JPH1070315A - Manufacture of thermoelectric material - Google Patents

Manufacture of thermoelectric material

Info

Publication number
JPH1070315A
JPH1070315A JP8223615A JP22361596A JPH1070315A JP H1070315 A JPH1070315 A JP H1070315A JP 8223615 A JP8223615 A JP 8223615A JP 22361596 A JP22361596 A JP 22361596A JP H1070315 A JPH1070315 A JP H1070315A
Authority
JP
Japan
Prior art keywords
thermoelectric material
targets
thermoelectric
substrate
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8223615A
Other languages
Japanese (ja)
Inventor
Hitoshi Nishino
仁 西野
Hiroyasu Morizaki
弘康 森崎
Yoshiyuki Yamada
良行 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP8223615A priority Critical patent/JPH1070315A/en
Publication of JPH1070315A publication Critical patent/JPH1070315A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To stably manufacture a thermoelectric material of a superlattice structure, which has useful thermoelectric characteristics, in a short time by irradiating a plurality of targets of different compositions, in order, with a laser beam, and forming a material layer, corresponding to the different target compositions, on a substrate in lamination. SOLUTION: In a method for manufacturing a thermoelectric material 2, a pair of targets 10, which contain varieties of elements in a specified composition ratio, (the composition ratio of targets are different from each other) are manufactured, and each target 10 is assigned facing a substrate 3, to be film- formed, in a film formation chamber 64 maintained in pressure-reduction and vacuum condition, and these targets 10 are irradiated, in order, with a laser beam 5 in switching condition accompanying the rotation of a switching mirror 7b, and a plume 15 is generated from the target 10, and then it is vapor- deposited on the substrate 3 in order, to manufacture the thermoelectric material. Thereby a thermoelectric material of a superlattice structure having useful thermoelectric characteristics or a lamination type thermoelectric material, similar to it, is stably manufactured in a short time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高い熱電特性を有
する材料として、今日提案されている超格子構造を有す
る熱電材料、もしくは類似する積層型の熱電材料の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thermoelectric material having a superlattice structure or a similar laminated thermoelectric material proposed as a material having high thermoelectric properties.

【0002】[0002]

【従来の技術】この種の超格子構造を有する熱電材料
は、その有用性が、近来提案されているものであり、例
えば、素子全体として、0.5mm程度の層厚を有する
ものが実用的である。このような超格子構造にあって
は、各材料層の厚みが10〜100Å程度であり、現実
的な意味で熱電素子として、0.5mm厚の素子を得よ
うとすると、少なくとも、1000000層の積層が必
要となる。超格子構造にあっては、各材料層の層厚が薄
い程、所謂、ZT値が高くなる。従って、できるだけ各
材料層の層厚が薄い構造で、異なった組成の材料層を多
層積層した構造の素子が好ましい。一方、熱電素子とし
ては、各材料層の厚みが上記の範囲になくても、1μm
程度以下にある場合は、層内に於ける熱の散逸が起こ
り、熱電性能が向上する。このような構造の材料を製造
する製造方法としては、MBE法(分子線エピタキシー
法)等を使用することが提案されている。この方法にあ
っては、組成の異なった複数の出発原料を、所定の温度
に加温された各セル内に収納し、これらのセルの出口に
設けられる開閉機構を順次開閉しながら、材料の製造を
進める。
2. Description of the Related Art The usefulness of a thermoelectric material having a superlattice structure of this type has recently been proposed for its usefulness. For example, a thermoelectric material having a layer thickness of about 0.5 mm as a whole element is practical. It is. In such a superlattice structure, the thickness of each material layer is about 10 to 100 °, and in a practical sense, when obtaining a 0.5 mm thick element as a thermoelectric element, at least 1,000,000 layers are required. Lamination is required. In the superlattice structure, the so-called ZT value increases as the thickness of each material layer decreases. Therefore, an element having a structure in which the thickness of each material layer is as thin as possible and a structure in which material layers having different compositions are stacked in multiple layers is preferable. On the other hand, as a thermoelectric element, even if the thickness of each material layer is not in the above range, 1 μm
If it is below this level, heat is dissipated in the layer and the thermoelectric performance is improved. As a manufacturing method for manufacturing a material having such a structure, it has been proposed to use an MBE method (molecular beam epitaxy method) or the like. In this method, a plurality of starting materials having different compositions are stored in each cell heated to a predetermined temperature, and the opening and closing mechanisms provided at the outlets of these cells are sequentially opened and closed, and the Advance production.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな手法では、セル出口に設けられた機械的開閉機構
を、順次開閉操作することが必要となるため、各層間で
の切り換えを安定して確実におこなうことが難しい。さ
らに、実用的なものを得ようとすると積層量が膨大とな
るが、これを比較的短時間でおこなうのは実質上無理で
ある。即ち、層内組成、層間組成において安定した所望
の構造を有し、多数の積層状態となっている材料を、比
較的短時間で得ることが難しいという問題があった。本
発明の目的は、有用な熱電特性を有する超格子構造の熱
電材料、もしくは、これに類似する積層型の熱電材料
を、安定して、比較的短時間で製造することができる熱
電材料の製造方法を得ることにある。
However, in such a method, it is necessary to sequentially open and close the mechanical opening / closing mechanism provided at the cell outlet, so that switching between the layers is stably and reliably performed. Difficult to do. Furthermore, the amount of lamination becomes enormous in order to obtain a practical one, but it is practically impossible to perform this in a relatively short time. That is, there is a problem that it is difficult to obtain a material having a desired structure that is stable in the composition within the layer and the composition of the interlayer and in a number of laminated states in a relatively short time. An object of the present invention is to produce a thermoelectric material having a superlattice structure having useful thermoelectric properties or a laminated thermoelectric material similar thereto, which can be produced stably in a relatively short time. Is to get the way.

