備えて軸支する。
Dynamic pressure groove (
At the bottom where e) is not present, a pressure increase occurs due to the drawn in gas. Therefore, the journal part 01) which has rotated once floats from the recess (25) and is supported by the bearing part e2 in a non-contact manner. At this time, the pressure exerted by the gas acts perpendicularly to the plane of the journal part (2I), so the rotating body (1) is supported in two directions, the radial direction and the axial direction. supports the rotating body (1) in two directions, radially and axially.

次に、上述のような動圧溝(軸を刻設する加工方法の一
例を以下に説明する。第5図は加工に用いる放電加工用
の電極を示す斜視図である。この電極0Dは動圧溝(イ
)の形状に相当する加工面0湯を有する突出部(ト)が
所定数、所定の装置に形成されている。例えば、第3図
、第4図に示すような動圧溝(イ)を加工する場合、動
圧溝(26)はジャーナル部(21)の半球面(至)に
刻設するので、加工面0aは半球面(2優に対応したほ
ぼ同曲率の閉曲面になシ、さらに動圧溝(イ)と同形状
になる。また、突出部0階は電極01)の軸中心部に対
して放射状に所定の数、すなわち12本、所定の位置、
すなわち等間隔に形成される。
Next, an example of a machining method for carving a dynamic pressure groove (shaft) as described above will be explained below. A predetermined number of protrusions (G) having a machined surface of 0 mm corresponding to the shape of the pressure groove (A) are formed in a predetermined device.For example, a dynamic pressure groove as shown in FIGS. 3 and 4 When machining (a), the dynamic pressure groove (26) is carved on the hemispherical surface (to) of the journal part (21), so the machining surface 0a is a hemispherical surface (a closed curved surface with approximately the same curvature corresponding to 2). In addition, the 0th protrusion has a predetermined number of protrusions, that is, 12, in a predetermined position, radially with respect to the axial center of the electrode 01).
That is, they are formed at equal intervals.

このような電極0υを用いて、動圧溝C!!6)をジャ
ーナル部(21)に加工する手順は例えば以下のように
なる。まずジャーナル部(2])と電極t31)との軸
が一致するように位置決めをする。このとき、ジャーナ
ル部(2υをあらかじめ回転体(21に溶接などで一体
としておき1回転体(21)を図示しない位置決め治具
に固定して位置決めを行なうと便利である。ここで。
Using such an electrode 0υ, the dynamic pressure groove C! ! The procedure for processing 6) into the journal portion (21) is, for example, as follows. First, the journal portion (2]) and the electrode t31) are positioned so that their axes coincide. At this time, it is convenient to position the journal part (2υ) by welding the journal part (2υ) to the rotary body (21) in advance and fixing the rotary body (21) to a positioning jig (not shown).

位置決めが終了したのち、電極(3I)に放電し、加工
部分である半球面(2)に加工液を供給し、軸方向にジ
ャーナル部Q1)と電極部9とが相対的に接触する方向
へ移動させる。このとき、加工面c34によって半球面
(財)上には加工面(32の形状どおりの溝が放電加工
によシ加工される。そこで、ジャーナル部(2〃あるい
は電極Oυの送シを所定桁行ない、所定の溝深さまで加
工したとき、動圧溝(イ))の加工は終了する。
After the positioning is completed, electric discharge is applied to the electrode (3I), machining fluid is supplied to the hemispherical surface (2) which is the machining part, and the journal part Q1) and the electrode part 9 are moved in the direction of relative contact in the axial direction. move it. At this time, a groove having the shape of the machined surface (32) is machined on the hemispherical surface (material) by the machined surface c34 by electric discharge machining. When the groove is machined to a predetermined groove depth, the machining of the dynamic pressure groove (a) is completed.

このように、上述のような電極0υを用いたことによ)
、一度の放電加工で非常に短時間で動圧溝(支))の加
工ができる。なお、軸受部tz2)の凹部(ハ)に動圧
溝(26)を加工する場合は、加工面0りを凹部(25
1に対応した閉曲面とし、動圧溝(2(i)の形状に相
当するように突出部鰻を形成した電極C31)を用いれ
ばよい。
In this way, by using the electrode 0υ as described above)
, dynamic pressure grooves (supports) can be machined in a very short time with one electric discharge machining. In addition, when machining the dynamic pressure groove (26) in the recess (C) of the bearing part tz2), the machined surface 0 is aligned with the recess (25).
It is sufficient to use a dynamic pressure groove (electrode C31 having a protruding portion corresponding to the shape of 2(i)) with a closed curved surface corresponding to 2(i).

