JPH1060563A - Cobalt triantimonide series composite material - Google Patents

Cobalt triantimonide series composite material

Info

Publication number
JPH1060563A
JPH1060563A JP8237160A JP23716096A JPH1060563A JP H1060563 A JPH1060563 A JP H1060563A JP 8237160 A JP8237160 A JP 8237160A JP 23716096 A JP23716096 A JP 23716096A JP H1060563 A JPH1060563 A JP H1060563A
Authority
JP
Japan
Prior art keywords
cobalt
powder
atoms
triantimonide
antimony
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8237160A
Other languages
Japanese (ja)
Inventor
Keiichi Miura
啓一 三浦
Tsutomu Suzuki
務 鈴木
Hitoshi Owada
仁 大和田
Hirotane Takizawa
博胤 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chichibu Onoda Cement Corp
Original Assignee
Chichibu Onoda Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Onoda Cement Corp filed Critical Chichibu Onoda Cement Corp
Priority to JP8237160A priority Critical patent/JPH1060563A/en
Publication of JPH1060563A publication Critical patent/JPH1060563A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To impart excellent thermoelectric characteristics in a wide temp. region to a material without increasing electric resistance by filling atoms into the pores in the center of the crystal lattices of cobalt triantimonide with a skutterudite structure. SOLUTION: Atoms having 1.4Å atomic radius are filled into the pares of the lattices of cobalt triantimonide. In this way, strains from the original crystal structure by the increase of the number of the lattice constant furthermore increase the scattering of phonons by the thermal vibration of the infiltrated atoms, and the further reduction of the thermal conductivity is made possible. Preferably, a part of Co on the cobalt site in the atom-filled cobalt triantimonide or a part of Sb on the antimony site is substituted with any metallic atoms of Cu, Al, Ti, Fe, Ni, Te, Se, Sn or the like other than Co and Sb, and for imparting p- or n type semiconducting properties thereto, positive holes as a carrier or the concn. of free atoms is regulated. In this way, the low reduction ratio of the electric resistivity can simultaneously be attained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、ゼーベック効果や
ペルチェ効果による熱電変換機能を有する複合材料に関
する。
[0001] The present invention relates to a composite material having a thermoelectric conversion function based on the Seebeck effect or the Peltier effect.

【0002】[0002]

【従来技術とその問題点】ペルチェ効果を利用して熱電
冷却やゼーベック効果を利用して熱電発電を行うために
用いられる熱電変換材料は、一般に材料組成固有の熱電
特性を有するものであるが、この熱電特性は、また強い
温度依存性を示すものでもあった。このため使用に際し
ては、例えば低温領域用としてはBi2Te3系、中温領
域用としてはPbTe系、高温領域用としてはSiGe
系の熱電材料が用いられているように、使用温度領域に
よって有用な熱電特性を示す熱電材料を選択する必要が
あった。また、用途によっては広範囲な使用温度を要さ
れることもある。例えば熱電冷却では熱電材料からなる
素子の吸熱側と放熱側で温度差が生じ、更に熱電発電で
もかなりの温度差を利用することから素子の発熱側とそ
れ以外の部分では大きな温度差が生じる。有用な熱電特
性を発現できる温度領域が狭い熱電材料では、このよう
な用途には十分対応できない。
2. Description of the Related Art Thermoelectric conversion materials used for thermoelectric cooling utilizing the Peltier effect and thermoelectric generation utilizing the Seebeck effect generally have thermoelectric characteristics inherent to the material composition. The thermoelectric properties also exhibited strong temperature dependence. Therefore, when used, for example, a Bi 2 Te 3 system for the low temperature region, a PbTe system for the medium temperature region, and SiGe for the high temperature region
It is necessary to select a thermoelectric material exhibiting useful thermoelectric characteristics depending on the operating temperature range, as in the case of using a thermoelectric material of the system. Also, depending on the application, a wide range of operating temperatures may be required. For example, in thermoelectric cooling, a temperature difference occurs between the heat absorbing side and the heat radiating side of an element made of a thermoelectric material, and a considerable temperature difference is used in thermoelectric power generation, so that a large temperature difference occurs between the heat generating side of the element and other parts. A thermoelectric material having a narrow temperature range in which useful thermoelectric properties can be exhibited cannot be sufficiently used for such an application.