【0004】[0004]

【課題を解決するための手段】この目的を達成するため
の本発明による請求項1に係わり、互いに異なった組成
を有する複数の材料層を積層してなり、超格子構造に形
成される熱電材料の製造方法の特徴手段は、これら複数
の材料層に対応した組成を有する複数のターゲットに対
して、レーザー光を順次照射して、前記複数のターゲッ
トより順次プルームを発生させて、基板上に蒸着させ
て、超格子構造を有する熱電材料を製造することにあ
る。本願にあっては、熱電材料を形成する場合に、所
謂、レーザーアブレーション法が採用される。即ち、所
定の組成のターゲットとこのターゲットに対向して設け
られる基板とを、減圧状態に維持される成膜室内に配設
し、ターゲットにレーザー光を照射して、基板上に膜を
成膜していく。ここで、本願にあっては、異なった組成
を有するターゲットが用意され、これら複数のターゲッ
トに順次、レーザー光が照射されて、異なったターゲッ
トの組成に対応した組成の材料層が、基板上に積層状態
で形成される。各材料層の形成にあっては、各ターゲッ
トへのレーザー光の照射状態と照射停止状態との切り換
え操作のみで層形成が制御できる(即ち、層厚に関して
は所定のターゲットへのレーザー光の照射時間の制御、
材料層の切り換えに関してはレーザー光が照射されるタ
ーゲットの選択制御により行える)ため、比較的層厚の
薄いものを多層重合わせることが、容易に実現できる。
即ち、たとえ、本願が一例として対象とするように、1
0〜100Å程度の層厚のものを、少なくとも1000
000層近く積層することを、比較的迅速に、安定して
おこなうことができる。結果、全体として特性の安定し
た所望の材料を得ることができる。
According to a first aspect of the present invention, there is provided a thermoelectric material having a superlattice structure formed by laminating a plurality of material layers having different compositions from each other. The characteristic means of the manufacturing method is to sequentially irradiate a plurality of targets having a composition corresponding to the plurality of material layers with laser light, to sequentially generate plumes from the plurality of targets, and to vapor-deposit on a substrate. Accordingly, it is to produce a thermoelectric material having a superlattice structure. In the present application, when forming a thermoelectric material, a so-called laser ablation method is employed. That is, a target having a predetermined composition and a substrate provided in opposition to the target are disposed in a film formation chamber maintained in a reduced pressure state, and the target is irradiated with laser light to form a film on the substrate. I will do it. Here, in the present application, targets having different compositions are prepared, and these targets are sequentially irradiated with laser light, and a material layer having a composition corresponding to the composition of the different targets is formed on the substrate. It is formed in a laminated state. In forming each material layer, the layer formation can be controlled only by switching between the irradiation state of the laser beam to each target and the irradiation stop state (that is, the irradiation of the laser beam to a predetermined target with respect to the layer thickness). Control of time,
The switching of the material layer can be performed by controlling the selection of the target to be irradiated with the laser beam.) Therefore, it is possible to easily realize a multilayer having relatively thin layers.
That is, even if the present application is an example,
A layer having a thickness of about 0 to 100
Lamination of nearly 000 layers can be performed relatively quickly and stably. As a result, a desired material having stable characteristics as a whole can be obtained.

【0005】前記材料層が、それぞれ[0005] Each of the material layers is

【0006】[0006]

【化3】一般式 (BixSb1-xm(TeySe1-yn m=2±δ1、n=3±δ2 0≦x≦1、0≦y≦1、−1≦δ1≦1、−1.5≦
δ2≦1.5
## STR3 ## Formula (Bi x Sb 1-x) m (Te y Se 1-y) n m = 2 ± δ 1, n = 3 ± δ 2 0 ≦ x ≦ 1,0 ≦ y ≦ 1, - 1 ≦ δ 1 ≦ 1, −1.5 ≦
δ 2 ≦ 1.5

【0007】で記載可能な組成の熱電材料からなる層で
あることが好ましい。この熱電材料は、材料層の選択及
びその組み合わせにより、比較的低温域で、比較的高い
ZT値を得ることができる材料の組み合わせとなるた
め、比較的低温の温度域で、従来よりも高い性能を示す
超格子構造の熱電材料を得ることができる。この場合、
対応する層間で組成を異ならせることは、本願の目的か
ら当然である。
It is preferable that the layer is composed of a thermoelectric material having a composition that can be described in the above. This thermoelectric material is a combination of materials that can obtain a relatively high ZT value in a relatively low temperature range by selecting a material layer and a combination thereof. Can be obtained. in this case,
It is natural for the purposes of this application to make the composition different between the corresponding layers.

