JPH1088256A - Carbon nano-tube reinforced aluminum composite material - Google Patents

Carbon nano-tube reinforced aluminum composite material

Info

Publication number
JPH1088256A
JPH1088256A JP8247545A JP24754596A JPH1088256A JP H1088256 A JPH1088256 A JP H1088256A JP 8247545 A JP8247545 A JP 8247545A JP 24754596 A JP24754596 A JP 24754596A JP H1088256 A JPH1088256 A JP H1088256A
Authority
JP
Japan
Prior art keywords
carbon
composite material
carbon nano
aluminum
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8247545A
Other languages
Japanese (ja)
Other versions
JP3607934B2 (en
Inventor
Yoichi Ishida
洋一 石田
Kunio Ito
邦夫 伊藤
Tooru Kuzumaki
徹 葛巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP24754596A priority Critical patent/JP3607934B2/en
Publication of JPH1088256A publication Critical patent/JPH1088256A/en
Application granted granted Critical
Publication of JP3607934B2 publication Critical patent/JP3607934B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an aluminum composite material capable of being easily worked into arbitrary shape by compounding specific amounts of reinforcement consisting of a mixture of carbon nano-tube and carbon nano-capsule with a matrix composed essentially of aluminum. SOLUTION: A carbon rod is subjected to D.C. are discharge in a helium atmosphere, by which cylindrical deposits, consisting of 50-95vol.% carbon nano- tube and 5-30% carbon nano-capsule, are formed on the cathode side. There deposits are added as reinforcement by 5-30vol.% to a matrix composed essentially of aluminum and dispersed sufficiently, and then, plastic working, such as drawing, swaging, and compression forming, is performed at ordinary temp., by which a composite material is formed. By this method, the carbon nano-tube reinforced aluminum composite, material capable of being easily worked into arbitrary shape can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はカーボンナノチュー
ブとカーボンナノカプセルとを強化材としてアルミニウ
ムマトリックスに複合したカーボンナノチューブ強化ア
ルミニウム複合材料であり、炭素繊維強化金属複合材料
に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon nanotube reinforced aluminum composite material in which carbon nanotubes and carbon nanocapsules are combined with an aluminum matrix as a reinforcing material, and belongs to a carbon fiber reinforced metal composite material.

【0002】本発明の適用できる製品は輸送機器用構造
材料、航空宇宙産業等の軽量を必要とする場所での構造
部材(宇宙船等)、屋内配線等の送電線である。
The products to which the present invention can be applied are structural materials for transportation equipment, structural members (spacecrafts and the like) in places requiring light weight such as the aerospace industry, and transmission lines such as indoor wiring.

【0003】[0003]

【従来の技術】繊維と金属を組み合わせた複合材料とし
ては種々の系が検討されているが、MMCの中でも高比
強度・高弾性を狙った炭素繊維強化金属(CFRM)は
宇宙船等の航空宇宙開発分野を始めエネルギーや通信分
野などからその発展が強く望まれている。
2. Description of the Related Art Various systems have been studied as composite materials combining fibers and metals. Among MMCs, carbon fiber reinforced metal (CFRM), which aims at high specific strength and high elasticity, is used in aerospace such as spacecraft. There is a strong demand for its development not only in the space development field but also in the energy and communication fields.

【0004】これまでのところ軽量、高強度を特徴とす
るCFRMとしては炭素繊維強化アルミニウム合金が最
も多く検討されているが、その研究の多くは界面反応の
制御に関する研究と言っても過言ではない。複合材料の
界面力学特性は材料のマクロな特性に影響することが実
験的に明らかにされており、特に、炭素繊維とマトリッ
クスのアルミニウム合金との界面反応による繊維の劣化
と、反応生成物の形成をいかにして抑制するかが複合材
料の力学特性向上の要因となっているからである。
Until now, carbon fiber reinforced aluminum alloys have been most frequently studied as CFRMs having features of light weight and high strength, but it is not an exaggeration to say that most of the research is related to the control of interfacial reactions. . It has been experimentally shown that the interfacial mechanical properties of composite materials affect the macroscopic properties of the materials, especially fiber degradation due to the interfacial reaction between carbon fibers and the matrix aluminum alloy, and the formation of reaction products. This is because how to suppress the temperature is a factor in improving the mechanical properties of the composite material.

【0005】[0005]

【発明が解決しようとする課題】炭素繊維/アルミニウ
ム系複合材料は非酸化性雰囲気下では500 ℃以下であれ
ば、加熱保持を行っても強度低下は認められない。しか
し、保持温度が550 ℃以上となると炭素繊維とマトリッ
クスの界面反応によりAl4 3 が形成され、炭素繊維
の断面積が減少すると共に、この炭化物の根本でのノッ
チ効果により強度が低下する。また、大気中での加熱は
酸化による炭素繊維の劣化が重大な問題となることがこ
れまでの研究によって明らかにされている。
When the carbon fiber / aluminum composite material is kept at 500 ° C. or lower in a non-oxidizing atmosphere, no decrease in strength is observed even when it is heated and held. However, when the holding temperature is 550 ° C. or higher, Al 4 C 3 is formed by the interfacial reaction between the carbon fiber and the matrix, the cross-sectional area of the carbon fiber is reduced, and the strength is lowered due to the notch effect at the root of the carbide. Previous studies have shown that heating in the atmosphere causes a serious problem of deterioration of carbon fibers due to oxidation.