【0003】このため、例えばBi2Te3系熱電材料で
は、各温度で優れた熱電特性を示すようにBi2Te3
正孔又は自由電子のキャリア濃度を変えて最高の熱電特
性を示す温度を変化させた幾種かの材料を、例えばキャ
リア濃度の昇降順に組み合わせて一体化させ、有用な熱
電特性を示す温度領域を拡大させた傾斜構造型熱電材料
が知られている。また、低温から高温までの大きな温度
差から効率良く発電するために、SiGe系、PbTe
系、Bi2Te3系の各材料を組み合わせて一体化させた
いわゆるカスケード型素子も提案されている。しかし、
何れも異組成物間の接合部で抵抗率が増大し、エネルギ
ー損失が大きく期待通りの特性を得るには至っていな
い。
For this reason, for example, in a Bi 2 Te 3 -based thermoelectric material, the carrier concentration of the holes or free electrons of Bi 2 Te 3 is changed so that the thermoelectric material exhibits the best thermoelectric characteristics at each temperature. For example, there is known an inclined structure-type thermoelectric material in which several materials having different values are combined and integrated, for example, in ascending and descending order of carrier concentration, and a temperature region showing useful thermoelectric characteristics is expanded. Further, in order to efficiently generate power from a large temperature difference from a low temperature to a high temperature, a SiGe-based, PbTe
System, so-called cascade elements are integrated by combining the materials of Bi 2 Te 3 system have also been proposed. But,
In any case, the resistivity increases at the junction between the different compositions, the energy loss is large, and the expected characteristics have not been obtained.

【0004】また、温度依存性が比較的小さく、低温領
域から中温領域の幅広い温度域において安定した熱電特
性を示す材料として、Coの一部をNi,Fe等で置換
した、或いは、Sbの一部をSnやTe等で置換したス
クッテルダイト型構造のCoSb3系半導体材料も知ら
れている。一方、ペルチェ効果やゼーベック効果を示す
熱電材料の熱電特性の優劣は、一般に性能指数Z
(K-1)で表され、Zが大きいほど熱電材料としての特
性が優れている。(Z=α2/(ρ・κ) 但し、αは
熱電能、ρは電気抵抗率、κは熱伝導率。)前記のCo
Sb3系半導体材料では、キャリアとなる自由電子や正
孔の濃度を変化させて電気抵抗率(ρ)を下げることが
できるが、その場合熱伝導率の上昇をもたらすことがあ
り、性能指数の向上には必ずしも結びつくものではなか
った。
Further, as a material having relatively small temperature dependence and exhibiting stable thermoelectric characteristics in a wide temperature range from a low temperature range to a medium temperature range, a part of Co is replaced by Ni, Fe, or the like, or one of Sb is used. A CoSb 3 -based semiconductor material having a skutterudite structure in which a portion is replaced with Sn, Te, or the like is also known. On the other hand, thermoelectric materials exhibiting the Peltier effect or the Seebeck effect are generally superior in thermoelectric properties due to the performance index Z.
It is represented by (K -1 ), and the larger the Z, the better the properties as a thermoelectric material. (Z = α 2 / (ρ · κ) where α is thermoelectric power, ρ is electrical resistivity, κ is thermal conductivity.)
In an Sb 3 -based semiconductor material, the electrical resistivity (ρ) can be lowered by changing the concentration of free electrons and holes serving as carriers, but in that case, the thermal conductivity may be increased, and the figure of merit of the performance index may be increased. It did not necessarily lead to improvement.