【0008】ここで、熱電材料として、好ましい形態と
しては、前記各材料層の厚みが10〜100Åであり、
少なくとも1万層以上が積層されていることが好まし
い。超格子構造を採用する場合にあって、熱電材料がそ
の特性として良好な値を示す各材料層単独の層厚みは、
10〜100Å程度であり、これを1万層以上、積層す
ることにより、有用な熱電材料を得ることができる。本
願にあっては、レーザーアブレーション方式を採用する
ため、こういった構造のものにあっても、比較的容易
に、迅速に製造が行えるのは、先に述べたとおりであ
る。
Here, as a preferred form of the thermoelectric material, the thickness of each of the material layers is 10 to 100 °,
It is preferable that at least 10,000 or more layers are laminated. In the case of adopting a super lattice structure, the layer thickness of each material layer in which the thermoelectric material shows a good value as its characteristic is,
It is about 10 to 100 °, and a useful thermoelectric material can be obtained by laminating 10,000 or more layers. In the present application, since the laser ablation method is employed, it is possible to relatively easily and quickly manufacture even with such a structure as described above.

【0009】さらに、熱電材料を製造する場合に、上記
のような各層厚が、10〜100Åの範囲になく、1μ
m程度以下の層厚を有する各材料層を積層した場合にあ
っても、この層内で熱の散逸が発生する。従って、熱電
材料として考えた場合、層厚を10Å〜1μmの範囲内
に選択すると、その特性を向上させる要素となる熱伝導
率の低下を図ることができる。従って、各層厚が上記程
度の層を多数積層して、熱電材料を製造することが好ま
しい。この場合、熱電材料の製造にあたっては、上記と
同様に、前記複数の材料層に対応した組成を有する複数
のターゲットに対して、レーザー光を順次照射して、前
記複数のターゲットより順次プルームを発生させて、基
板上に蒸着させて作製するのが好ましく、各材料層の厚
みを10Å〜1μmに形成することが好ましい。この場
合、各層の組成の一例を示すとBi2Te3層と、Sb2
Te3層とを交互に所定の層厚で積層していくことがで
きる。
Further, when the thermoelectric material is manufactured, the thickness of each layer as described above is not within the range of 10 to 100 °, and is 1 μm.
Even when each material layer having a layer thickness of about m or less is laminated, heat is dissipated in this layer. Therefore, when considered as a thermoelectric material, when the layer thickness is selected within the range of 10 ° to 1 μm, a decrease in the thermal conductivity, which is an element for improving its characteristics, can be achieved. Therefore, it is preferable to manufacture a thermoelectric material by laminating a number of layers each having the above-mentioned thickness. In this case, when manufacturing the thermoelectric material, similarly to the above, a plurality of targets having compositions corresponding to the plurality of material layers are sequentially irradiated with laser light to sequentially generate plumes from the plurality of targets. Then, it is preferable that the substrate is formed by vapor deposition on a substrate, and the thickness of each material layer is preferably formed in a range of 10 ° to 1 μm. In this case, the composition of each layer is, for example, Bi 2 Te 3 layer and Sb 2
Te 3 layers can be alternately stacked with a predetermined layer thickness.

【0010】また、熱電材料は、その使用状態にあって
厚み方法に温度傾斜が存在する。従って、この温度傾斜
に対応した、異なった組成を有する複数の材料層を積層
してなり、しかも、この層内自体、さらには、同種の相
にあっても、熱電材料の厚み方向で位置が異なった同一
種材料層間で、その組成が傾斜的に変化した熱電材料を
得たい場合もある。このような場合にあって、互いに異
なった組成を有する複数の材料層を積層して熱電材料を
製造するにあたって、前記複数の材料層に対応した組成
を有する複数のターゲットに対して、同時にレーザー光
を照射して、前記複数のターゲットからの基板上への蒸
着量(堆積量)を経時的に変化させて、前記組成の異な
った材料層を順次形成する、レーザーアブレーション法
を採用すると、材料の厚み方向で、組成が所望状態で変
化する材料を容易に得ることができる。上記したそれぞ
れの場合にあってもまた、前記材料層が、それぞれ
[0010] Further, the thermoelectric material has a temperature gradient in the thickness method in the state of use. Therefore, a plurality of material layers having different compositions corresponding to the temperature gradient are laminated, and the position in the thickness direction of the thermoelectric material in this layer itself, or even in the same kind of phase. In some cases, it is desired to obtain a thermoelectric material whose composition is changed in a gradient between different same kind of material layers. In such a case, when manufacturing a thermoelectric material by laminating a plurality of material layers having different compositions from each other, a plurality of target materials having compositions corresponding to the plurality of material layers are simultaneously irradiated with a laser beam. When a laser ablation method is employed, in which a plurality of material layers having different compositions are sequentially formed by changing the deposition amount (deposition amount) from the plurality of targets onto the substrate with time, A material whose composition changes in a desired state in the thickness direction can be easily obtained. Also in each case described above, the material layer