【0006】これらの対策として主に、 炭素繊維表面への金属メッキやセラミックコーティン
グ マトリックスへの添加元素による界面反応の抑制 が試みられているが、生産性の問題等から工業レベルで
の改善にはいまだ検討の余地を残されている。
As these countermeasures, attempts have been made mainly to suppress the metal plating on the carbon fiber surface or the interfacial reaction due to the added elements to the ceramic coating matrix. There is still room for consideration.

【0007】現在、工業的に使用されている炭素繊維は
PAN系、ピッチ系など多少の構造的な差があるが、一
般の固体炭素材料と同様に基本的にはグラファイトと類
似の結晶学的な異方性を持つ。従って、その表面は(00
1) 面に代表される基底面と(100) 面に代表される炭素
原子のジグザグ型配列のプリズム面及び(110) 面に代表
される肘掛け椅子型配列のプリズム面が存在する。基底
面の表面自由エネルギーは0.141 /m2 、プリズム面の
比表面エネルギーは4.81/m2 と報告されており、これ
によるとグラファイト結晶の表面自由エネルギーは基底
面よりプリズム面の方が3.1 倍大きいことになる。従っ
て、もし炭素繊維表面が完全なグラファイト底面によっ
て構成された繊維を利用した場合、反応相の抑制に効果
的であると思われる。これは実際にグラファイト化度が
高い高弾性炭素繊維の方が反応相の生成量が比較的少な
いこと、また、反応相であるAl4 3 は繊維のプリズ
ム面からエピタキシャルに成長していることが観察され
ていることからも明らかである。
At present, carbon fibers used industrially have some structural differences such as PAN-based and pitch-based carbon fibers. However, similar to general solid carbon materials, they are basically crystallographically similar to graphite. It has a strong anisotropy. Therefore, its surface is (00
1) There are a basal plane typified by the plane, a zigzag type prism plane of carbon atoms typified by the (100) plane, and an armchair type prism plane typified by the (110) plane. It has been reported that the surface free energy of the basal plane is 0.141 / m 2 and the specific surface energy of the prism face is 4.81 / m 2 , according to which the surface free energy of the graphite crystal is 3.1 times greater on the prism face than on the basal face. Will be. Therefore, if the carbon fiber surface is made of a fiber composed of a complete graphite bottom surface, it seems to be effective in suppressing the reaction phase. This is because the high elasticity carbon fiber with a high degree of graphitization actually generates a relatively small amount of the reaction phase, and that the reaction phase Al 4 C 3 grows epitaxially from the prism surface of the fiber. Is evident from the observation of

【0008】共存の炭素繊維は、製造法、構造及び機械
的性質から幾つかの種類に分類され目的に合わせて使用
されている。しかし、どの種類の炭素繊維においてもグ
ラファイト化は完全とは言えず、結晶学的な異方性を持
つことが明らかである。したがって、金属をマトリック
スとした場合は繊維/マトリックス間の界面反応の制御
を常に考慮し、反応相の生成に対策を講じることが必要
とされてきた。
[0008] Coexisting carbon fibers are classified into several types depending on the production method, structure and mechanical properties, and are used according to the purpose. However, it is apparent that graphitization cannot be said to be perfect in any type of carbon fiber, and that it has crystallographic anisotropy. Therefore, when a metal is used as a matrix, it is necessary to always consider the control of the interfacial reaction between the fiber and the matrix, and to take measures against the generation of the reaction phase.

【0009】[0009]

【課題を解決するための手段】本発明は上記の課題を解
決するために考えられたもので、本発明はアルミニウム
を主成分とするマトリックスと前記マトリックス内に複
合されたカーボンナノチューブとカーボンナノカプセル
との混合物からなる強化材を含有し、前記マトリックス
に対して前記強化材が5〜30容量%の範囲で複合されて
いるカーボンナノチューブ強化アルミニウム複合材料に
ある。
SUMMARY OF THE INVENTION The present invention has been conceived in order to solve the above-mentioned problems, and the present invention provides a matrix containing aluminum as a main component, a carbon nanotube and a carbon nanocapsule compounded in the matrix. The carbon nanotube reinforced aluminum composite material contains a reinforcing material consisting of a mixture of the above, and the reinforcing material is compounded in the range of 5 to 30% by volume with respect to the matrix.

【0010】本発明の複合材料において、強化材となる
カーボンナノチューブとカーボンナノカプセルの混合比
率はカーボンナノチューブが50〜95容量%、カーボンナ
ノカプセルが5〜30容量%の範囲に混合することが好ま
しい。
[0010] In the composite material of the present invention, the mixing ratio of carbon nanotubes and carbon nanocapsules as a reinforcing material is preferably such that carbon nanotubes are mixed in a range of 50 to 95% by volume and carbon nanocapsules in a range of 5 to 30% by volume. .