【0005】[0005]

【発明が解決しようとする課題】電気抵抗率と熱伝導率
の積は金属の種類によらず与えられた温度で一定である
というウィーデマン・フランツの法則により、電気抵抗
率と熱伝導率を同時に小さくすることは非常に困難であ
る。本発明は、抵抗率を少なくとも上昇させずに熱伝導
率を下げることが可能な構造を有し、幅広い温度域に於
いて優れた熱電特性を示す複合材料を得ることを目的と
する。
According to the Wiedemann-Franz law that the product of the electrical resistivity and the thermal conductivity is constant at a given temperature regardless of the type of metal, the electrical resistivity and the thermal conductivity can be simultaneously determined. It is very difficult to make it small. An object of the present invention is to obtain a composite material having a structure capable of lowering the thermal conductivity without increasing the resistivity at least, and exhibiting excellent thermoelectric properties in a wide temperature range.

【0006】[0006]

【課題を解決するための手段】本発明者らは、熱電特性
の温度依存性が小さいスクッテルダイト型構造の三アン
チモン化コバルトに於いて、該三アンチモン化コバルト
の結晶格子の中心に大きな空孔があることに注目し、そ
の空孔を原子で充填させたものは、空孔侵入原子の熱振
動によりフォノンが散乱され、電気抵抗を殆ど上昇させ
ることなく熱伝導率が減少すること、また更に、キャリ
アとしての正孔および自由電子の濃度を調整するために
アンチモン又はコバルトの一部をアンチモン及びコバル
ト以外の原子で置換したものでは電気抵抗の低減もでき
る上に熱伝導率も低いものとなり、その結果、このよう
な結晶構造を有する三アンチモン化コバルト系複合材料
は幅広い温度域に於いて優れた熱電特性を示すことがで
きる複合材料となることを見出した。
Means for Solving the Problems The present inventors have found that in a skutterudite-type cobalt triantimonide having a small temperature dependence of thermoelectric characteristics, a large space is formed at the center of the crystal lattice of the cobalt triantimonide. Focusing on the presence of holes, the vacancies filled with atoms are scattered by phonons due to the thermal oscillations of the vacant atoms, and the thermal conductivity decreases with almost no increase in electrical resistance. Furthermore, in the case where antimony or cobalt is partially replaced by atoms other than antimony and cobalt in order to adjust the concentration of holes and free electrons as carriers, the electric resistance can be reduced and the thermal conductivity is low. As a result, a cobalt triantimonide-based composite material having such a crystal structure becomes a composite material that can exhibit excellent thermoelectric properties over a wide temperature range. It was found that.

【0007】即ち本発明は、スクッテルダイト型構造の
三アンチモン化コバルトの空孔に原子半径1.4オング
ストローム以上の原子が充填されていることを特徴とす
る三アンチモン化コバルト系複合材料である。
That is, the present invention is a cobalt triantimonide-based composite material, characterized in that the vacancy of a skutterudite-type structure is filled with atoms having an atomic radius of 1.4 Å or more. .

【0008】また本発明は、スクッテルダイト型構造の
三アンチモン化コバルトのコバルトサイトのCoの一部
またはアンチモンサイトのSbの一部をCo及びSb以
外の金属原子で置換したものであることを特徴とする前
記の三アンチモン化コバルト系複合材料である。
Further, the present invention relates to a skutterudite type cobalt triantimonide in which a part of Co in the cobalt site or a part of Sb in the antimony site is substituted with a metal atom other than Co and Sb. A cobalt triantimonide-based composite material as described above.

【0009】[0009]