【0011】[0011]

【化4】一般式 (BixSb1-xm(TeySe1-yn m=2±δ1、n=3±δ2 0≦x≦1、0≦y≦1、−1≦δ1≦1、−1.5≦
δ2≦1.5
Embedded image Formula (Bi x Sb 1-x) m (Te y Se 1-y) n m = 2 ± δ 1, n = 3 ± δ 2 0 ≦ x ≦ 1,0 ≦ y ≦ 1, - 1 ≦ δ 1 ≦ 1, −1.5 ≦
δ 2 ≦ 1.5

【0012】で記載可能な組成の熱電材料からなる層で
あることが好ましい。
It is preferable that the layer is made of a thermoelectric material having a composition that can be described in the above.

【0013】[0013]

【発明の実施の形態】本願の実施の形態を以下に説明す
る。説明にあたっては、本願で使用されるレーザーアブ
レーション装置1の構成、超格子構造の熱電材料を製造
する場合のレーザーアブレーション条件について説明す
る。
Embodiments of the present invention will be described below. In the description, the configuration of the laser ablation apparatus 1 used in the present application and the laser ablation conditions for producing a thermoelectric material having a superlattice structure will be described.

【0014】1 レーザーアブレーション装置1 図1に、レーザーアブレーション装置1を使用して、シ
リコン基板3上に本願の超格子構造を有する熱電材料2
を作製している状況を示している。装置1は、エキシマ
レーザー4を備えるとともに、このレーザー4から照射
されるレーザー光5により、成膜をおこなう成膜室6を
備えて構成されている。レーザーアブレーション装置に
は、このレーザー4から照射されるレーザー光5を前記
成膜室6内に導くための全反射型のミラー7aと、レー
ザー光を透過する状態と全反射する状態とに適宜切り換
える切り換えミラー7bとが所定の箇所に備えられてい
る。切り換えミラー7bの正面図を図3に示した。斜線
部が全反射部であり、空白部が透過部である。さらに、
成膜室6に設けられる石英入射窓8の手前に、レーザー
光成形用の成形用レンズ系9a、9bが備えられ、この
成形用レンズ系の手前に、ターゲット10に照射される
レーザー光5のエネルギー密度を必要に応じて調節する
減衰装置9c、9dが備えられている。前記成膜室6に
は、ターゲット10を保持するための一対のターゲット
保持台11と、これらの保持台11に対向して設けら
れ、且つ前記基板3を所定の成膜基板温度に維持可能な
基板保持台12を備えている。成膜室6は、室内を所定
の真空度に保持するために、真空ポンプ13を備えた排
気機構14を備えている。熱電材料2の作製にあたって
は、前記一対のターゲット保持台11夫々に別種のター
ゲット10を保持するとともに、基板保持台12に基板
3を保持して材料の作製をおこなう。この場合に、前記
切り換えミラー7bをその軸芯回りに回転操作してレー
ザー光5が、夫々のターゲット10に交互に照射されて
(当てられて)、レーザーアブレーションをおこなうこ
とができる。
FIG. 1 shows a thermoelectric material 2 having a superlattice structure of the present invention on a silicon substrate 3 using a laser ablation apparatus 1.
1 shows a state in which is manufactured. The apparatus 1 includes an excimer laser 4 and a film forming chamber 6 for forming a film with a laser beam 5 emitted from the laser 4. The laser ablation apparatus appropriately switches between a total reflection type mirror 7a for guiding the laser light 5 emitted from the laser 4 into the film forming chamber 6 and a state of transmitting the laser light and a state of total reflection. A switching mirror 7b is provided at a predetermined location. FIG. 3 shows a front view of the switching mirror 7b. The shaded area is the total reflection area, and the blank area is the transmission area. further,
In front of the quartz entrance window 8 provided in the film forming chamber 6, forming lens systems 9a and 9b for forming a laser beam are provided, and before the forming lens system, the laser beam 5 irradiated to the target 10 is provided. Damping devices 9c and 9d for adjusting the energy density as needed are provided. The film forming chamber 6 is provided with a pair of target holders 11 for holding the target 10 and opposed to these holders 11, and can maintain the substrate 3 at a predetermined film forming substrate temperature. A substrate holder 12 is provided. The film forming chamber 6 includes an exhaust mechanism 14 having a vacuum pump 13 in order to maintain the inside of the chamber at a predetermined degree of vacuum. In producing the thermoelectric material 2, a different type of target 10 is held on each of the pair of target holding stands 11, and the substrate 3 is held on the substrate holding stand 12, thereby producing a material. In this case, the switching mirror 7b is rotated around its axis, and the laser beam 5 is alternately irradiated (applied) to each target 10 to perform laser ablation.

