JPH0393625A - Oxide superconductor thin film and production thereof - Google Patents

Oxide superconductor thin film and production thereof

Info

Publication number
JPH0393625A
JPH0393625A JP1229917A JP22991789A JPH0393625A JP H0393625 A JPH0393625 A JP H0393625A JP 1229917 A JP1229917 A JP 1229917A JP 22991789 A JP22991789 A JP 22991789A JP H0393625 A JPH0393625 A JP H0393625A
Authority
JP
Japan
Prior art keywords
thin film
film
oxide
superconducting
superconducting thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1229917A
Other languages
Japanese (ja)
Other versions
JPH0714817B2 (en
Inventor
Masaru Yoshida
勝 吉田
Hideaki Adachi
秀明 足立
Hiroshi Ichikawa
洋 市川
Kiyotaka Wasa
清孝 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1229917A priority Critical patent/JPH0714817B2/en
Publication of JPH0393625A publication Critical patent/JPH0393625A/en
Publication of JPH0714817B2 publication Critical patent/JPH0714817B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain an oxide superconducting thin film having high superconducting transition temperature in high reproducibility by alternately laminating a laminar oxide superconducting thin film containing Tl, Cu and an alkaline earth metal and a laminar oxide thin film containing Bi and W on a substrate. CONSTITUTION:The objective oxide superconducting thin film can be produced by alternately laminating (A) a laminar oxide superconducting thin film 21 containing at least thallium, copper and an alkaline earth metal as main components (e.g. Tl-Ba-Ca-Cu-O film) and (B) a laminar oxide thin film 22 containing at least bismuth and tungsten as main components (e.g. Bi-W-O film) on a substrate 15. Since the mutual diffusion of the Tl-based superconducting film 21 and the Bi-based insulation film 22 is suppressed by this structure, an oxide superconducting thin film having high superconducting transition temperature can be produced. The production of the films 21 and 22 is preferably carried out by sputtering process.

Description

【発明の詳細な説明】 産業上の利用分野 本発明1上 100K以上の高臨界温度が期待されるタ
リウムを含む酸化物超電導体薄膜及びそのの製造方法に
関するものであも 従来の技術 高温超電導体として、A15型2元系化合物として窒化
ニオプ(NbN)やゲルマニウム二オプ(NbsGe)
などが知られていた力t これらの材料の超電導転移温
度はたかだか23Kであった方 ペロブス力イト系化合
物は さらに高い転移温度が期待さ%  Ba−La−
Cu−0系の高温超電導体が提案された [シ0エイ、
シ0−、へ0ント1ノルツ及びケイ、エー、ミューラー
(J.G,Bednorz  and  K,A,Mu
ller)  .7tイトシスリフト●7エア・74シ
2−ク(Zetshrift  Fur  Physi
k  B)一コンデ0冫スト”vター(Condens
ed  Matter)  Vo1,64,189−1
93(1986)loさらに Bi−Sr−Ca−Cu
−0系の材料がIOOK以上の転移温度を示すことも発
見された[エイチ、マエタゝ、ワイ、タナカ、エム、7
クトミ及びデイ、アサノ ( H,Maeda,Y,T
anaka,M,Fukutomi  and  T.
Asano)  ,シ* , 八− 二− X # ,
   シ*ヤーナk−オ7”77@ライト9●7イシ0
フクス(Japanese  Journal  of
  Appl一ied Physics)Vo1,27
.L209−210(1988)]。加えてこのBi系
よりも超電導転移温度の高いTl−Ba−Ca−Cu一
〇系の材料が発見されるに至った[セゝ7ト、セ#7ト
、シェンク゛及びエー、エム、ヘルマン (Z,Z.S
heng  and  A.M.Hermann),ネ
イチw−(Nature)Vol.332,138−1
39(1988).コ。  この種の材料の超電導機構
の詳細は明らかではない爪転移温度が室温以上に高くな
る可能性があり、高温超電導体として従来の2元系化合
物より、より有望な特性が期待されも さらに超電導体と絶縁物とを交互に積層することにより
、より高い超電導転移温度が従来から期待されていた 
[エム、エイチ、コーエン及びデ1イ、エイチ、ドウク
1ラス、シコニア (M.H.Cohen  and 
 D,H.Douglass,Jr.)  ,74シ1
ル・レヒコー・レタース”(Physical  Re
view  Letters)Vol,19,118−
121(1967)]。
DETAILED DESCRIPTION OF THE INVENTION Industrial Field of Application The present invention 1 relates to a thallium-containing oxide superconductor thin film expected to have a high critical temperature of 100 K or higher and a method for producing the same. As A15 type binary compounds, nioptic nitride (NbN) and germanium dioptic (NbsGe) are used as A15 type binary compounds.
The superconducting transition temperature of these materials was at most 23 K, while the perovus force compound is expected to have an even higher transition temperature.Ba-La-
A Cu-0-based high-temperature superconductor was proposed [Shi0ei,
J.G., Bednorz and K.A., Mueller.
ller). 7t Itoshilift ●7 Air・74 Sheet (Zetshrift Fur Physi
k B) Condens
ed Matter) Vo1, 64, 189-1
93 (1986)lo further Bi-Sr-Ca-Cu
It was also discovered that -0 series materials exhibit a transition temperature higher than IOOK [H, Maeta, Y, Tanaka, M, 7
Kutomi and Day, Asano (H, Maeda, Y, T
Anaka, M., Fukutomi and T.
Asano), shi*, 8-2-X#,
Shi*yana k-o 7” 77 @ light 9●7 ishi 0
Fukusu (Japanese Journal of
Appl ied Physics) Vol1, 27
.. L209-210 (1988)]. In addition, a Tl-Ba-Ca-Cu10-based material was discovered that had a higher superconducting transition temperature than the Bi-based material. Z, Z.S.
heng and A. M. Hermann), Nature w-(Nature) Vol. 332,138-1
39 (1988). Ko. The details of the superconducting mechanism of this type of material are not clear, but the claw transition temperature may be higher than room temperature, and it is expected that it will have more promising properties as a high-temperature superconductor than conventional binary compounds. It was previously expected that a higher superconducting transition temperature could be achieved by alternately layering superconducting materials and insulators.
[M.H. Cohen and D.1.