【発明の実施の形態】本発明に於ける三アンチモン化コ
バルト系複合材料は、スクッテルダイト型構造の三アン
チモン化コバルト(CoSb3)内の空孔に原子半径
1.4オングストローム以上の任意の原子が侵入した構
造を有するものである。スクッテルダイト型構造の三ア
ンチモン化コバルト内の空孔の大きさは、原子半径1.
4オングストロームの原子がほぼ過不足無く収納可能な
大きさであるので原子半径1.4オングストローム以上
の原子で該空孔を充填すると、格子定数が増大して原結
晶構造からの歪みが生じ、この歪みが侵入原子の熱振動
によるフォノンの散乱を更に増大させることになり、熱
伝導率をより減少させることが可能になる。尚、原子半
径1.4オングストローム未満の原子も該空孔に侵入す
ることができ侵入原子の熱振動によるフォノンの散乱に
よって熱伝導率の減少も見られるものの、原結晶構造か
らの歪みが殆ど生じない為、熱伝導率の顕著な減少は起
こり難い。
BEST MODE FOR CARRYING OUT THE INVENTION The cobalt triantimonide-based composite material according to the present invention has a structure in which vacancies in a skutterudite type cobalt triantimonide (CoSb 3 ) have an atomic radius of 1.4 Å or more. It has a structure in which atoms have penetrated. The size of the vacancies in the skutterudite-type cobalt triantimonide has an atomic radius of 1.
Since atoms of 4 Å are of a size that can be accommodated without any excess or shortage, filling the vacancies with atoms having an atomic radius of 1.4 Å or more increases the lattice constant and causes distortion from the original crystal structure. The strain further increases the scattering of phonons due to the thermal oscillations of the interstitial atoms, which can further reduce the thermal conductivity. Although atoms having an atomic radius of less than 1.4 angstroms can penetrate into the vacancies and the thermal conductivity decreases due to phonon scattering due to thermal vibration of the penetrating atoms, distortion from the original crystal structure almost occurs. Therefore, a significant decrease in thermal conductivity is unlikely to occur.

【0010】また、好ましくは、前記スクッテルダイト
型構造の空孔を原子で充填した三アンチモン化コバルト
のコバルトサイトのCo又はアンチモンサイトのSbの
一部をCo及びSb以外の金属原子で置換、望ましくは
Cu、Zn、Al、Ti、Fe、Ni、Te、Se、S
n等の何れかの金属原子で置換し、p型又はn型半導性
を付与するためにキャリアとしての正孔または自由電子
の濃度を調整した三アンチモン化コバルト系複合材料と
する。この場合、スクッテルダイト型構造の空孔を原子
で充填したことによる熱伝導率の低減化とキャリア濃度
調整による電気抵抗率の低減化を同時に成し得た材料と
なる。
Preferably, Co of the cobalt site of cobalt triantimonide or Sb of the antimony site in which the vacancy of the skutterudite structure is filled with atoms is replaced with a metal atom other than Co and Sb. Desirably, Cu, Zn, Al, Ti, Fe, Ni, Te, Se, S
A cobalt triantimonide-based composite material in which the concentration of holes or free electrons as carriers is adjusted in order to impart p-type or n-type semiconductivity by substitution with any metal atom such as n. In this case, the material is a material that can simultaneously reduce the thermal conductivity by filling the holes of the skutterudite structure with atoms and reduce the electrical resistivity by adjusting the carrier concentration.

【0011】このような三アンチモン化コバルト系複合
材料は、例えば以下のような方法により製造することが
できる。即ち、等モル比の高純度コバルト粉末と高純度
アンチモン粉末からなる混合粉末を用いて溶融法により
合金塊を作製し、この合金塊を粉砕して粉末にする。次
いでコバルトが4、空孔を埋める原子が1、追加するア
ンチモンが12のモル比となるように前記コバルト含有
の粉末合金及び充填用原子の粉末及びアンチモン粉末か
らなる混合粉末を調整し、必要に応じ該混合粉末を所望
の形状に成形し、これを非酸化性性雰囲気、望ましくは
不活性ガス中で焼結を行うことによりスクッテルダイト
構造内の空孔が原子半径1.4オングストローム以上の
原子で充填された三アンチモン化コバルト系複合材料を
作製することができる。
[0011] Such a cobalt triantimonide composite material can be produced, for example, by the following method. That is, an alloy lump is produced by a melting method using a mixed powder composed of an equimolar ratio of high-purity cobalt powder and high-purity antimony powder, and the alloy lump is pulverized into powder. Next, a mixed powder composed of the cobalt-containing powder alloy, the filling atom powder, and the antimony powder was adjusted so that the molar ratio of cobalt was 4, the number of atoms filling the vacancies was 1, and the amount of added antimony was 12. Accordingly, the mixed powder is formed into a desired shape, and this is sintered in a non-oxidizing atmosphere, preferably an inert gas, so that pores in the skutterudite structure have an atomic radius of 1.4 angstroms or more. A cobalt triantimonide-based composite material filled with atoms can be produced.