【0015】従って、熱電材料2の作製にあたっては、
原材料である各種元素を所定の組成比で含有する一対の
ターゲット10(各ターゲット間においては、それらの
組成比は異なっている)が作製されるとともに、減圧真
空維持される前記成膜室6内で、夫々のターゲット10
を成膜対象の基板3対向して配設し、これらのターゲッ
ト10にレーザー光5が、順次、切り換えミラー7bの
回転に伴って、切り換え状態で照射されて、ターゲット
10よりプルーム15が発生されて、基板3上に順次蒸
着され、熱電材料が作製される。以上が、本願の方法を
採用する場合の装置構成及び熱電材料の概略的な作製状
況である。
Therefore, in producing the thermoelectric material 2,
A pair of targets 10 containing various elements as raw materials at a predetermined composition ratio (their composition ratios are different between the respective targets) are produced, and the inside of the film forming chamber 6 is maintained under reduced pressure and vacuum. And each target 10
Are disposed in opposition to the substrate 3 on which the film is to be formed, and these targets 10 are sequentially irradiated with the laser light 5 in a switching state with the rotation of the switching mirror 7b, so that a plume 15 is generated from the targets 10. Thus, a thermoelectric material is produced by sequentially depositing the substrate on the substrate 3. The above is the schematic configuration of the apparatus and the thermoelectric material when the method of the present invention is employed.

【0016】1 先ず図2に示す材料16の作製につい
て説明する。この材料16は、所謂、Bi−Te系材料
であり、その組成がBi2Te3の材料層と、Sb2Te3
の材料層とを交互に備えたのものである。同図において
17は高温側電極を、18は低温側電極を示している。
図1に示す例においては、上部側に位置されるターゲッ
ト保持台11aにBi2Te3を主成分とする材料から構
成されるターゲット10が、下部側に位置されるターゲ
ット保持材11bにSb2Te3を主成分とする材料から
構成されるターゲット10が配設される。以下、具体的
な作製条件を下記の表1に箇条書きする。
1 First, the production of the material 16 shown in FIG. 2 will be described. The material 16 is a so-called Bi-Te-based material, and includes a material layer having a composition of Bi 2 Te 3 and a Sb 2 Te 3 material.
And material layers are alternately provided. In the figure, reference numeral 17 denotes a high-temperature side electrode, and 18 denotes a low-temperature side electrode.
In the example shown in FIG. 1, a target 10 composed of a material containing Bi 2 Te 3 as a main component is placed on a target holder 11a located on the upper side, and Sb 2 is placed on a target holder 11b located on the lower side. A target 10 made of a material containing Te 3 as a main component is provided. Hereinafter, specific manufacturing conditions are listed in Table 1 below.

【0017】[0017]

【表1】 作製対象物 超格子構造を有する熱電材料 基板材料 Si(100)P型 作製基板温度 275℃ 成膜室真空度 10-6Torr レーザー波長 248nm レーザーパワー密度 6000mJ/cm2 レーザーパルス繰り返し数 10Hz 作製対象膜厚 0.5μm[Table 1] Object to be produced Thermoelectric material having super lattice structure Substrate material Si (100) P type Production substrate temperature 275 ° C Deposition chamber vacuum degree 10 -6 Torr Laser wavelength 248 nm Laser power density 6000 mJ / cm 2 Laser pulse repetition rate 10Hz Target film thickness 0.5μm

【0018】そして、一対のターゲット10に対して、
交互にレーザー光5を照射することにより、基板3上に
所定の組成の材料層を積層することができる。ここで、
各材料層に対応する照射時間は、以下のとおりである。 Bi2Te3 照射時間 10秒 Sb2Te3 照射時間 10秒 ここで、各層のアブレーション操作時間内において、成
膜対象面全面に所望の材料層が形成されることは当然で
ある。このようにして作製された材料は、各組成の材料
層が交互に現れる組成構造を示し、熱電特性を示した。
Then, for a pair of targets 10,
By irradiating the laser beam 5 alternately, a material layer having a predetermined composition can be laminated on the substrate 3. here,
The irradiation time corresponding to each material layer is as follows. Bi 2 Te 3 irradiation time 10 seconds Sb 2 Te 3 irradiation time 10 seconds Here, it is natural that a desired material layer is formed on the entire surface of the film formation target within the ablation operation time of each layer. The material thus produced exhibited a composition structure in which material layers of each composition appeared alternately, and exhibited thermoelectric properties.