一方、上述の電極0υは以下に述べるように製作するこ
とができる。まず第6図に示すように円柱形の電極部材
(4])の上端部を半球形凹面に加工し加工面部(4つ
を形成する。次に、加工面部(47Jの底部は。
On the other hand, the above-mentioned electrode 0υ can be manufactured as described below. First, as shown in FIG. 6, the upper end of the cylindrical electrode member (4) is machined into a hemispherical concave surface to form four machined surface parts (47J).Next, the bottom part of the machined surface part (47J) is formed.

ジャーナル部(21)の底部に相当し動圧溝00を刻設
しないため、加工面部(4′jIと同軸に円柱形状の穴
(431を形成する。次に、加工面021を形成するが
、これは第7図に示すように、まず基準位置(人)から
所定角度ずれた位置(B)から中心を通るように、エン
ドミル等の切削工具を送シ、加工面部(42を切断する
。とのとき切断する深さは穴13の側面まで達していれ
ばよい。次に、基準位置(A)から(B)とは逆方向に
同角度ずれた位t (C)から中心を通るよウニ、再び
エンドミル等で加工回部(4りを切断する。
Since it corresponds to the bottom of the journal part (21) and does not have the dynamic pressure groove 00, a cylindrical hole (431) is formed coaxially with the machined surface part (4'jI).Next, the machined surface 021 is formed. As shown in Fig. 7, first, a cutting tool such as an end mill is fed so as to pass through the center from a position (B) that is shifted by a predetermined angle from the reference position (person), and the machined surface part (42) is cut. In this case, the cutting depth should just reach the side of the hole 13.Next, cut the sea urchin from the reference position (A) through the center from a point t (C) that is shifted by the same angle in the opposite direction to (B). Then, use an end mill or the like to cut the machining section (four corners) again.

さらに(B)と(C)の間の残された部分(44)を切
削し除去すれば、加工面(3壜が形成される。この後、
電極部材(41)を所定量回転させ、上述の切削加工を
繰シ返していけば1回転軸を中心として放射状に形成さ
れた突出部(至)が、所定数、PJ+1定の位置に形成
され、電極t3刀が製作される。この時、加工面(32
)は動圧溝(イ)の形状に相当したものとなる。
Furthermore, by cutting and removing the remaining portion (44) between (B) and (C), a machined surface (3 bottles) is formed.After this,
By rotating the electrode member (41) by a predetermined amount and repeating the above-mentioned cutting process, a predetermined number of protrusions formed radially around the axis of one rotation are formed at a predetermined position of PJ+1. , electrode t3 sword is manufactured. At this time, the machined surface (32
) corresponds to the shape of the dynamic pressure groove (a).

また、この他に電極el)の製作方法としては、電1極
部材(4])に加工面G2の投影面形状をしたくさび状
の部材を放射状に並べ一体とし、後にこれら部材をまと
めて球形凹面に加工し加工面O湯を形成してもよい。
In addition, as an alternative manufacturing method for the electrode el), wedge-shaped members having the projection plane shape of the processing surface G2 are arranged radially on the electrode member (4]) and are then integrated into a spherical shape. It may be processed into a concave surface to form a processed surface.