D.H. Douglas, Jr. ) ,74shi1
Physical Re
View Letters) Vol, 19, 118-
121 (1967)].

発明が解決しようとする課題 しかしながh  Tl−Ba−Ca−Cu−0系の材料
{よ 現在の技術では主として焼結という過程でしか形
戒できないた取 セラミックの粉末あるいはブロックの
形状でしか得られなLs  −X  この種の材料を実
用化する場念 薄膜状に加工することが強く要望されて
いるパ 従来の技術で1よ 良好な超電導特性を有する
薄膜作製は難しいものでありtラ  すなわ&  Tl
−Ba−Ca−Cu−0系には超電導転移温度の異なる
いくつかの相が存在することが知られている爪 特に転
移温度がIOOK以上の相を薄膜の形態で達或するの(
上 非常に困難とされていあまた 従来このTl系にお
いて良好な超電導特性を示す薄膜を形或するためには少
なくとも600℃以上の熱処理あるいは形或時の加熱が
必要であり、そのため高い超電導転移温度が期待される
絶縁展との周期的な積層構造を得ることは極めて困難と
考えられ またこの構造を利用した集積化デバイスを構
威することもたいへん困難であるとされていtら 課題を解決するための手段 本発明者らによる第1の発明の酸化物超電導薄膜番上 
 主体成分が少なくともタリウム(Tl)、銅(Cu)
,  およびアルカリ土類(IIa族)を含む層状酸化
物超電導薄膜と、主体成分が少なくともBiとタングス
テン(W)を含む層状酸化物薄膜が交互に積層された構
造を持つことを特徴とする酸化物超電導薄膜であも さらに第2の発明の酸化物超電導薄膜の製造方法(九 
基体上に 少なくともTlを含む酸化物と少なくとも銅
およびアルカリ土類(IIa族)を含む酸化物とを周期
的に積層させて形成する酸化物薄膜と、少なくともBi
を含む酸化物と少なくともWを含む酸化物を周期的に積
層させて形或する酸化物薄膜とを、さらに交互に積層さ
せて得ることを特徴とする酸化物超電導薄膜の製造方法
であもここでアルカリ土類(&IIa族元素のうちの少
なくとも一種あるいは二種以上の元素を示す作用 本発明者らによる第1の発明においてg&ThO2酸化
膜層またはこれを−主体とした層によりともに覆われた
結晶構造となっているところのTl系超電導薄膜と、T
l系超電導体とその結晶における格子定数(a軸)がほ
ぼ等しく、また安定なBis Q *酸化膜層またはこ
れを主体とした層によりともに覆われた結晶構造となっ
ているところのBiとWとを含む酸化物層状構造の絶縁
体薄膜とバ 交互に積層された構造をとることによって
、超電導膜と絶縁膜との間での相互拡散の少ない積層が
可能となり、その結果Tl系超電導薄膜における超電導
転移温度の上昇が実現されたものであも さらに第2の発明においては上記構造を達或するた吹 
少なくともTlを含む酸化惧 少なくともBiを含む酸
化物と、少なくとも銅およびアルカリ土類(IIa族)
を含む酸化物あるいは少なくともWを含む酸化物とを、
周期的に積層させて分子レベルの制御による薄膜の作製
を行うことによって、再現性良<Tl系超電導薄膜と絶
縁膜との積層を得ることに或功したものであも 実施例 以下に 本発明の実施例について図面を参照しながら説
明すも ます 本発明者らはTl系超電導薄膜と絶縁膜との周期
的な積層構造を実現するた△ T1系超電導薄膜と種々
の絶縁膜との相互作用について検討した 通焦Tl系超電導薄膜は400〜600℃に加熱した基
体上に蒸着して得も 蒸着抵 そのままでも薄膜は超電
導特性を示す力t その後850〜950℃の熱処理を
施し 超電導特性を向上させもしかしなが転 基体温度
が高い時に絶縁膜をTl系超電導薄膜に続いて積層した
り、絶縁膜を形或後熱処理を行った場合、超電導膜と絶
縁膜との間玄 元素の相互拡散が起こり超電導特性が太
きく劣化することが判明しf,  相互拡散を起こさな
いために(よ 超電導焦 絶縁膜の結晶性が優れている
こと、超電導膜・絶縁膜間での格子の整合性が優れてい
ること、絶縁膜が850〜950℃の熱処理に対して安
定であることが不可欠と考えられも種々の検討を行った
結莱 本発明者らC!  少なくともWを含むBi酸化
物層状構造の薄膜が絶縁膜として適していることを見い
だした この理由として、Wを含むBi層状酸化物(;
t.Bias2酸化物層がWおよび酸素等の元素からな
る構造体を挟み込んだ層状ペロブス力イトを示すことが
知られており、このBi*0*層は同種の結晶構造の物
質の界面に対して高温の熱処理においても非常に安定で
あり、またTl系超電導体とBi−W系酸化物との格子
の整合性がきわめて優れていることが考えられもさらに
本発明者らi;t..Tl系超電導薄膜とBi−W系酸
化物薄膜を周期的に積層したII,  Tl系超電導薄
膜本来の超電導転移温度が上昇することを見いだし氾 (実施例1) 本発明者らによる第lの発明の内容を更に深く理解され
るために 第1図を用い具体的な実施例を示す 第1図(友 本実施例で用いた二元マグネトロンスパッ
タ装置内部の概略図であり、 11はTl −Ba−C
a−Cu−0ターゲット、 12はBi−W−0ターゲ
ット、 13はシャッター、 14はアパーチャコ 1
5は基&  16は基体加熱用ヒーターを示す 焼結体
をブレス戒形加工して作製した2個のターゲットl1,
12を用1,X.第1図に示すように配置させtラすな
わ%  MgO(100)基体15に焦点を結ぶように
各ターゲットが約30゜傾いて設置されていもターゲッ
トの前方には回転するシャッター13があり、その中に
設けられたアパーチャ−14の回転をパルスモーターで
制御することにより,  Tl−Ba−Ca−Cu−0
−+ Bi−W−0−+ ’rl−Ba−Ca−Cu−
0−+ Bi−W−0−+Tl−Ba−Ca−Cu−0
のサイクルでスバッタ蒸着が行なうことができ4  T
l−Ba−Ca−Cu−011  Bi−W−0膜の積
層の様子を概念的に第2図に示す 第2図において、2
lはTl−Ba−Ca−Cu−0風2 2はBi−W−
0膜を示す。
Problems to be Solved by the InventionHowever, Tl-Ba-Ca-Cu-0 based materials can only be produced in the form of ceramic powder or blocks with current technology, mainly through the process of sintering. The opportunity to put this type of material into practical use is that it is strongly desired to process it into a thin film.It is difficult to fabricate a thin film with good superconducting properties using conventional techniques Sunawa & Tl
It is known that there are several phases with different superconducting transition temperatures in the -Ba-Ca-Cu-0 system.In particular, it is difficult to achieve a phase with a transition temperature higher than IOOK in the form of a thin film (
In addition, it has been considered extremely difficult to form a thin film that exhibits good superconducting properties in the Tl system, requiring heat treatment at at least 600°C or higher during forming, and therefore a high superconducting transition temperature. It is considered to be extremely difficult to obtain the expected periodic layered structure with insulation properties, and it is also considered to be extremely difficult to construct integrated devices using this structure. Means of oxide superconducting thin film according to the first invention by the present inventors
Main components are at least thallium (Tl) and copper (Cu)
, and an oxide having a structure in which layered oxide superconducting thin films containing alkaline earth elements (group IIa) and layered oxide thin films containing at least Bi and tungsten (W) as main components are laminated alternately. In addition to the superconducting thin film, the method for producing an oxide superconducting thin film of the second invention (9)