【0012】また、コバルトサイトのCoの一部をCo
及びSb以外の金属原子で置換、又はアンチモンサイト
のSbの一部をCo及びSb以外の金属原子で置換さ
れ、空孔が原子で充填された三アンチモン化コバルト系
複合材料の製造方法としては、例えば、所望の置換金属
原子Mによる置換割合をX(但し、0<X<1)とする
と、Coの一部をMで置換する場合は、Co1-XXSb
組成となる量の高純度コバルト粉末と高純度アンチモン
粉末及び高純度M粉末を秤量(Co:M:Sb=(1−
X)モル:Xモル:1モル)混合し、該混合粉末を用い
て溶融法により合金塊を作製し、この合金塊を粉砕して
粉末にする。次いでCo1-XXが4、空孔を埋める原子
が1、追加するアンチモンが12のモル比となるよう
に、前記M含有コバルト−アンチモンの合金粉末及び充
填用原子Mの粉末及びアンチモン粉末からなる混合粉末
を調整し、必要に応じ該混合粉末を所望の形状に成形
し、これを非酸化性雰囲気、望ましくは不活性ガス中で
焼結することによりスクッテルダイト構造内の空孔が原
子半径1.4オングストローム以上の原子で充填された
n型半導体の三アンチモン化コバルト系複合材料を作製
することができる。
Further, a part of Co of the cobalt site is replaced with Co.
And a metal atom other than Sb, or a part of Sb of antimony site is replaced with a metal atom other than Co and Sb, and the method for producing a cobalt triantimonide-based composite material in which holes are filled with atoms includes: For example, assuming that the substitution ratio by a desired substitution metal atom M is X (where 0 <X <1), when a part of Co is substituted by M, Co 1−X M X Sb
The amounts of the high-purity cobalt powder, high-purity antimony powder, and high-purity M powder in the composition were weighed (Co: M: Sb = (1-
X) mol: X mol: 1 mol), and an alloy lump is produced by a melting method using the mixed powder, and the alloy lump is pulverized to a powder. Then Co 1-X M X is 4, 1 atom to fill the vacancies, as antimony to add a molar ratio of 12, the M-containing cobalt - alloy powder and filling atom M antimony powder and antimony powder The mixed powder consisting of is formed, if necessary, the mixed powder is formed into a desired shape, and this is sintered in a non-oxidizing atmosphere, desirably an inert gas, so that pores in the skutterudite structure are formed. An n-type semiconductor cobalt triantimonide-based composite material filled with atoms having an atomic radius of 1.4 angstroms or more can be manufactured.

【0013】また、Sbの一部をMで置換する場合は、
CoMXSb1-X組成となる量の高純度コバルト粉末と高
純度アンチモン粉末及び高純度M粉末を秤量(Co:
M:Sb=1モル:Xモル:(1−X)モル)混合し、
該混合粉末を用いて溶融法により合金塊を作製し、この
合金塊を粉砕して粉末にする。次いでコバルトが4、空
孔を埋める原子が1、追加するMXSb1-Xが12のモル
比となるように、前記M含有コバルト−アンチモンの合
金粉末及び充填用原子Mの粉末及びアンチモン粉末から
なる混合粉末を調整し、必要に応じ該混合粉末を所望の
形状に成形し、これを不活性ガス中で焼結を行うことに
よりスクッテルダイト構造内の空孔が原子で充填された
p型半導体の三アンチモン化コバルト系複合材料を作製
することができる。
When a part of Sb is replaced by M,
A high purity cobalt powder, a high purity antimony powder and a high purity M powder are weighed in amounts such that a CoM X Sb 1-X composition is obtained (Co:
M: Sb = 1 mol: X mol: (1-X) mol)
Using the mixed powder, an alloy lump is produced by a melting method, and the alloy lump is pulverized into a powder. Then, the M-containing cobalt-antimony alloy powder, the filling atom M powder, and the antimony powder are mixed such that the molar ratio of cobalt is 4, the number of atoms filling the vacancies is 1, and the added M x Sb 1-x is 12. The mixed powder consisting of was formed, and if necessary, the mixed powder was formed into a desired shape, and this was sintered in an inert gas, whereby p in the skutterudite structure was filled with atoms. It is possible to produce a cobalt triantimonide-based composite material of a type semiconductor.