このように、加工面04は球面などの軸対称曲面形状の
加工以外はエンドミル等の切削工具を直線送りのみで加
工できるため、電極Oυの製作も非常に容易となる。ま
た、上述のように電極c3紗による放電加工は1回行な
うのみですべての動圧溝(2G)を刻設することができ
るので、加工時間が非常に短時間となる。また、電極6
])の製作において、加工面04の形状、突出部Gυの
間隔などの形成を高精度に行なっておけば、ジャーナル
部(2υあるいは軸受部(24の凹部(ハ)に刻設され
る動圧溝(イ)は常に高精度で安定した品質となる。よ
って、上述の装置の生産において量産が容易となり、常
に安定した性能を有するものを提供することができる。
In this way, since the processing surface 04 can be processed only by linear feeding with a cutting tool such as an end mill, except for processing an axis-symmetric curved surface shape such as a spherical surface, the electrode Oυ can be manufactured very easily. Furthermore, as described above, all the dynamic pressure grooves (2G) can be carved by performing electric discharge machining using the electrode c3 gauze only once, so the machining time becomes extremely short. In addition, the electrode 6
]), if the shape of the machined surface 04 and the spacing of the protruding parts Gυ are formed with high precision, the dynamic pressure engraved in the recess (C) of the journal part (2υ or bearing part (24)) will be reduced. The groove (A) always has high precision and stable quality.Therefore, mass production of the above-mentioned device becomes easy, and it is possible to always provide a device with stable performance.

なお、本実施例における気体軸受装置では、ジャーナル
部および軸受部の凹部を球面形状としたが、これに限ら
ず軸対称曲面形状であればよい。
In the gas bearing device according to the present embodiment, the journal portion and the concave portion of the bearing portion have a spherical shape, but the shape is not limited to this, and any axially symmetrical curved shape may be used.

例えば、第8図に示すようにジャーナル部0υおよび凹
部(ハ)を同値形状とし、動圧溝(2eがジャーナル部
(21)に回転軸を中心に放射状に刻設したものでもよ
い。この場合もまた。軸方向および半径方向の2方向を
支持することができる。さらに、との動圧溝(イ)は上
述の加工方法によって刻設することができる。さらに、
第9図に示すように、端部が円球形であシ側面が円柱状
となったジャーナル部Cυと、これと同様な形状の凹部
(ハ)を有する軸受部(2つと、ジャーナル部CI)に
回転軸を中心として放射状に刻設した動圧溝(2eとを
具備したものでもよい。
For example, as shown in FIG. 8, the journal part 0υ and the recess (c) may have the same shape, and the dynamic pressure grooves (2e) may be carved radially around the rotation axis on the journal part (21). In this case, can also be supported in two directions, axial and radial.Furthermore, the dynamic pressure grooves (A) can be carved by the above-mentioned processing method.Furthermore,
As shown in Fig. 9, there is a journal part Cυ with a spherical end and a cylindrical side surface, and a bearing part (two bearing parts and a journal part CI) having a concave part (c) of a similar shape. It may be provided with dynamic pressure grooves (2e) radially carved around the rotation axis.

この気体軸受装置を水平に置かれた回転体(20の両端
に設けることによって半径方向の支持だけでなく、軸方
向のふれに対しても常に安定した支持ができる。なお、
この場合も上述の加工方法が適用できるのは言うまでも
ない。
By providing this gas bearing device at both ends of the rotating body (20) placed horizontally, it is possible to always provide stable support not only in the radial direction but also against vibration in the axial direction.
Needless to say, the above processing method can be applied to this case as well.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明の気体軸受装置によれば、
回転体を半径方向と軸方向の2方向について支持できる
装置においても生産が容易な装置4となった。また、加
工方法により、動圧溝の加工を非常に短時間に、しかも
常に高精度に行なうことができる。このため、常に安定
した性能を有する装置を量産することが可能となった。
As explained above, according to the gas bearing device of the present invention,
The device 4, which can support a rotating body in two directions, radial and axial, is also easy to produce. Furthermore, depending on the processing method, dynamic pressure grooves can be processed in a very short time and always with high precision. This has made it possible to mass-produce devices that always have stable performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の装置を示す正面図、第2図は従来の加工
方法を示す正面図、第3図及び第4図は本発明の一実施
例を示す正面図及び平面図、第5図は電極の一例を示す
斜視図、第6図は電極部材を示す正面図、第7図は突出
部を電極に形成する一例を示す平面図、第8図および第
9図は他の実施例を示す正面図である。 I21)・・・ジャーナル部、(2擾・・・軸受部。 (至)・・・周 面、 (251・・・凹 部。 (ハ)・・・動圧溝、 0υ・・・電 極。 C33・・・加工面、I33・・・突出部。 代理人 弁理士 則 近 憲 佑 (ほか1名) 第1図 第3図 隼4図 第5図 第6図 第7図
Fig. 1 is a front view showing a conventional device, Fig. 2 is a front view showing a conventional processing method, Figs. 3 and 4 are a front view and a plan view showing an embodiment of the present invention, and Fig. 5 is a perspective view showing an example of an electrode, FIG. 6 is a front view showing an electrode member, FIG. 7 is a plan view showing an example of forming a protrusion on an electrode, and FIGS. 8 and 9 show other embodiments. FIG. I21)...Journal part, (2nd ring...Bearing part. (To)...Surface, (251...Concave part. (C)...Dynamic pressure groove, 0υ...Electrode C33...processed surface, I33...projection. Agent Patent attorney Noriyuki Chika (and 1 other person) Figure 1 Figure 3 Hayabusa Figure 4 Figure 5 Figure 6 Figure 7