An oxide thin film formed by periodically stacking an oxide containing at least Tl and an oxide containing at least copper and alkaline earth (group IIa) on a substrate;
A method for producing an oxide superconducting thin film, characterized in that it is obtained by further alternately stacking an oxide containing W and an oxide thin film formed by periodically stacking an oxide containing at least W. In the first invention by the present inventors, crystals that are both covered with a g&ThO2 oxide film layer or a layer mainly composed of g&ThO2 The Tl-based superconducting thin film, which has a structure, and the Tl-based superconducting thin film
The lattice constants (a-axis) of the l-based superconductor and its crystal are almost the same, and the stable Bis By adopting an alternately laminated structure of insulator thin films with an oxide layered structure containing Even though an increase in the superconducting transition temperature has been achieved, the second invention further provides a method for achieving the above structure.
An oxide containing at least Tl, an oxide containing at least Bi, and at least copper and alkaline earth (group IIa)
or an oxide containing at least W,
By periodically laminating thin films and controlling them at the molecular level, we succeeded in obtaining a laminated layer of a Tl-based superconducting thin film and an insulating film with good reproducibility. An example of this will be explained with reference to the drawings. In order to realize a periodic stacked structure of a T1-based superconducting thin film and an insulating film, the present inventors investigated the interactions between the T1-based superconducting thin film and various insulating films. The focused Tl-based superconducting thin film studied can be deposited on a substrate heated to 400 to 600°C. However, if the substrate temperature is high, if an insulating film is laminated next to a Tl-based superconducting thin film, or if the insulating film is heat-treated after forming, interdiffusion of elements between the superconducting film and the insulating film will occur. It was found that this caused a significant deterioration of the superconducting properties.In order to prevent interdiffusion (superconducting focus) Although it is considered essential that the insulating film be stable against heat treatment at 850 to 950°C, the present inventors have conducted various studies to develop a Bi oxide layered structure containing at least W. We found that a thin film of Bi layered oxide containing W is suitable as an insulating film.
t. It is known that the Bias2 oxide layer exhibits a layered perovskite structure sandwiching a structure composed of elements such as W and oxygen, and this Bi*0* layer is exposed to high temperature at the interface of substances with the same crystal structure. It is considered that the lattice matching between the Tl-based superconductor and the Bi-W-based oxide is extremely stable, and that the lattice matching between the Tl-based superconductor and the Bi-W-based oxide is extremely excellent. .. II, in which a Tl-based superconducting thin film and a Bi-W-based oxide thin film were periodically laminated, it was discovered that the superconducting transition temperature inherent to the Tl-based superconducting thin film increased (Example 1) First invention by the present inventors In order to understand the contents more deeply, FIG. 1 is used to show a specific example. -C
a-Cu-0 target, 12 is Bi-W-0 target, 13 is shutter, 14 is aperture 1
5 indicates the base & 16 indicates the heater for heating the base. Two targets l1 made by press-forming the sintered body,
12 using 1, X. Even though each target is installed at an angle of about 30 degrees so as to focus on the MgO (100) substrate 15, there is a rotating shutter 13 in front of the target. By controlling the rotation of the aperture 14 provided therein with a pulse motor, Tl-Ba-Ca-Cu-0
−+ Bi-W-0-+ 'rl-Ba-Ca-Cu-
0-+ Bi-W-0-+Tl-Ba-Ca-Cu-0
Spatter deposition can be performed with a cycle of 4 T.
Figure 2 conceptually shows how the l-Ba-Ca-Cu-011 Bi-W-0 film is stacked.
l is Tl-Ba-Ca-Cu-0 wind 2 2 is Bi-W-
0 film is shown.