【0011】本発明において、成分範囲限定の理由は次
の通りである。 (1) 強化材の複合量の範囲について;-実験からは強化
材の複合量が10%付近でピークとなるようなデータが図
1に示されている。5%以下では強化に寄与するカーボ
ンナノチューブの本数が少なくなるため、材料全体の性
質に与える繊維/マトリックス界面の相互作用の影響が
小さく、複合効果がマトリックスであるアルミの性質に
スポイルされてしまうものと考えられる。また、30%以
上では、特に強化材同士の凝集化が起こっているよう
で、このようなところでは繊維/マトリックス界面を形
成していないところがあると考えられる。成形体では特
にそのような接着性あるいは密着性の悪い部分からクラ
ックを生じ、結果的に複合体の成形性・焼結性の低下を
招いているものと思われる。今回の実験からはこれ以上
の複合量は適当ではないと判断した。
In the present invention, the reasons for limiting the component ranges are as follows. (1) Regarding the range of the composite amount of the reinforcing material;-From the experiment, FIG. 1 shows data such that the composite amount of the reinforcing material peaks at around 10%. At 5% or less, the number of carbon nanotubes contributing to reinforcement is reduced, so the effect of the fiber / matrix interface interaction on the properties of the entire material is small, and the composite effect is spoiled by the properties of the matrix aluminum. it is conceivable that. In addition, at 30% or more, it seems that agglomeration of the reinforcing materials particularly occurs, and it is considered that there is a place where the fiber / matrix interface is not formed in such a place. It is considered that cracks are generated particularly in the molded article from such poor adhesion or adhesion, and as a result, the moldability and sinterability of the composite are reduced. From this experiment, it was judged that a more complex amount was not appropriate.

【0012】(2) 強化材のカーボンナノチューブとカー
ボンナノカプセルの割合について;-本発明では強化材
としてカーボンナノチューブを利用することを特徴とす
るが、ナノチューブだけではなく他にカーボンナノカプ
セルの含有も効果的であるということを確かめた。すな
わち、カーボンナノチューブは繊維強化相として利用で
き、カーボンナノカプセルは粒子分散強化相としてアル
ミマトリックスの転位論的強化に利用できると考えられ
る。これまで熱処理等によりカーボンナノカプセルを消
失させ99%以上の純度でカーボンナノチューブを精製す
る方法が発表されているが、この方法では同時にカーボ
ンナノチューブも損傷する可能性が高いため本発明には
熱処理により化学的に活性な面が生じるため適当ではな
いと考えた。また、精製される量が原料に対して極端に
少なくなる等、工業的に利用する場合の問題を抱えてい
る。これらの理由から、簡便な精製法により得られるカ
ーボンナノチューブとカーボンナノカプセルの混合体を
強化材として利用するほうが実質的には有効であると判
断した。
(2) Regarding the ratio of carbon nanotubes to carbon nanocapsules in the reinforcing material;-The present invention is characterized in that carbon nanotubes are used as the reinforcing material. I confirmed that it was effective. That is, it is considered that carbon nanotubes can be used as a fiber-reinforced phase, and carbon nanocapsules can be used as a particle-dispersion-reinforced phase for the dislocation theoretical strengthening of an aluminum matrix. Until now, a method of purifying carbon nanotubes with a purity of 99% or more by erasing carbon nanocapsules by heat treatment or the like has been announced, but this method has a high possibility of damaging carbon nanotubes at the same time. It was not considered suitable because of the chemically active surface. In addition, there is a problem in the case of industrial use, such as the amount to be purified is extremely small with respect to the raw material. For these reasons, it was determined that using a mixture of carbon nanotubes and carbon nanocapsules obtained by a simple purification method as a reinforcing material was substantially more effective.

【0013】[0013]

【実施例】本発明の複合材料は例えば以下のようにして
作製される。アルミニウム粉末に対し所定量のカーボン
ナノチューブ50〜95容量%とカーボンナノカプセル50〜
5容量%との混合物からなる強化材を添加し、十分に分
散させる。次に、このような複合材料を常温で引抜、ス
エージング、圧縮成型など塑性加工し、棒、板、型材等
の形で複合材料を得る。
The composite material of the present invention is produced, for example, as follows. Predetermined amount of carbon nanotubes 50 to 95% by volume based on aluminum powder and carbon nanocapsules 50 to
A reinforcement consisting of a mixture with 5% by volume is added and thoroughly dispersed. Next, such a composite material is subjected to plastic working such as drawing, swaging, and compression molding at room temperature to obtain a composite material in the form of a rod, a plate, a mold, or the like.

【0014】以下に具体例を示す。ヘリウム雰囲気中で
炭素棒を直流アーク放電させることにより陰極側に円筒
状の堆積物を生じさせた。その中からカーボンナノチュ
ーブとカーボンナノカプセルとの混合物(カーボンナノ
チューブを約40〜60容量%、カーボンナノカプセル60〜
40容量%を含む)を得た。次に、これを強化材を純度9
9.99 %、粒径約0.1μmのアルミニウム粉末に添加し、
十分に分散させた。この後得られた混合粉をアルミニウ
ムシースに充填し、引抜加工による多芯線化を図った。
線材化した後、真空中(〜10-2Torr)で熱処理(33
0 ℃,30分)を施すことで、目的とするカーボンナノチ
ューブ強化アルミニウム複合材料を得た。
The following is a specific example. The carbon rod was subjected to DC arc discharge in a helium atmosphere to produce a cylindrical deposit on the cathode side. From among them, a mixture of carbon nanotubes and carbon nanocapsules (about 40-60% by volume of carbon nanotubes, 60-
40% by volume). Next, this is strengthened with a purity of 9
9.99%, added to aluminum powder of about 0.1μm particle size,
Well dispersed. Thereafter, the obtained mixed powder was filled in an aluminum sheath, and a multifilamentary wire was formed by drawing.
After forming into a wire, heat treatment is performed in a vacuum (~ 10 -2 Torr) (33
(0 ° C., 30 minutes) to obtain the desired carbon nanotube reinforced aluminum composite material.