Claims (4)

【特許請求の範囲】[Claims] (1)回転体が回転する際に、この回転体を動圧効果に
よシ軸支する気体軸受装置において、上記回転体に設け
られた少なくとも一つの気体軸受装置は上記回転体の端
部に同一軸上に設けられ一体となって回転する軸対称曲
面形状のジャーナル部と。 このジャーナル部の局面の全体あるいは一部に対面して
受ける軸対称曲面形状の凹部を有する軸受部と、上記凹
部と上記ジャーナル部の両方あるいはいずれか一方に回
転軸を中心として放射状に刻設された動圧溝とを具備す
ることを特徴とする気体軸受装置。
(1) In a gas bearing device that pivotally supports a rotating body by a hydrodynamic effect when the rotating body rotates, at least one gas bearing device provided on the rotating body is attached to an end of the rotating body. A journal portion with an axially symmetrical curved surface that is provided on the same axis and rotates as a unit. A bearing part having an axially symmetrical curved recess that faces and receives all or part of the curved surface of the journal part, and a bearing part having a recessed part having an axially symmetrical curved surface that faces and receives the whole or part of the curved surface of the journal part, and a bearing part that is engraved radially around the rotation axis on both or either one of the recessed part and the journal part. What is claimed is: 1. A gas bearing device comprising: a hydrodynamic groove;
(2)ジャーナル部と軸受部の凹部とは、それぞれ軸対
称曲面形状のうち球面形状であることを特徴とする特許
請求の範囲第1項記載の気体軸受装置。
(2) The gas bearing device according to claim 1, wherein the journal portion and the recessed portion of the bearing portion each have a spherical shape among axisymmetric curved surfaces.
(3)ジャ・−ナル部と軸受部の凹部の両方あるいはい
ずれか一方に動圧溝を刻設する加工方法であって、上記
動圧溝の形状に相当する加工面を有する突出部が所定数
、所定の位置に形成された電極に。 上記ジャーナル部あるいは上記軸受部の凹部を同一軸上
に位置決めし、上記電極によって放電加工を行なうこと
によシ上記動圧溝を刻設することを特徴とする気体軸受
装置の加工方法。
(3) A processing method in which dynamic pressure grooves are carved in both or either one of the journal part and the recessed part of the bearing part, wherein the protruding part having a machined surface corresponding to the shape of the dynamic pressure groove is formed in a predetermined manner. number, with electrodes formed in place. A method of machining a gas bearing device, characterized in that the journal portion or the concave portion of the bearing portion are positioned on the same axis, and the dynamic pressure groove is carved by performing electric discharge machining using the electrode.
(4)電極の突出部は放射状に形成され、上記ジャーナ
ル部と上記軸受部の四部の両方あるいはいず ′れか一
方に、回転軸を中心として放射状の動圧溝を刻設するこ
とを特徴とする特許請求の範囲第3項記載の気体軸受装
置の加工方法。
(4) The projecting part of the electrode is formed in a radial shape, and a radial dynamic pressure groove is carved around the rotation axis in both or any one of the journal part and the four parts of the bearing part. A method of processing a gas bearing device according to claim 3.
JP59065865A 1984-04-04 1984-04-04 Gaseous bearing device and machining method thereof Pending JPS60211118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59065865A JPS60211118A (en) 1984-04-04 1984-04-04 Gaseous bearing device and machining method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59065865A JPS60211118A (en) 1984-04-04 1984-04-04 Gaseous bearing device and machining method thereof