ターゲット11S 12への入力電九 Tl−Ba−C
a−Cu−0およびBi−W−0のスパッタ時間を制御
することにより、基体15上に蒸着するTl−Ba−C
a−Cu−0膜21,  Bi−W−0膜22の膜厚を
変えることができも基体l5をヒーターl6で約600
℃に加熱し アルゴン・酸素(1:  1)混合雰囲気
0.5Paのガス中で各ターゲットのスパッタリングを
行なう1,薄膜作製後は酸素雰囲気中において、850
℃の熱処理を10分間施しt4  本実施例で(よ 各
ターゲットノスパッタ電力を、Tl−Ba−Ca−Cu
−0: 1001,  Bi−W−0: 1001とレ
 ターゲット11,12のスパッタ時間を制御しt= 
 Bi−Ba−Ca−Cu−0[2 1の元素の組或比
率がTl:Ba:Ca:Cu=2:2:2:3, Bi
−W−0膜22の元素の組戊比率がBi:W=2:1に
なるよう、ターゲット11.12の元素の組戒比率を調
整し?,.  Tl−Ba−C81−Cu−0膜21を
Bi−W−0膜22と積層せずに基体15上に形成した
場振 すなわちTl−Ba−Ca−Cu−0膜21その
ものの特性i;t.  125Kで超電導転移を起こし
100Kで抵抗がゼロになるものであう丸 さらに本発
明者らによるa 結晶性を維持したまま、薄くできる膜
厚の限界はBi−W−0膜22については約200Aで
あっム 絶縁膜はできるだけ薄い方が好ましいの玄 膜
厚200AのBi−W−0膜22に対して、Tl−Ba
−Ca−Cu−0膜21の膜厚を変え第2図に示すよう
な(Tl−Ba−Ca−Cu−0膜→Bi−W−0膜)
の積層構造を20周期作製し九 そのときの超電導薄膜
の抵抗の温度特性を第3図に示す 第3図において、T
l−Ba−Ca−Cu−0膜21の膜厚がIOOA, 
 300A,  500Aのときのを特性をそれぞ札 
特性31,32、 33に示す 特性3lにおいてはゼ
ロ抵抗温度が約30KとTl−Ba−Ca−Cu−0膜
21の特性が劣化することがわかッf−o  この理由
として、Tl−Ba−Ca−Cu−0膜21とBi−W
−0膜22との間で元素の相互拡散による膜21,22
の結晶性の破壊が考えられも さらに特性33において
LL  Bi−W−0膜22との周期的な積層なしに基
体l5上につけたときのTl−Ba−Ca−Cu−0膜
21本来の超電導特性とほとんど同じであり、絶縁膜B
i−W−0膜22との積層効果は確認されなかっt4シ
かしなが板 本発明者らは特性32において、超電導転
移温嵐 ゼロ抵抗温度がともに約5K上昇することを見
いだした この効果の詳細な理由については未だ不明で
あるIJ<.  Tl−Ba−Ca−Cu−0膜21と
Bi−W−0膜22との積層界面での元素の相互拡散の
影響が少なく、かつ薄いBi −W−01l22を介し
て複数のTl−Ba−Ca−Cu−0膜2lを積層する
ことによりTl−Ba−Ca−Cu−0膜2■において
超電導機構になんらかの変化が引き起こされたことが考
えられも な叙 超電導転移温度が上昇する効果!L  Tl−B
a−Ca−Cu−0膜2lの膜厚が200〜400Aの
範囲で有効であることを、本発明者らは確認しf,な叙
 本発明者らは薄膜形成後の熱処理において、Tlガス
を供給しながら行うと、より再現性よく超電導特性が得
られることを見いだし1,  このことはTlの蒸気圧
が異常に高く、蒸発しやすいのでこれを供給することに
よって、結晶性の劣化を防ぐことができたためと考えら
れも な耘 本発明者らはターゲットl 1,  もしくはl
2に鉛(Pb)を添加してスパッタしたとき、基体l5
の温度が上記実施例よりも約100℃低くて転上記実施
例と同等な結果が得られることを見いだし九 さらに本発明者ら{ITlの酸化物と、BLCa.  
Cuの酸化物を異なる蒸発源から真空中で別々ニ蒸発さ
せ、基体上にTl−04 Ba−Cu−0−e Ca−
Cu−0−+Ba−Cu−0→Tl−0の順で周期的に
積層させた場念さらにBiの酸化物と、Wの酸化物を異
なる蒸発源から真空中で別々に蒸発させ、Bi−0→W
−0−hBi−0の順で周期的に積層させた場合、 (
実施例l)に示した積層構造作製方法より極めて制御性
良く、安定した膜質へ しかも膜表面が極めて平坦なT
l−Ba−Ca−Cu−0超電導薄膜およびBi−W−
0絶縁膜が得られることを見いだしtも さらに本発明者ら(&  Tl−0、Ba−Cu−0、
Ca−Cu−0,Bi−0, W−0を別々の蒸発源か
ら蒸発させ、Tl−Ba−Ca−Cu−0超電導薄膜と
Bi−W−0絶縁膜を周期的に積層した線 極めて制御
性良< m (Tl−Ba−Ca−Cu−0)n ( 
Bi−W−0)の周期構造を持つ薄膜を形戒できること
を見いだし1,  ここでれ nは正の整数を示す さ
らに このm (Tl−Ba−Ca−Cu−0)  ・
n (Bi−W−0)薄膜g!  <実施例1)に示し
たTl−Ba−Ca−Cu一〇を同時に蒸着して得る超
電導薄膜L  Bi−W−0を同時に蒸着して得る酸化
物絶縁膜とを周期的に積層して得た薄膜に比べて、はる
かに結晶性が優れ超電導転移温嵐 臨界電流密度等の特
性に勝っているζとも併せて見いだし丸 さらに本発明
者らC友  上記の方法で作製したTl−Ba−Ca−
Cu−0超電導薄膜とBi−W−0絶縁膜はともに薄膜
表面が極めて平坦であることを見いだし九 これらのことは第4図に示す積層の概念図を用いて説明
することができも すなわ板 それぞれ層状構造を構戒
する異なる元素を別々に順次積層していくことにより、
基体表面に対し平行な面内だけで積層された蒸着元素が
動くだけ℃ 基体表面に対し垂直方向への元素の移動が
ないことによるものと考えられも さら4Q  Biと
Wを含む酸化物層状ペロプス力イト構造の結晶のa軸の
長さ&友Tl−Ba−Ca−Cu−0のそれとほぼ等し
く、゜連続的にエビタキシャル戒長が可能であることに
よるものと考えられも さらに以外にL 良好な超電導特性を得るに必要な基体
の温嵐 熱処理温度k 従来より低いことを見いだしt
も Tl −0, Ba−Cu−0, Ca−Cu−0, 
, Bi−0, W−0を周期的に積層させる方法とし
ては いくつか考えられも −般+,:,MBE装置あ
るいは多元のEB蒸着装置で蒸発源の前を開閉シャッタ
ーで制御したり、気相戒長法で作製する際にガスの種類
を切り替えたりすることにより、周期的積層を達或する
ことができも しかしこの種の非常に薄い層の積層には
従来スパッタリング蒸着は不向きとされてい九 この理
由(よ 或膜中のガス圧の高さに起因する不純物の混入
およびエネルギーの高い粒子によるダメージと考えられ