【0015】本発明においては、上記カーボンナノチュ
ーブとカーボンナノカプセルとの混合物からなる強化材
の複合量を適切な範囲とすることが重要であり、アルミ
ニウムマトリックスに対して、図1に示すように、上記
強化材を5〜30容量%の範囲で複合する。強化材の複合
量が5容量%未満であると有意な複合効果は得られず、
30容量%を越えると複合体の例えば成形性が大幅に低下
し、実用的な複合体を得ることができない。図1はカー
ボンナノチューブの複合量(容量%)と微小硬さの変化
を示す図である。図1に示すようにカーボンナノチュー
ブの複合量は10容量%が最もよいことが確かめられた。
In the present invention, it is important that the amount of the composite of the reinforcing material composed of the mixture of the carbon nanotubes and the carbon nanocapsules is within an appropriate range. As shown in FIG. The above reinforcing material is compounded in the range of 5 to 30% by volume. If the composite amount of the reinforcing material is less than 5% by volume, a significant composite effect cannot be obtained,
If it exceeds 30% by volume, for example, the moldability of the composite will be greatly reduced, and a practical composite cannot be obtained. FIG. 1 is a diagram showing a change in the composite amount (% by volume) of carbon nanotubes and the microhardness. As shown in FIG. 1, it was confirmed that the best composite amount of carbon nanotubes was 10% by volume.

【0016】上記強化材中のカーボンナノチューブとカ
ーボンナノカプセルとの混合比率は、カーボンナノチュ
ーブの体積比が50〜95容量%、カーボンナノカプセル50
〜5容量%の範囲となるように設定することが好まし
い。また、用いるカーボンナノチューブとしては、一本
あたりの直径が5〜60nm程度で、長さが0.5 〜5μm
程度のものが好ましく、複数本束になっている場合も利
用可能である。
The mixing ratio of carbon nanotubes to carbon nanocapsules in the reinforcing material is such that the volume ratio of carbon nanotubes is 50 to 95% by volume,
It is preferable to set so as to be within a range of 5 to 5% by volume. The carbon nanotube used has a diameter of about 5 to 60 nm and a length of about 0.5 to 5 μm.
It is preferable that the number of the bundles is about two or more.

【0017】カーボンナノチューブ強化アルミニウム複
合体の組織を観察した結果、図3に示すように、カーボ
ンナノカプセルがマトリックス中に均一に分散している
と共に極細線化によりカーボンナノチューブが引抜方向
に良く配向した組織が観察された。また、カーボンナノ
チューブを使用した場合、熱処理を施しても反応相の生
成が認められず、繊維の浸食等はなかった。
As a result of observing the structure of the carbon nanotube reinforced aluminum composite, as shown in FIG. 3, the carbon nanocapsules were uniformly dispersed in the matrix and the carbon nanotubes were well oriented in the drawing direction due to ultrafine wire formation. Tissue was observed. When carbon nanotubes were used, the formation of a reaction phase was not observed even after heat treatment, and there was no fiber erosion or the like.

【0018】カーボンナノチューブ強化アルミニウム複
合材料の硬さ試験及び引張試験を室温下で行った結果を
図1及び図2に示す。図より明らかなように、複合量の
増加に伴って硬さが2〜5倍ほど増加し、カーボンナノ
チューブとカーボンナノカプセルを強化材として複合す
ることにより、アルミニウムの機械的性質(破断強度)
を向上させることができた。また、カーボンナノカプセ
ルがマトリックス中に均一に分散していることから熱処
理後の硬さの低下率が小さくマトリックスの強化に寄与
していることが判明した。560 ℃で24時間保持しても繊
維/マトリックス界面に反応相生成は認められず、炭素
繊維を用いた従来材料の問題点を克服できることが確認
された。
FIGS. 1 and 2 show the results of the hardness test and the tensile test of the carbon nanotube reinforced aluminum composite material performed at room temperature. As is clear from the figure, the hardness increases by about 2 to 5 times as the amount of composite increases, and the mechanical properties (rupture strength) of aluminum are obtained by combining carbon nanotubes and carbon nanocapsules as a reinforcing material.
Could be improved. In addition, since the carbon nanocapsules were uniformly dispersed in the matrix, it was found that the rate of decrease in hardness after the heat treatment was small and contributed to the strengthening of the matrix. No reaction phase formation was observed at the fiber / matrix interface even after holding at 560 ° C. for 24 hours, confirming that the problems of the conventional material using carbon fibers could be overcome.

【0019】〔試験例〕 〔目的〕 ナノチューブは、その特異な構造から一種の
ひげ結晶とみなせるが、強加工を施すと座屈を伴う特異
な様式の塑性変形を起こす。また、ナノチューブの表面
はグラファイト底面によって囲まれているため化学的に
不活性であると考えられる。したがって、ナノチューブ
は今後高比強度と変形能を備えた新しい繊維材料として
利用できる可能性がある。本研究ではアルミニウムマト
リックスにナノチューブを複合した材料を試作し、その
繊維/マトリックス界面の微細組織及び力学的性質につ
いて検討した。
[Test Example] [Purpose] Nanotubes can be regarded as a kind of whiskers due to their unique structure. However, when subjected to strong working, a special type of plastic deformation accompanied by buckling occurs. In addition, the surface of the nanotube is considered to be chemically inert because it is surrounded by the graphite bottom surface. Therefore, there is a possibility that nanotubes can be used as a new fiber material having high specific strength and deformability in the future. In this study, a composite material of nanotubes and aluminum matrix was fabricated, and the microstructure and mechanical properties of the fiber / matrix interface were examined.