【0019】〔さらなる実施の形態〕上記の実施の形態
例においては、テルル化ビスマスが主成分であるBi−
Te系の熱電材料を作製する例を示したが、Bi−Te
系の他、Bi−Sb系、Bi−Se系等、ビスマス、テ
ルル、アンチモン、セレンから選択される少なくとも2
種以上を含む熱電材料の作製にあっては、本願の手法を
適応できる。即ち、
[Further Embodiment] In the above embodiment, Bi-containing mainly bismuth telluride is used.
Although an example of producing a Te-based thermoelectric material has been described, Bi-Te
Bi-Sb-based, Bi-Se-based, etc., other than bismuth, tellurium, antimony, and selenium
The method of the present invention can be applied to the production of a thermoelectric material containing more than one kind. That is,

【0020】[0020]

【化5】一般式 (BixSb1-xm(TeySe1-yn m=2±δ1、n=3±δ2 0≦x≦1、0≦y≦1、−1≦δ1≦1、−1.5≦
δ2≦1.5
Embedded image Formula (Bi x Sb 1-x) m (Te y Se 1-y) n m = 2 ± δ 1, n = 3 ± δ 2 0 ≦ x ≦ 1,0 ≦ y ≦ 1, - 1 ≦ δ 1 ≦ 1, −1.5 ≦
δ 2 ≦ 1.5

【0021】から選択される、別の組成を有する材料
が、超格子構造を有する積層した材料層を構成するの
に、好ましい。
A material having another composition, selected from the group consisting of, is preferable for forming the laminated material layer having a superlattice structure.

【0022】上記の実施の形態においては、エキシマレ
ーザーを採用したが、ネオジム(Nd3+)YAGレーザ
ー等を使用してもよい。さらに、基板としては、シリコ
ン基板の他、ガラス等、平滑な任意の材料を使用でき
る。ガラスの場合は、製品が安価となる利点がある。さ
らに、上記の実施例においては、ターゲットとして、一
対のターゲットを使用する例を示したが、本願において
は、複数であれば、本願の作用・効果を奏することがで
きる。
In the above embodiment, an excimer laser is used, but a neodymium (Nd 3+ ) YAG laser or the like may be used. Further, as the substrate, other than a silicon substrate, any smooth material such as glass can be used. In the case of glass, there is an advantage that the product is inexpensive. Further, in the above-described embodiment, an example in which a pair of targets is used as a target has been described. However, in the present application, if there are a plurality of targets, the operation and effect of the present application can be achieved.

【0023】上記の実施の形態においては、材料の厚み
方向に、複数の材料層を形成する場合を示したが、レー
ザーアブレーション時にマスク操作をしながら、所定の
材料層が形成される部位を基板上で変更することによ
り、2次元、3次元の超格子も製造することができる。
さらに、複数のターゲットからの成膜を共におこないな
がらも、複数のターゲット間で、各ターゲットに照射さ
れるレーザー光の強度を相対的に変更することでも、各
ターゲットから蒸着される量を変更して、材料層の組成
を厚み方向に変化させることも可能である。
In the above-described embodiment, the case where a plurality of material layers are formed in the thickness direction of the material has been described. With the above modifications, a two-dimensional or three-dimensional superlattice can also be manufactured.
Furthermore, while performing film formation from a plurality of targets together, by changing the intensity of the laser beam applied to each target relatively among the plurality of targets, the amount deposited from each target is also changed. Thus, the composition of the material layer can be changed in the thickness direction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】レーザーアブレーション装置の構成を示す図FIG. 1 is a diagram showing a configuration of a laser ablation apparatus.

【図2】熱電材料の構成を示す図FIG. 2 is a diagram showing a configuration of a thermoelectric material.

【図3】切り換えミラーを軸方向から見た図FIG. 3 is a view of a switching mirror as viewed from an axial direction.

【符号の説明】 2 熱電材料 3 基板 4 レーザー 5 レーザー光 6 成膜室 10 ターゲット 15 プルーム[Description of Signs] 2 Thermoelectric material 3 Substrate 4 Laser 5 Laser beam 6 Film forming chamber 10 Target 15 Plume