ていも しかしなか板 本発明者らE上  このTl系
酸化物超電導体に対してスパッタリングにより異なる薄
い層の積層を行なったとこム 以外にも良好な積層膜作
製が可能なことを発見しt4  スパッタ中の高い酸素
ガス圧およびスパッタ放電MTl系のIOOK以上の臨
界温度を持っ相の形恵 およびBi−W−0絶縁膜の形
成に都合がよいためではなかろうかと考えられも スパッタ蒸着で異なる物質を積層させる方法として{上
 組成分布を設けたlケのスパッタリングターゲットの
放電位置を周期的に制御するという方法がある爪 組戒
の異なる複数個のターゲットのスパッタリングという方
法を用いると比較的簡単に達或することができも この
場伍 複数個のターゲットの各々のスパッタ量を周期的
に制御したり、あるいはターゲットの前にシャッターを
設けて周期的に開閉したりして、周期的積層膜を作製す
ることができも また基板を周期的運動させて各々ター
ゲットの上を移動させる方法でも作製が可能であも レ
ーザースパッタあるいはイオンビームスパッタを用いた
場合に《戴 複数個のターゲットを周期運動させてビー
ムの照射するターゲットを周期的に変えれば 周期的積
層膜が実現されも このように複数個のターゲットを用
いたスパッタリングにより比較的簡単にTl系酸化物の
周期的積層が作製可能となん 以下本発明者らによる第2の発明の内容をさらに深く理
解されるために 具体的な実施例を示す(実施例2) 第5図に本実施例で用いた5元マグネトロンスパッタ装
置の概略図を示す 第5図において、 50はBiター
ゲット、 51はTlターゲット、 52はBaCu合
金ターゲット、 53はCaCu合金ターゲット、 5
4はWターゲット、 55はシャッター、56はスリッ
ト、 57は基依 58は基体加熱用ヒーターを示す 
計5個のターゲット50、 51、52、 53、 5
4は第2図に示すように配置させた 即L  MgO 
(1 0 0)基体57に焦点を結ぶように各ターゲッ
トが約30”傾いて設置されていも ターゲットの前方
には回転するシャッター55があり、パルスモー夕で駆
動することによりその中に設けられたスリット56の回
転が制御され 各ターゲットのサイクル及びスパッタ時
間を設定することができも 基体57をヒーター58で
約600℃に加熱し アルゴン・酸素(5:  1)混
合雰囲気3Paのガス中で各ターゲットのスパッタリン
グを行なっf,  各ターゲットのスパッタ電流を、B
i : 30mA, Tl : 30mA, BaCu
 : 80mA, CaCu : 300mA,W:4
00mAにして実験を行ッf,,  Tl−BaCu−
CaCu−”TlのサイクルでスパッタLATl−Ba
−Ca−Cu−0膜の元素の組或比率がTl:Ba:C
a:Cu−2:2:2:3となるように各ターゲットの
スパッタ時間を調整し上記サイクルを20周期行った結
凰 100K以上の臨界温度を持つ相を作製することが
でき氾このままの状態でもこのTl−Ba−Ca−Cu
−0薄膜は100K以上の超電導転移を示した力t さ
らに酸素中で650t.1時間の熱処理を行なうと非常
に再現性よくなり、超電導転移温度は125運 抵抗が
ゼロになる温度は105Kになうtも  超電導転移温
度が100Kを越す相は金属元素がTl−Ba−Cu−
Ca−Cu−Ca−Cu−Ba−Tlの順序で並んだ酸
化物の層から戊り立っているとも言われており、本発明
の製造方法がこの構造−を作るのに非常に役だっている
のではないかと考えられも また 同様にBi→l−+
BiのサイクルでBi−W−0膜の元素の組或比がBi
:W−2:lとなるように各ターゲットのスパッタ時間
を調整し 上記サイクルを4サイクルまで少なくして、
Bi−W−0膜の膜厚を薄くしてk 極めて結晶性に優
れたBi−W−0膜が得られん さらに本発明者らはmx (Tl−eBacu−*Ca
Cu−+BaCu−+Tl) →n x (Bi−s=
W−+Bi)のサイクルで各ターゲットをスパッタL,
,  m (Tl−Ba−Ca−Cu−0)  ・n(
Bi−W−0)薄膜を基体57上に作製した ここで鶏
 nは正の整数を示す 本発明者らはn=4のとき、m
を変化させて周期的に積層して得た膜の超電導特性を調
べん 第6図にm=2、6、 l6のときに得た膜の抵
抗の温度変化をそれぞれ特性61,62、63に示す 
第6図において、m=6のとき、最も高い超電導転移温
度およびゼロ抵抗温嵐 すなわち特性62が得られ丸 
特性62の超電導転移温嵐 ゼロ抵抗温度はTl−Ba
−Ca−Cu−0膜本来のそれらの値よりも約8K高い
ものであっ九この効果の詳細な理由については未だ不明
である戟 本実施例に示した方法でTl−Ba−Ca−
Cu−0膜とBi−W−0膜とを周期的に積層すること
によって、Tl−Ba−Ca−Cu−0膜とBi−W−
0膜が互いにT1*0象層と13i象Q*層を介してエ
ビタキシャル戒長していることにより積層界面での元素
の相互拡散の影響がなく、かつ結晶性に優れた薄いBi
−W−0膜を介して同じく結晶性に優れたTl−Ba−
Ca−Cu−011[を積層することによりTl−Ba
−Ca−Cu−0膜において超電導機構になんらかの変
化が引き起こされたことが考えられもな叙 超電導転移
温度が上昇する効果st,  Tl→BaCu−e C
aCu−+ BaCu−* Tlのサイクルが4〜lO
の範囲で有効であることを、本発明者らは確認したさら
に 本発明者らは基体の温度は400〜600℃.の範
囲で最もTl−Ba−Ca−Cu−0超電導薄膜の結i
aおよび超電導特性がよいことを見いだし九 これは蒸
気圧が異常にに高いTlの蒸発が600℃以上で起こり
、さらに400℃以下では結晶化が得られないことが考
えられも な叙 本発明者らはターゲット5 1,  もしくは5
4に鉛( P b)を添加してスパッタしたとき、基体
57の温度が上記実施例よりも約100℃低くて転上記
実施例と同等な結果が得られることを見いだしt4 発明の効果 以上のように第1の本発明の酸化物超電導薄膜jよTl
系酸化物超電導薄膜の超電導転移温度を上昇させる構造
を提供するものであり、第2の発明の酸化物超電導薄膜
の製造方法は第1の発明をより効果的に実現し デバイ
ス等の応用には必須の低温でのプロセス確立したもので
あり、本発明の工業的価値は太きもち
Input power to target 11S 12 Tl-Ba-C
Tl-Ba-C deposited on the substrate 15 by controlling the sputtering time of a-Cu-0 and Bi-W-0.