【0020】〔試験方法〕 ナノチューブはアーク放電
法により作製した。使用したナノチューブ粉末には不純
物として粒状グラファイト、非晶質カーボンが含まれて
いる。試料の作製はアルミニウム粉末(純度99.99 %、
粒径約0.1 μm)にナノチューブ粉末の配合量を0〜30
重量%と変化させた混合粉をそれぞれアルミシースに充
填し、600 ℃,60分で焼結した後、スエージングするこ
とにより行った。複合組織はJEM−200 CX高分解能
電子顕微鏡で観察した結果は図4に示す通りで、微小硬
さ試験及び引張試験により力学的性質を評価した。
[Test Method] Nanotubes were produced by an arc discharge method. The used nanotube powder contains granular graphite and amorphous carbon as impurities. The sample was made of aluminum powder (purity 99.99%,
The particle size is about 0.1 μm),
The mixed powder was changed into a weight% and filled in an aluminum sheath, sintered at 600 ° C. for 60 minutes, and swaged. The composite structure was observed with a JEM-200 CX high-resolution electron microscope. The results are shown in FIG. 4, and the mechanical properties were evaluated by a microhardness test and a tensile test.

【0021】〔結果〕 試料はナノチューブの複合量の
増加に伴って硬さが増加する傾向にあった。組織観察を
行ったところ、図4より明らかなようにナノチューブと
共に粒状グラファイトが多数観察され、これもマトリッ
クスの強化に寄与していると推測された。また、550 ℃
以上の温度で長時間保持してもナノチューブ/アルミニ
ウム界面では反応相の生成が認められず、ナノチューブ
の表面層は安定していた。ナノチューブは理論的に反応
相を形成しにくい構造を取っていることから、破断等に
よってプリズム面が生じない限り金属基複合材料におけ
る複合素材としても有効であることが確かめられた。
[Results] The sample tended to increase in hardness with an increase in the amount of composite nanotubes. As a result of observation of the structure, as shown in FIG. 4, many granular graphites were observed together with the nanotubes, and it was presumed that this also contributed to the strengthening of the matrix. Also, 550 ° C
Even when the temperature was maintained at the above temperature for a long time, no reaction phase was observed at the nanotube / aluminum interface, and the surface layer of the nanotube was stable. Since the nanotube has a structure that theoretically makes it difficult to form a reaction phase, it has been confirmed that the nanotube is also effective as a composite material in a metal-based composite material unless a prism surface is generated due to breakage or the like.

【0022】[0022]

【発明の効果】カーボンナノチューブ、カーボンナノカ
プセルで強化したアルミニウム複合材料は、既存の炭素
繊維を利用した場合は難しかった塑性加工による複合材
料の製造が可能となり、しかもナノチューブの表面が化
学的に安定なグラファイト底面で囲まれているため熱処
理時の界面反応による反応相の生成を抑制することがで
きる。このため、任意の形状への加工が容易で実用的な
温度域を従来材料に比べて高めることが可能である。
According to the present invention, an aluminum composite material reinforced with carbon nanotubes and carbon nanocapsules can produce a composite material by plastic working, which was difficult when existing carbon fibers are used, and the surface of the nanotube is chemically stable. Since it is surrounded by a graphite bottom surface, the generation of a reaction phase due to an interface reaction during heat treatment can be suppressed. For this reason, it is easy to process into an arbitrary shape, and it is possible to increase the practical temperature range as compared with conventional materials.

【0023】ナノチューブを強化繊維材料として利用す
る本発明は、化学的に安定なグラファイト底面によって
囲まれたナノチューブの構造的特徴を生かして界面に反
応相を生じない複合材料を製造するものである。繊維材
料としてナノチューブを利用することにより、従来複合
材料製造時に必要とされてきたコーティング等の工程を
省くことができ、製造コストの低減も期待できる。
The present invention utilizing nanotubes as a reinforcing fiber material is to produce a composite material which does not produce a reaction phase at an interface by utilizing the structural characteristics of nanotubes surrounded by a chemically stable graphite bottom surface. By using nanotubes as the fiber material, it is possible to omit processes such as coating which have been conventionally required in the production of a composite material, and it can be expected to reduce the production cost.

【0024】本発明は、カーボンナノチューブとカーボ
ンナノカプセルを強化材として複合したアルミニウムは
熱処理後の硬さの低下率が小さく、また、高温・長時間
保持を行っても界面に反応生成物が形成されないため、
複合材料の機械的性質は急激に低下することはない。複
合材料製造時及び使用時に圧縮、押し出し等の塑性加工
を行ってもナノチューブは塑性変形するため容易に破断
することがなく、内部に欠陥を生じることがない。
According to the present invention, aluminum which is a composite of carbon nanotubes and carbon nanocapsules as a reinforcing material has a small hardness reduction rate after heat treatment, and a reaction product is formed at an interface even after holding at a high temperature for a long time. Not be
The mechanical properties of the composite do not drop sharply. Even when plastic processing such as compression and extrusion is performed during the production and use of the composite material, the nanotubes are plastically deformed, so that the nanotubes do not easily break, and do not generate defects inside.