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 互いに異なった組成を有する複数の材料
層を積層してなり、超格子構造に形成される熱電材料の
製造方法であって、前記複数の材料層に対応した組成を
有する複数のターゲットに対して、レーザー光を順次照
射して、前記複数のターゲットより順次プルームを発生
させて、基板上に蒸着させて、超格子構造を有する熱電
材料をレーザーアブレーション法により製造する熱電材
料の製造方法。
1. A method for manufacturing a thermoelectric material formed by laminating a plurality of material layers having different compositions from each other and having a superlattice structure, wherein the plurality of material layers have compositions corresponding to the plurality of material layers. The target is irradiated with laser light sequentially, the plumes are sequentially generated from the plurality of targets, vapor-deposited on a substrate, and a thermoelectric material having a superlattice structure is manufactured by a laser ablation method. Method.
【請求項2】 前記複数の材料層が、それぞれ 【化1】一般式 (BixSb1-xm(TeySe1-yn m=2±δ1、n=3±δ2 0≦x≦1、0≦y≦1、−1≦δ1≦1、−1.5≦
δ2≦1.5 で記載可能な組成の熱電材料からなる層である請求項1
記載の熱電材料の製造方法。
Wherein said plurality of material layers, respectively embedded image Formula (Bi x Sb 1-x) m (Te y Se 1-y) n m = 2 ± δ 1, n = 3 ± δ 2 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, −1 ≦ δ 1 ≦ 1, −1.5 ≦
2. A layer made of a thermoelectric material having a composition that can be described as δ 2 ≦ 1.5.
A method for producing the thermoelectric material according to the above.
【請求項3】 前記各材料層の厚みが10Å〜100Å
である請求項1または2記載の熱電材料の製造方法。
3. The thickness of each of the material layers is from 10 ° to 100 °.
The method for producing a thermoelectric material according to claim 1 or 2, wherein
【請求項4】 互いに異なった組成を有する複数の材料
層を積層してなる熱電材料の製造方法であって、前記複
数の材料層に対応した組成を有する複数のターゲットに
対して、レーザー光を順次照射して、前記複数のターゲ
ットより順次プルームを発生させて、基板上に蒸着させ
て、前記各材料層の厚みを10Å〜1μmに形成し、熱
電材料をレーザーアブレーション法により製造する熱電
材料の製造方法。
4. A method for producing a thermoelectric material, comprising laminating a plurality of material layers having different compositions from each other, wherein a laser beam is applied to a plurality of targets having compositions corresponding to the plurality of material layers. By sequentially irradiating, a plume is sequentially generated from the plurality of targets, and is vapor-deposited on a substrate, the thickness of each of the material layers is formed to 10 to 1 μm, and the thermoelectric material is manufactured by a laser ablation method. Production method.
【請求項5】 互いに異なった組成を有する複数の材料
層を積層して熱電材料を製造するにあたって、前記複数
の材料層に対応した組成を有する複数のターゲットに対
して、レーザー光を照射して、前記複数のターゲットか
らの基板上への蒸着量を経時的に変化させて、前記組成
の異なった材料層を順次形成する、レーザーアブレーシ
ョン法による熱電材料の製造方法。
5. A method for manufacturing a thermoelectric material by laminating a plurality of material layers having different compositions from each other, irradiating a plurality of targets having compositions corresponding to the plurality of material layers with laser light. A method of manufacturing a thermoelectric material by a laser ablation method, wherein the material layers having different compositions are sequentially formed by changing a deposition amount on the substrate from the plurality of targets with time.
【請求項6】 前記複数の材料層が、それぞれ 【化2】一般式 (BixSb1-xm(TeySe1-yn m=2±δ1、n=3±δ2 0≦x≦1、0≦y≦1、−1≦δ1≦1、−1.5≦
δ2≦1.5 で記載可能な組成の熱電材料からなる層である請求項4
または5記載の熱電材料の製造方法。
Wherein said plurality of material layers, respectively embedded image Formula (Bi x Sb 1-x) m (Te y Se 1-y) n m = 2 ± δ 1, n = 3 ± δ 2 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, −1 ≦ δ 1 ≦ 1, −1.5 ≦
5. A layer made of a thermoelectric material having a composition that can be described as δ 2 ≦ 1.5.
Or the method for producing a thermoelectric material according to 5.
JP8223615A 1996-08-26 1996-08-26 Manufacture of thermoelectric material Pending JPH1070315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8223615A JPH1070315A (en) 1996-08-26 1996-08-26 Manufacture of thermoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8223615A JPH1070315A (en) 1996-08-26 1996-08-26 Manufacture of thermoelectric material

Publications (1)

Publication Number Publication Date
JPH1070315A true JPH1070315A (en) 1998-03-10

Family

ID=16800985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8223615A Pending JPH1070315A (en) 1996-08-26 1996-08-26 Manufacture of thermoelectric material

Country Status (1)

Country Link
JP (1) JPH1070315A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006507690A (en) * 2002-11-25 2006-03-02 ネクストリーム・サーマル・ソリューションズ Transformer thermoelectric device
WO2008056466A1 (en) * 2006-11-10 2008-05-15 Panasonic Corporation Power generation method employing thermal power generation element, thermal power generation element and method for fabricating the same
WO2010073391A1 (en) * 2008-12-26 2010-07-01 富士通株式会社 Thermoelectric conversion element, method for manufacturing thermoelectric conversion element and electronic device
JP4794693B1 (en) * 2010-05-27 2011-10-19 パナソニック株式会社 Thermoelectric conversion device, radiation detector, and radiation detection method using the same
WO2012008729A2 (en) * 2010-07-15 2012-01-19 국립대학법인 울산과학기술대학교 산학협력단 Pulsed laser deposition apparatus and deposition method using same
US8293168B2 (en) 2004-10-29 2012-10-23 Massachusetts Institute Of Technology Nanocomposites with high thermoelectric figures of merit
JP2013049911A (en) * 2011-08-31 2013-03-14 Hitachi Zosen Corp Method for generating cluster
KR101275511B1 (en) * 2012-05-18 2013-06-20 주식회사 정민실업 Fabrication method for high-efficiency bulk thermoelectric composites having core/shell nanorod structures and thermoelectric composites by the same
KR101410238B1 (en) * 2013-03-11 2014-06-20 국립대학법인 울산과학기술대학교 산학협력단 Pulsed laser deposition method
US8865995B2 (en) 2004-10-29 2014-10-21 Trustees Of Boston College Methods for high figure-of-merit in nanostructured thermoelectric materials