Although the film thicknesses of the a-Cu-0 film 21 and the Bi-W-0 film 22 can be changed, the substrate 15 is heated to about 600 ml by using the heater 16.
℃ and sputtering each target in a mixed atmosphere of argon and oxygen (1:1) at 0.5 Pa.
In this example, the sputtering power for each target was changed to Tl-Ba-Ca-Cu.
-0: 1001, Bi-W-0: 1001, and controlling the sputtering time of targets 11 and 12, t=
Bi-Ba-Ca-Cu-0[2 The ratio of elements in 1 is Tl:Ba:Ca:Cu=2:2:2:3, Bi
-Adjust the element ratio of target 11.12 so that the element ratio of W-0 film 22 becomes Bi:W=2:1? 、. Field vibration when the Tl-Ba-C81-Cu-0 film 21 is formed on the substrate 15 without being laminated with the Bi-W-0 film 22, that is, the characteristics i; t of the Tl-Ba-Ca-Cu-0 film 21 itself. .. The circle indicates that a superconducting transition occurs at 125K and the resistance becomes zero at 100K.Furthermore, the limit of the film thickness that can be made thin while maintaining crystallinity is approximately 200A for the Bi-W-0 film 22. It is preferable that the insulating film be as thin as possible.For the Bi-W-0 film 22 with a film thickness of 200A,
-The film thickness of the Ca-Cu-0 film 21 is changed as shown in FIG. 2 (Tl-Ba-Ca-Cu-0 film → Bi-W-0 film).
The temperature characteristics of the resistance of the superconducting thin film at that time are shown in Figure 3. In Figure 3, T
The thickness of the l-Ba-Ca-Cu-0 film 21 is IOOA,
The characteristics at 300A and 500A are shown respectively.
It can be seen that in characteristic 3l shown in characteristics 31, 32, and 33, the zero resistance temperature is about 30 K, and the characteristics of the Tl-Ba-Ca-Cu-0 film 21 deteriorate. Ca-Cu-0 film 21 and Bi-W
-0 film 22 due to interdiffusion of elements between the films 21 and 22
Further, in characteristic 33, the original superconductivity of the Tl-Ba-Ca-Cu-0 film 21 when deposited on the substrate 15 without periodic lamination with the LL Bi-W-0 film 22 is considered. The characteristics are almost the same as those of insulating film B.
No stacking effect with the i-W-0 film 22 was confirmed.The inventors found that in characteristic 32, the superconducting transition temperature storm and zero resistance temperature both increased by approximately 5K.This effect The detailed reason for IJ<. is still unknown. The effect of mutual diffusion of elements at the laminated interface between the Tl-Ba-Ca-Cu-0 film 21 and the Bi-W-0 film 22 is small, and multiple Tl-Ba- It is inconceivable that some change was caused in the superconducting mechanism in the Tl-Ba-Ca-Cu-0 film 2 by stacking the Ca-Cu-0 film 2l.The effect of increasing the superconducting transition temperature! L Tl-B
The present inventors have confirmed that the film thickness of 2L of a-Ca-Cu-0 film is effective in the range of 200 to 400A. They found that superconducting properties can be obtained with better reproducibility by supplying Tl while supplying it.1 This means that the vapor pressure of Tl is abnormally high and it evaporates easily, so by supplying Tl, the deterioration of crystallinity can be prevented. This is unlikely to be because the inventors were able to target l 1 or l
When lead (Pb) is added to 2 and sputtered, the base l5
The present inventors found that the temperature of BLCa.
The oxides of Cu were evaporated separately in vacuum from different evaporation sources, and Tl-04 Ba-Cu-0-e Ca-
In addition, Bi oxide and W oxide were evaporated separately in vacuum from different evaporation sources, and Bi- 0→W
When stacked periodically in the order of -0-hBi-0, (
The layered structure fabrication method shown in Example 1) has much better controllability and stable film quality. Moreover, the film surface is extremely flat.
l-Ba-Ca-Cu-0 superconducting thin film and Bi-W-
The present inventors further discovered that an insulating film of
A line in which Ca-Cu-0, Bi-0, and W-0 are evaporated from separate evaporation sources, and Tl-Ba-Ca-Cu-0 superconducting thin films and Bi-W-0 insulating films are periodically laminated. Good quality < m (Tl-Ba-Ca-Cu-0)n (
We found that it is possible to form a thin film with a periodic structure of Bi-W-0)1, where n is a positive integer, and m (Tl-Ba-Ca-Cu-0) ・
n (Bi-W-0) thin film g! A superconducting thin film L obtained by simultaneously depositing Tl-Ba-Ca-Cu10 shown in <Example 1) and an oxide insulating film obtained by simultaneously depositing Bi-W-0 are periodically laminated. In addition, the Tl-Ba-Ca film prepared by the above method was found to have much superior crystallinity and superior properties such as superconducting transition temperature and critical current density compared to thin films made by the present inventors. −
It was found that both the Cu-0 superconducting thin film and the Bi-W-0 insulating film have extremely flat thin film surfaces9.These can be explained using the conceptual diagram of the lamination shown in Figure 4. By sequentially stacking different elements, each with a layered structure,
This is thought to be due to the fact that the stacked evaporated elements move only in the plane parallel to the substrate surface, and there is no movement of the elements in the direction perpendicular to the substrate surface. The length of the a-axis of the crystal with the vitreous structure is almost equal to that of Tl-Ba-Ca-Cu-0, and it is thought that this is due to the fact that continuous ebitaxial length is possible. The heat treatment temperature of the substrate necessary to obtain good superconducting properties was found to be lower than that of conventional methods.