【0025】このため本発明によって製造した複合材料
は軽量・高強度構造材料として、また、宇宙船等の航空
宇宙産業、エネルギー産業等への利用ができる産業上大
なる利点がある。
Therefore, the composite material produced according to the present invention has a great industrial advantage that it can be used as a lightweight and high-strength structural material, and in the aerospace industry such as spacecraft, the energy industry, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明のカーボンナノチューブの複合
量に対する複合試料の微小硬さの変化を示す特性図であ
る。
FIG. 1 is a characteristic diagram showing a change in microhardness of a composite sample with respect to a composite amount of a carbon nanotube of the present invention.

【図2】図2は、本発明の各熱処理温度における0.5 容
量%試料の破断荷重を示す特性図である。
FIG. 2 is a characteristic diagram showing a breaking load of a 0.5% by volume sample at each heat treatment temperature of the present invention.

【図3】図3は、本発明における複合材中に整列したナ
ノチューブの電子顕微鏡写真図である。
FIG. 3 is an electron micrograph of nanotubes arranged in a composite according to the present invention.

【図4】図4は、本発明におけるナノチューブとアルミ
ニウム界面の高解像度電子顕微鏡写真図である。
FIG. 4 is a high-resolution electron micrograph of the interface between the nanotube and aluminum in the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウムを主成分とするマトリック
スと前記マトリックス内に複合されたカーボンナノチュ
ーブとカーボンナノカプセルとの混合物からなる強化材
を含有し、前記マトリックスに対して前記強化材が5〜
30容量%の範囲で複合されていることを特徴とするカー
ボンナノチューブ強化アルミニウム複合材料。
1. A reinforcing material comprising a matrix containing aluminum as a main component and a mixture of carbon nanotubes and carbon nanocapsules complexed in the matrix, wherein the reinforcing material is 5 to 5% with respect to the matrix.
A carbon nanotube reinforced aluminum composite material characterized by being composited in a range of 30% by volume.
【請求項2】 強化材となるカーボンナノチューブとカ
ーボンナノカプセルの混合比率はカーボンナノチューブ
が50〜95容量%、カーボンナノカプセルが5〜30容量%
の範囲に混合することを特徴とするカーボンナノチュー
ブ強化アルミニウム複合材料。
2. The mixing ratio of carbon nanotubes and carbon nanocapsules as reinforcing materials is 50 to 95% by volume for carbon nanotubes and 5 to 30% by volume for carbon nanocapsules.
A carbon nanotube reinforced aluminum composite material characterized by being mixed in the range of:
JP24754596A 1996-09-19 1996-09-19 Carbon nanotube reinforced aluminum composite Expired - Lifetime JP3607934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24754596A JP3607934B2 (en) 1996-09-19 1996-09-19 Carbon nanotube reinforced aluminum composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24754596A JP3607934B2 (en) 1996-09-19 1996-09-19 Carbon nanotube reinforced aluminum composite

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004239885A Division JP2005008989A (en) 2004-08-19 2004-08-19 Carbon nanotube reinforced aluminum composite

Publications (2)

Publication Number Publication Date
JPH1088256A true JPH1088256A (en) 1998-04-07
JP3607934B2 JP3607934B2 (en) 2005-01-05

Family

ID=17165095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24754596A Expired - Lifetime JP3607934B2 (en) 1996-09-19 1996-09-19 Carbon nanotube reinforced aluminum composite

Country Status (1)