Publications (1)

Publication Number Publication Date
JPS60211118A true JPS60211118A (en) 1985-10-23

Family

ID=13299317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59065865A Pending JPS60211118A (en) 1984-04-04 1984-04-04 Gaseous bearing device and machining method thereof

Country Status (1)

Country Link
JP (1) JPS60211118A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62265142A (en) * 1986-05-13 1987-11-18 Tanaka Kikinzoku Kogyo Kk Production of bushing for spinning irregular shaped glass fiber
US5328271A (en) * 1992-05-06 1994-07-12 Maxtor Corporation Hydrodynamic spindle bearing for ultra-slim disk storage unit
WO1998023405A1 (en) * 1996-11-28 1998-06-04 Loadpoint Limited Method and apparatus for forming recesses in a bearing surface
CN1061419C (en) * 1996-11-13 2001-01-31 三星电子株式会社 Semi-spherical bearing
WO2003041901A1 (en) * 2001-11-08 2003-05-22 Seagate Technology, Llc Automated machine control gap for conical fluid dynamic bearing ecm grooving

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5018839A (en) * 1973-06-19 1975-02-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5018839A (en) * 1973-06-19 1975-02-27

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62265142A (en) * 1986-05-13 1987-11-18 Tanaka Kikinzoku Kogyo Kk Production of bushing for spinning irregular shaped glass fiber
JPH0572338B2 (en) * 1986-05-13 1993-10-12 Tanaka Precious Metal Ind
US5328271A (en) * 1992-05-06 1994-07-12 Maxtor Corporation Hydrodynamic spindle bearing for ultra-slim disk storage unit
CN1061419C (en) * 1996-11-13 2001-01-31 三星电子株式会社 Semi-spherical bearing
WO1998023405A1 (en) * 1996-11-28 1998-06-04 Loadpoint Limited Method and apparatus for forming recesses in a bearing surface
WO2003041901A1 (en) * 2001-11-08 2003-05-22 Seagate Technology, Llc Automated machine control gap for conical fluid dynamic bearing ecm grooving
GB2397041A (en) * 2001-11-08 2004-07-14 Seagate Technology Llc Automated machine control gap for conical fluid dynamic bearing ECM grooving
US6764590B1 (en) 2001-11-08 2004-07-20 Seagate Technology Llc Automated machine control gap for conical fluid dynamic bearing ECM grooving

Similar Documents

Publication Publication Date Title
JPH1047342A (en) Conical fluid bearing, head drum provided with conical fluid bearing, and spindle motor
US5277499A (en) Dynamic pressure bearing apparatus
US5878495A (en) Method of manufacturing a dynamic groove bearing by means of a metal-removing tool, and data storage unit provided with such a dynamic groove bearing
JPS5917019A (en) Rotary body supporter
JP2002349548A (en) Hydrodynamic fluid bearing device
JPS60211118A (en) Gaseous bearing device and machining method thereof
JP2001091718A (en) Method for processing diffraction grating and processing device for the same
JP2872202B2 (en) motor
JPS63241516A (en) Polygon mirror
JPS60234120A (en) Dynamic pressure thrust bearing
JP3646269B2 (en) Hydrodynamic bearing
JPH05106632A (en) Dynamic pressure fluid bearing and polygon scanner using it
EP0479540A2 (en) Dynamic pressure bearing apparatus
JPS62152621A (en) Method of machining air groove in air bearing
JPS6194215A (en) Tape guide drum device
JP2006142421A (en) Electrochemical machining tool for dynamic pressure groove, method for manufacturing electrochemical machining tool, electrochemical machining device, and electrochemical machining method
JPH0749462Y2 (en) Scanner motor
KR200177723Y1 (en) Air dynamic pressure bearing apparatus having micro pockets
JPH01307723A (en) Holding structure for rotating polygon mirror
JPH08141894A (en) Backing plate device
JP2002070863A (en) Hydrodynamic fluid thrust bearing device
JPH1113745A (en) Dynamic pressure bearing device
JPH10311330A (en) Dynamic pressure bearing and motor using the same
JPS60212717A (en) Optical deflecting device
JP2003247536A (en) Dynamic pressure bearing and motor