Also Tl -0, Ba-Cu-0, Ca-Cu-0,
, Bi-0, and W-0 can be stacked periodically. There are several possible methods for periodically stacking , Bi-0, and W-0. Although it is possible to achieve periodic stacking by switching the type of gas during fabrication using the phase-cut method, sputtering deposition has traditionally been considered unsuitable for this type of stacking of extremely thin layers. (9) The reason for this (although it is thought that the contamination of impurities due to the high gas pressure in the film and the damage caused by high-energy particles) is the reason for this. By using sputtering to stack different thin layers, we discovered that it was possible to fabricate a good stacked film in addition to t4. This may be because it is convenient for forming a Bi-W-0 insulating film and a Bi-W-0 insulating film. This can be achieved relatively easily by using a method of sputtering multiple targets with different combinations, but in this case, the amount of sputtering for each of multiple targets can be controlled periodically. It is possible to fabricate a periodic stacked film by controlling the target structure, or by providing a shutter in front of the target and opening and closing it periodically.Also, by periodically moving the substrate and moving it over each target. However, if laser sputtering or ion beam sputtering is used, periodic laminated films can be realized by periodically moving multiple targets and periodically changing the targets irradiated with the beam. In order to further understand the content of the second invention by the present inventors, the following is a detailed description of the invention. (Example 2) Fig. 5 shows a schematic diagram of the five-element magnetron sputtering apparatus used in this example. In Fig. 5, 50 is a Bi target, 51 is a Tl target, and 52 is a BaCu alloy target. , 53 is a CaCu alloy target, 5
4 is a W target, 55 is a shutter, 56 is a slit, 57 is a base, and 58 is a heater for heating the substrate.
Total of 5 targets 50, 51, 52, 53, 5
4 is arranged as shown in Figure 2.Immediate L MgO
(1 0 0) Even if each target is installed at an angle of about 30" so as to focus on the base 57, there is a rotating shutter 55 in front of the target, and the shutter 55 is driven by a pulse motor. The rotation of the slit 56 is controlled, and the cycle and sputtering time for each target can be set.The substrate 57 is heated to about 600°C with a heater 58, and each target is heated in a mixed atmosphere of argon and oxygen (5:1) at 3 Pa. sputtering is performed, f, and the sputtering current of each target is B
i: 30mA, Tl: 30mA, BaCu
: 80mA, CaCu : 300mA, W: 4
Conduct the experiment at 00 mA f,, Tl-BaCu-
Sputtered LATl-Ba with cycle of CaCu-"Tl
-The composition ratio of elements of the Ca-Cu-0 film is Tl:Ba:C
a: Cu-2: The sputtering time of each target was adjusted so that the ratio was 2:2:3, and the above cycle was repeated 20 times.A phase with a critical temperature of 100K or more could be created. But this Tl-Ba-Ca-Cu
-0 thin film showed a superconducting transition at a force of 100K or more. After 1 hour of heat treatment, the reproducibility becomes very good, and the superconducting transition temperature is 125 K. The temperature at which the resistance becomes zero is 105 K. The phase where the superconducting transition temperature exceeds 100 K has a metallic element of Tl-Ba-Cu. −
It is said that the structure is formed by an oxide layer arranged in the order Ca-Cu-Ca-Cu-Ba-Tl, and the manufacturing method of the present invention is extremely useful in creating this structure. Similarly, Bi→l−+
In the Bi cycle, the element composition ratio of the Bi-W-0 film changes to Bi
:W-2:l by adjusting the sputtering time for each target and reducing the above cycles to 4 cycles.
By reducing the thickness of the Bi-W-0 film, a Bi-W-0 film with extremely excellent crystallinity cannot be obtained.
Cu-+BaCu-+Tl) →n x (Bi-s=
Sputter each target with a cycle of W−+Bi) L,
, m (Tl-Ba-Ca-Cu-0) ・n(
Bi-W-0) thin film was fabricated on the substrate 57, where n is a positive integer.
We will investigate the superconducting properties of films obtained by periodically stacking them with different values. Figure 6 shows the temperature changes in resistance of films obtained when m = 2, 6, and l6, with characteristics 61, 62, and 63, respectively. show
In Fig. 6, when m = 6, the highest superconducting transition temperature and zero resistance temperature storm, that is, characteristic 62, are obtained and the circle is rounded.
Characteristic 62 superconducting transition temperature storm Zero resistance temperature is Tl-Ba
-Ca-Cu-0 film is about 8K higher than the original value.The detailed reason for this effect is still unknown.Tl-Ba-Ca-
By periodically stacking Cu-0 film and Bi-W-0 film, Tl-Ba-Ca-Cu-0 film and Bi-W-
Since the 0 films are ebitaxially extended to each other via the T1*0 and 13i quadrant Q* layers, there is no effect of interdiffusion of elements at the lamination interface, and the thin Bi layer has excellent crystallinity.