Country Link
JP (1) JP3607934B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000288943A (en) * 1999-04-01 2000-10-17 Mitsubishi Materials Corp Grinding wheel containing fibrous hollow graphite
US6420293B1 (en) * 2000-08-25 2002-07-16 Rensselaer Polytechnic Institute Ceramic matrix nanocomposites containing carbon nanotubes for enhanced mechanical behavior
WO2003024798A1 (en) * 2001-09-18 2003-03-27 Eikos, Inc. Esd coatings for use with spacecraft
JP2003089930A (en) * 2001-09-20 2003-03-28 Showa Denko Kk Fine carbon fiber mixture and composition containing the same
JP2004165665A (en) * 2002-11-12 2004-06-10 Electrovac Fab Elektrotechnischer Spezialartikel Gmbh Heat radiating device
JP2005083430A (en) * 2003-09-05 2005-03-31 Usui Kokusai Sangyo Kaisha Ltd Fluid type fan coupling device
WO2005040067A1 (en) * 2003-10-29 2005-05-06 Sumitomo Precision Products Co., Ltd. Carbon nanotube-dispersed composite material, method for producing same and article same is applied to
WO2005040068A1 (en) * 2003-10-29 2005-05-06 Sumitomo Precision Products Co., Ltd. Method for producing carbon nanotube-dispersed composite material
WO2005040666A1 (en) * 2003-10-29 2005-05-06 Mitsubishi Corporation Lightweight pressure vessel made of aluminum
WO2005040066A1 (en) * 2003-10-29 2005-05-06 Sumitomo Precision Products Co., Ltd. Carbon nanotube-dispersed composite material, method for producing same and article same is applied to
WO2005121023A1 (en) * 2004-06-08 2005-12-22 Sumitomo Electric Industries, Ltd. Method for preparing carbon nanostructure
US7151129B2 (en) 2002-10-08 2006-12-19 Japan Aerospace Exploration Agency Carbon nanofiber-dispersed resin fiber-reinforced composite material
JP2007500450A (en) * 2003-05-08 2007-01-11 クラミック エレクトロニクス ゲーエムベーハー Composite materials and electrical circuits or modules
WO2008069300A1 (en) * 2006-12-07 2008-06-12 Kyushu University, National University Corporation Carbon nanotube composite and method for manufacturing the same
JP2008156676A (en) * 2006-12-21 2008-07-10 Nissin Kogyo Co Ltd Carbon fiber composite metallic material and its production method
JP2008196053A (en) * 2008-02-15 2008-08-28 Nissin Kogyo Co Ltd Carbon fiber-compounded metallic material, method for producing the same, carbon fiber-compounded nonmetallic material, and method for producing the same
US7501459B2 (en) 2004-05-21 2009-03-10 Nissin Kogyo Co., Ltd. Carbon fiber composite material and method of producing the same
JP2009120961A (en) * 2003-07-23 2009-06-04 Nissin Kogyo Co Ltd Formed product of carbon fiber-metal composite
US8053506B2 (en) 2003-07-23 2011-11-08 Nissin Kogyo Co., Ltd. Carbon fiber composite material and method of producing the same, formed product of carbon fiber composite and method of producing the same, carbon fiber-metal composite material and method of producing the same, and formed product of carbon fiber-metal composite and method of producing the same
WO2012133614A1 (en) * 2011-03-31 2012-10-04 株式会社オーク製作所 Carbon fiber bulk
JP2012214303A (en) * 2011-03-31 2012-11-08 Orc Manufacturing Co Ltd High density carbon fiber-filled bulk
US8377547B2 (en) * 2004-07-16 2013-02-19 Nissin Kogyo Co., Ltd. Carbon fiber-metal composite material and method of producing the same
CN103602843A (en) * 2013-12-09 2014-02-26 国家电网公司 Carbon-nanotube-reinforced aluminum-base composite material
CN104762510A (en) * 2015-03-23 2015-07-08 蚌埠市鸿安精密机械有限公司 Humidity-resistant fly ash aluminium-based composite material and preparation method thereof
CN104762503A (en) * 2015-03-23 2015-07-08 蚌埠南自仪表有限公司 High-intensity fly ash aluminium-based composite material and preparation method thereof
CN104762517A (en) * 2015-03-23 2015-07-08 蚌埠南自仪表有限公司 High-toughness fly ash aluminium-based composite material and preparation method thereof
CN105088111A (en) * 2015-09-21 2015-11-25 国家电网公司 Preparation method of carbon nanotube reinforced aluminum matrix composite
CN105734322A (en) * 2016-03-02 2016-07-06 昆明理工大学 Preparation method of carbon nanotube strengthened aluminum-based composite material
CN111575515A (en) * 2020-06-09 2020-08-25 西安融烯科技新材料有限公司 Preparation method and application of nano carbon-aluminum alloy composite material
CN113444906A (en) * 2021-06-10 2021-09-28 北京科技大学 Method for preparing carbon nano tube reinforced light aluminum-based alloy