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7838760B2 (en) 2002-11-25 2010-11-23 Nextreme Thermal Solutions, Inc. Trans-thermoelectric device
JP2006507690A (en) * 2002-11-25 2006-03-02 ネクストリーム・サーマル・ソリューションズ Transformer thermoelectric device
US8293168B2 (en) 2004-10-29 2012-10-23 Massachusetts Institute Of Technology Nanocomposites with high thermoelectric figures of merit
US9011763B2 (en) 2004-10-29 2015-04-21 Massachusetts Institute Of Technology Nanocomposites with high thermoelectric figures of merit
US8865995B2 (en) 2004-10-29 2014-10-21 Trustees Of Boston College Methods for high figure-of-merit in nanostructured thermoelectric materials
WO2008056466A1 (en) * 2006-11-10 2008-05-15 Panasonic Corporation Power generation method employing thermal power generation element, thermal power generation element and method for fabricating the same
US7601909B2 (en) 2006-11-10 2009-10-13 Panasonic Corporation Power generation method using thermoelectric element, thermoelectric element and fabrication method thereof, and thermoelectric device
WO2010073391A1 (en) * 2008-12-26 2010-07-01 富士通株式会社 Thermoelectric conversion element, method for manufacturing thermoelectric conversion element and electronic device
US8853519B2 (en) 2008-12-26 2014-10-07 Fujitsu Limited Thermoelectric conversion device and method of manufacturing the same, and electronic apparatus
US8129689B2 (en) 2010-05-27 2012-03-06 Panasonic Corporation Thermoelectric conversion device, and radiation detector and radiation detection method using the same
US8203122B1 (en) 2010-05-27 2012-06-19 Panasonic Corporation Thermoelectric conversion device, and radiation detector and radiation detection method using the same
WO2011148425A1 (en) * 2010-05-27 2011-12-01 パナソニック株式会社 Thermoelectric conversion device, radiation detector, and radiation detection method using same
JP4794693B1 (en) * 2010-05-27 2011-10-19 パナソニック株式会社 Thermoelectric conversion device, radiation detector, and radiation detection method using the same
WO2012008729A3 (en) * 2010-07-15 2012-05-03 국립대학법인 울산과학기술대학교 산학협력단 Pulsed laser deposition apparatus and deposition method using same
KR101219225B1 (en) * 2010-07-15 2013-01-18 국립대학법인 울산과학기술대학교 산학협력단 Pulsed laser deposition system
WO2012008729A2 (en) * 2010-07-15 2012-01-19 국립대학법인 울산과학기술대학교 산학협력단 Pulsed laser deposition apparatus and deposition method using same
JP2013049911A (en) * 2011-08-31 2013-03-14 Hitachi Zosen Corp Method for generating cluster
KR101275511B1 (en) * 2012-05-18 2013-06-20 주식회사 정민실업 Fabrication method for high-efficiency bulk thermoelectric composites having core/shell nanorod structures and thermoelectric composites by the same
KR101410238B1 (en) * 2013-03-11 2014-06-20 국립대학법인 울산과학기술대학교 산학협력단 Pulsed laser deposition method

Similar Documents

Publication Publication Date Title
JPH10513606A (en) Manufacturing method of high efficiency Cu (In, Ga) (Se, S) 2 thin film for solar cell
JPS6226195B2 (en)
JPH1070315A (en) Manufacture of thermoelectric material
US8404336B2 (en) Superlattice and turbostratically disordered thermoelectric materials
JP2019537275A (en) Multilayer thin film and its preparation
RU2131157C1 (en) Multilayer material
US8058090B2 (en) Apparatus and method of manufacturing solar cells
JPH09508885A (en) Method for depositing materials in the form of monolayers
JPH08330232A (en) Equipment and method for manufacturing semiconductor thin film of chalocopyrite structure
JP2004083933A (en) Crystalline sulfide thin film and its manufacturing method
JPH05234890A (en) Forming method for compound semiconductor thin film layer
JP2013506981A (en) Thermoelectric structure manufacturing method and thermoelectric structure
JP3181074B2 (en) Method for producing Cu-based chalcopyrite film
CN110534644A (en) A kind of preparation method and phase transition storage of the superlattices phase change cells of two-way growth
JPH0936440A (en) Production of thermoelectric material
EP0392437B1 (en) Method for annealing thin film superconductors
KR0152000B1 (en) Method for manufacturing in-sb thin film for hall generator
JP2669052B2 (en) Oxide superconducting thin film and method for producing the same
JPH0393625A (en) Oxide superconductor thin film and production thereof
Chen The Growth of Organic Small Molecule and Inorganic Halide Perovskite Crystalline Thin Films
KR970005159B1 (en) Equipment of manufacturing thin fim
JPH05170448A (en) Production of thin ceramic film
Leppävuori et al. Laser ablation deposition as a preparation method for sensor materials
CN117678348A (en) Method for producing solid-state component, quantum component, and device for producing solid-state component
KR20230064958A (en) Method of improving Coherence of interfacial phase change material