-Tl-Ba- which also has excellent crystallinity through the W-0 film
By laminating Ca-Cu-011[Tl-Ba
-The effect of increasing the superconducting transition temperature st, Tl→BaCu-e C
aCu-+ BaCu-* Tl cycle is 4~1O
The present inventors have confirmed that the temperature of the substrate is 400 to 600°C. The highest concentration of Tl-Ba-Ca-Cu-0 superconducting thin film in the range of
This is because Tl, which has an abnormally high vapor pressure, evaporates at temperatures above 600°C and cannot be crystallized below 400°C. are targets 5 1 or 5
It was found that when lead (Pb) was added to 4 and sputtered, the temperature of the substrate 57 was about 100°C lower than in the above embodiment, and results equivalent to those in the above embodiment were obtained. As shown in the first oxide superconducting thin film of the present invention, Tl
The present invention provides a structure for increasing the superconducting transition temperature of an oxide superconducting thin film, and the method for producing an oxide superconducting thin film of the second invention more effectively realizes the first invention and is suitable for applications such as devices. The essential low-temperature process has been established, and the industrial value of the present invention is significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1の発明の一実施例における薄膜の製造装置
の概略構造阻 第2図はM1の発明の薄展の構造阻 第
3図は第1図の装置により得た薄膜における抵抗の温度
特性阻 第4図は第2の発明の構造飄 第5図は第2の
発明の実施例における薄膜の製造装置の概略構造阻 第
6図は第5図の装置により得た薄膜における抵抗の温度
特性図であも 11、12、50.5L52、53、54−−−−ス八
”y?lJ7?”夕−&”y}、13、55・・・シャ
ッター、゛l4・・・ア八1−チャー、56・・・スリ
フト、l5、57・・・MgO基.体、l6、58−−
−h−ター、21 ・・41−Ba−Ca−Cu−0膜
、22・・・Bi−1−011、31、32、33、6
1、62、63・・・薄膜の抵抗の温度特也
FIG. 1 shows a schematic structure of a thin film manufacturing apparatus according to an embodiment of the first invention; FIG. 2 shows a structure of a thin film according to M1's invention; and FIG. 3 shows the resistance of a thin film obtained by the apparatus of FIG. Figure 4 shows the structure of the second invention. Figure 5 shows the schematic structure of the thin film manufacturing apparatus according to the embodiment of the second invention. Figure 6 shows the resistance of the thin film obtained by the apparatus of Figure 5. In the temperature characteristic diagram, 11, 12, 50.5L52, 53, 54--S8"y?lJ7?"Y-&"y}, 13, 55...Shutter, ゛l4...A 81-char, 56...thrift, l5, 57...MgO base body, l6, 58--
-h-tar, 21...41-Ba-Ca-Cu-0 film, 22...Bi-1-011, 31, 32, 33, 6
1, 62, 63...Temperature characteristics of thin film resistance

Claims (5)

【特許請求の範囲】[Claims] (1) 主体成分が少なくともタリウム(Tl)、銅(
Cu)、およびアルカリ土類( I I a族)を含む層状
酸化物超電導薄膜と、主体成分が少なくともTlとタン
グステン(W)を含む層状酸化物薄膜が交互に積層され
た構造を持つ(ここでアルカリ土類は、 I I a族元素
のうちの少なくとも一種あるいは二種以上の元素を示す
。)ことを特徴とする酸化物超電導薄膜。
(1) The main components are at least thallium (Tl) and copper (
It has a structure in which layered oxide superconducting thin films containing Cu) and alkaline earth elements (group IIa) and layered oxide thin films containing at least Tl and tungsten (W) as main components are laminated alternately. 1. An oxide superconducting thin film characterized in that earth represents at least one or two or more elements of Group IIa elements.
(2) 基体上に、少なくともTlを含む酸化物と少な
くとも銅およびアルカリ土類( I I a族)を含む酸化
物とを周期的に積層させて形成する酸化物薄膜と、少な
くともBiを含む酸化物と少なくともWを含む酸化物を
周期的に積層させて形成する酸化物薄膜とを、交互に積
層させて得る(ここでアルカリ土類は、 I I a族元素
のうちの少なくとも一種あるいは二種以上の元素を示す
。)ことを特徴とする酸化物超電導薄膜の製造方法。
(2) An oxide thin film formed by periodically stacking an oxide containing at least Tl and an oxide containing at least copper and alkaline earth (group IIa) on a substrate, and an oxide containing at least Bi. and oxide thin films formed by periodically stacking oxides containing at least W (here, the alkaline earth is at least one or two or more of the group IIa elements). A method for producing an oxide superconducting thin film, characterized in that:
(3) 基体の温度を400〜600℃の範囲にしたこ
とを特徴とする請求項2記載の酸化物超電導薄膜の製造
方法。
(3) The method for producing an oxide superconducting thin film according to claim 2, characterized in that the temperature of the substrate is in the range of 400 to 600°C.
(4) 積層物質の蒸発を少なくとも二種以上の蒸発源
で行うことを特徴とする請求項2記載の酸化物超電導薄
膜の製造方法。
(4) The method for producing an oxide superconducting thin film according to claim 2, wherein the evaporation of the laminated material is performed using at least two types of evaporation sources.
(5) 積層物質の蒸発をスパッタリングで行なうこと
を特徴とする請求項2記載の酸化物超電導薄膜の製造方
法。
(5) The method for producing an oxide superconducting thin film according to claim 2, wherein the evaporation of the laminated material is performed by sputtering.
JP1229917A 1989-09-05 1989-09-05 Oxide superconducting thin film and method for producing the same Expired - Lifetime JPH0714817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1229917A JPH0714817B2 (en) 1989-09-05 1989-09-05 Oxide superconducting thin film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1229917A JPH0714817B2 (en) 1989-09-05 1989-09-05 Oxide superconducting thin film and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0393625A true JPH0393625A (en) 1991-04-18
JPH0714817B2 JPH0714817B2 (en) 1995-02-22

Family

ID=16899765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1229917A Expired - Lifetime JPH0714817B2 (en) 1989-09-05 1989-09-05 Oxide superconducting thin film and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0714817B2 (en)

Also Published As

Publication number Publication date
JPH0714817B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
JP3037514B2 (en) Thin film superconductor and method of manufacturing the same
JP2979422B2 (en) Method of manufacturing insulator and insulating thin film, and method of manufacturing superconducting thin film and superconducting thin film
JPH0393625A (en) Oxide superconductor thin film and production thereof
JP2669052B2 (en) Oxide superconducting thin film and method for producing the same
JP3478543B2 (en) Oxide superconducting thin film and method for producing the same
JPH05170448A (en) Production of thin ceramic film
JP2741277B2 (en) Thin film superconductor and method of manufacturing the same
JPH0316920A (en) Oxide superconductive thin film and its production
JPH04275470A (en) Product composed of superconductor/insulator structure and manufacture of said product
JPH05171414A (en) Superconducting thin film and its production
JP2555477B2 (en) Superconducting thin film and manufacturing method thereof
JP3025891B2 (en) Thin film superconductor and method of manufacturing the same
JPH0437609A (en) Oxide superconducting thin film and its production
JPH0822740B2 (en) Oxide superconducting thin film and method for producing the same
JP2502744B2 (en) Method of manufacturing thin film super-electric body
JPH0822742B2 (en) Thin film superconductor and method of manufacturing the same
JPH0822741B2 (en) Superconducting thin film and manufacturing method thereof
JP2866476B2 (en) Laminated superconductor and manufacturing method thereof
JPH01105416A (en) Manufacture of thin film superconductor
JPH07206437A (en) Superconductor and its production
JPH03211270A (en) Oxide superconducting thin film and production thereof
JP3021764B2 (en) Oxide superconductor thin film
JPH042617A (en) Oxide superconducting thin film and production thereof
JPH03215319A (en) Preparation of thin filmy superconductor
JPH0465320A (en) Superconducting thin film and its production