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513135B2 (en) * 1999-04-01 2010-07-28 三菱マテリアル株式会社 Grinding wheel containing fibrous hollow graphite
JP2000288943A (en) * 1999-04-01 2000-10-17 Mitsubishi Materials Corp Grinding wheel containing fibrous hollow graphite
US6420293B1 (en) * 2000-08-25 2002-07-16 Rensselaer Polytechnic Institute Ceramic matrix nanocomposites containing carbon nanotubes for enhanced mechanical behavior
WO2003024798A1 (en) * 2001-09-18 2003-03-27 Eikos, Inc. Esd coatings for use with spacecraft
JP2003089930A (en) * 2001-09-20 2003-03-28 Showa Denko Kk Fine carbon fiber mixture and composition containing the same
JP4663187B2 (en) * 2001-09-20 2011-03-30 昭和電工株式会社 Fine carbon fiber mixture and composition containing the same
US7151129B2 (en) 2002-10-08 2006-12-19 Japan Aerospace Exploration Agency Carbon nanofiber-dispersed resin fiber-reinforced composite material
JP2004165665A (en) * 2002-11-12 2004-06-10 Electrovac Fab Elektrotechnischer Spezialartikel Gmbh Heat radiating device
JP2007500450A (en) * 2003-05-08 2007-01-11 クラミック エレクトロニクス ゲーエムベーハー Composite materials and electrical circuits or modules
US8053506B2 (en) 2003-07-23 2011-11-08 Nissin Kogyo Co., Ltd. Carbon fiber composite material and method of producing the same, formed product of carbon fiber composite and method of producing the same, carbon fiber-metal composite material and method of producing the same, and formed product of carbon fiber-metal composite and method of producing the same
JP2009120961A (en) * 2003-07-23 2009-06-04 Nissin Kogyo Co Ltd Formed product of carbon fiber-metal composite
JP2005083430A (en) * 2003-09-05 2005-03-31 Usui Kokusai Sangyo Kaisha Ltd Fluid type fan coupling device
WO2005040666A1 (en) * 2003-10-29 2005-05-06 Mitsubishi Corporation Lightweight pressure vessel made of aluminum
WO2005040066A1 (en) * 2003-10-29 2005-05-06 Sumitomo Precision Products Co., Ltd. Carbon nanotube-dispersed composite material, method for producing same and article same is applied to
WO2005040065A1 (en) * 2003-10-29 2005-05-06 Sumitomo Precision Products Co., Ltd. Method for producing carbon nanotube-dispersed composite material
WO2005040068A1 (en) * 2003-10-29 2005-05-06 Sumitomo Precision Products Co., Ltd. Method for producing carbon nanotube-dispersed composite material
WO2005040067A1 (en) * 2003-10-29 2005-05-06 Sumitomo Precision Products Co., Ltd. Carbon nanotube-dispersed composite material, method for producing same and article same is applied to
US7501459B2 (en) 2004-05-21 2009-03-10 Nissin Kogyo Co., Ltd. Carbon fiber composite material and method of producing the same
USRE44069E1 (en) 2004-06-08 2013-03-12 Sumitomo Electric Industries, Ltd. Method of producing carbon nanostructure
US7658971B2 (en) 2004-06-08 2010-02-09 Sumitomo Electric Industries, Ltd. Method of producing carbon nanostructure
WO2005121023A1 (en) * 2004-06-08 2005-12-22 Sumitomo Electric Industries, Ltd. Method for preparing carbon nanostructure
US8377547B2 (en) * 2004-07-16 2013-02-19 Nissin Kogyo Co., Ltd. Carbon fiber-metal composite material and method of producing the same
WO2008069300A1 (en) * 2006-12-07 2008-06-12 Kyushu University, National University Corporation Carbon nanotube composite and method for manufacturing the same
JP2008156676A (en) * 2006-12-21 2008-07-10 Nissin Kogyo Co Ltd Carbon fiber composite metallic material and its production method
JP2008196053A (en) * 2008-02-15 2008-08-28 Nissin Kogyo Co Ltd Carbon fiber-compounded metallic material, method for producing the same, carbon fiber-compounded nonmetallic material, and method for producing the same
JP4669014B2 (en) * 2008-02-15 2011-04-13 日信工業株式会社 Method for producing carbon fiber composite metal material
JP2012214303A (en) * 2011-03-31 2012-11-08 Orc Manufacturing Co Ltd High density carbon fiber-filled bulk
WO2012133614A1 (en) * 2011-03-31 2012-10-04 株式会社オーク製作所 Carbon fiber bulk
CN103602843A (en) * 2013-12-09 2014-02-26 国家电网公司 Carbon-nanotube-reinforced aluminum-base composite material
CN103602843B (en) * 2013-12-09 2015-11-04 国家电网公司 Carbon nanotube enhanced aluminium-based composite material
CN104762510A (en) * 2015-03-23 2015-07-08 蚌埠市鸿安精密机械有限公司 Humidity-resistant fly ash aluminium-based composite material and preparation method thereof
CN104762503A (en) * 2015-03-23 2015-07-08 蚌埠南自仪表有限公司 High-intensity fly ash aluminium-based composite material and preparation method thereof
CN104762517A (en) * 2015-03-23 2015-07-08 蚌埠南自仪表有限公司 High-toughness fly ash aluminium-based composite material and preparation method thereof
CN105088111A (en) * 2015-09-21 2015-11-25 国家电网公司 Preparation method of carbon nanotube reinforced aluminum matrix composite
CN105734322A (en) * 2016-03-02 2016-07-06 昆明理工大学 Preparation method of carbon nanotube strengthened aluminum-based composite material
CN111575515A (en) * 2020-06-09 2020-08-25 西安融烯科技新材料有限公司 Preparation method and application of nano carbon-aluminum alloy composite material
CN113444906A (en) * 2021-06-10 2021-09-28 北京科技大学 Method for preparing carbon nano tube reinforced light aluminum-based alloy

Also Published As

Publication number Publication date
JP3607934B2 (en) 2005-01-05

Similar Documents

Publication Publication Date Title
JP3607934B2 (en) Carbon nanotube reinforced aluminum composite
Tjong Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets
JP3298735B2 (en) Fullerene complex
US9192993B1 (en) Processes for fabricating composite reinforced material
US20170275742A1 (en) Ceramic and metal boron nitride nanotube composites
US6911260B2 (en) Reinforced carbon nanotubes
US6749712B2 (en) Method of utilizing sol-gel processing in the production of a macroscopic two or three dimensionally ordered array of single wall nonotubes (SWNTs)
US20060057050A1 (en) Synthesis of boron carbide nanoparticles
CN109554565A (en) A kind of interface optimization method of carbon nanotube enhanced aluminium-based composite material
RU2696113C1 (en) Method of producing nanocomposite material based on copper, hardened by carbon nanofibres
JPS6147891B2 (en)
Nie et al. Fabrication, microstructures, and properties of copper matrix composites reinforced by molybdenum-coated carbon nanotubes
Zhang et al. Effect of SiC nanowires addition on the interfacial microstructure and mechanical properties of the Cf-SiCNWs/AZ91D composite
AU2012214847B2 (en) Electric power transmission cable comprising continuously synthesized titanium aluminide intermetallic composite wire
Xie et al. Catalytic chemical vapor deposition synthesis and electron microscopy observation of coiled carbon nanotubes
KR20110117397A (en) Tial base intermetallic compound and manufacturing method of the same
JP2005008989A (en) Carbon nanotube reinforced aluminum composite
US20120321892A1 (en) Titanium-Group Nano-Whiskers and Method of Production
CN109457144A (en) A kind of carbon nanotube enhanced aluminium-based composite material and preparation method thereof
Goh et al. Magnesium and Aluminium carbon nanotube composites
JP3838803B2 (en) Composite high strength material and manufacturing method thereof
Wang et al. A combined process of coating and hybridizing for the fabrication of carbon fiber reinforced aluminum matrix composites
CN108866633B (en) Nano VC crystal whisker and preparation method thereof
Ismael Mechanical properties of nanotubes
Ayodele Dispersion characteristics and effect of heating rates on the mechanical properties of spark plasma sintered multi-walled carbon nanotubes reinforced nickel aluminide composites

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020521

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040819

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term