【0014】[0014]

【実施例】【Example】

[実施例1] コバルトとアンチモンのモル比が1:1
になるようにコバルト粉末((株)高純度化学研究所、
純度99.9%)とアンチモン粉末(住友金属鉱山
(株)、純度99.999%)を混合したものをアルゴ
ンガスを充填させた石英管内に封入した。この石英管を
電気炉にて約1250℃で24時間加熱処理し、炉内放
冷後の石英管内の合金塊を取り出し、これを粉砕して合
金粉末を得た。該合金粉末及び錫粉末及びアンチモン粉
末を用い、コバルトと錫とアンチモンのモル比が4:
1:12になる混合粉末を作製した。次いで該混合粉末
をアルゴンガスを充填させた石英管内に封入した。この
石英管を電気炉にて約600℃で2時間加熱処理し、炉
内放冷後の石英管内には塊状の生成物が存在した。該生
成物は粉末X線回折により錫が空孔に侵入したスクッテ
ルダイト型構造の三アンチモン化コバルトであることを
確認し、その格子定数は9.04オングストロームであ
った。また、この三アンチモン化コバルト系材料の熱伝
導率は静的比較法による測定の結果、3.2W/mKで
あった。
[Example 1] The molar ratio of cobalt to antimony was 1: 1.
Become a cobalt powder (High Purity Chemical Laboratory, Inc.)
A mixture of 99.9% purity and antimony powder (Sumitomo Metal Mining Co., Ltd., 99.999% purity) was sealed in a quartz tube filled with argon gas. The quartz tube was heated in an electric furnace at about 1250 ° C. for 24 hours, and after cooling in the furnace, an alloy lump in the quartz tube was taken out and pulverized to obtain an alloy powder. Using the alloy powder, tin powder and antimony powder, the molar ratio of cobalt, tin and antimony was 4:
A mixed powder of 1:12 was prepared. Next, the mixed powder was sealed in a quartz tube filled with argon gas. This quartz tube was heated in an electric furnace at about 600 ° C. for 2 hours, and after cooling in the furnace, a lump product was present in the quartz tube. The product was confirmed by powder X-ray diffraction to be cobalt triantimonide having a skutterudite structure in which tin had penetrated holes, and its lattice constant was 9.04 Å. The thermal conductivity of this cobalt triantimonide-based material was 3.2 W / mK as a result of measurement by a static comparison method.

【0015】[実施例2] 前記実施例1に於いて、錫
粉末の代わりに珪素粉末又はゲルマニウム粉末又は鉛粉
末を用いる以外は全て実施例1と同様の方法で、コバル
トと珪素とアンチモンのモル比、又はコバルトとゲルマ
ニウムとアンチモンのモル比、又はコバルトと鉛とアン
チモンのモル比が、何れも4:1:12になる混合粉末
をそれぞれ作製した。該混合粉末をアルゴンガスを充填
させた石英管内にそれぞれ封入した。各石英管を電気炉
にて約600℃で2時間加熱処理し、炉内放冷後の石英
管内から得た各合成物はX線回折により、珪素又はゲル
マニウム又は鉛がそれぞれ空孔に侵入したスクッテルダ
イト型構造の三アンチモン化コバルトであることを確認
し、その格子定数とにより測定した熱伝導率は、珪素侵
入型では格子定数9.03オングストローム、熱伝導率
5.5W/mK、ゲルマニウム侵入型では格子定数9.
03オングストローム、熱伝導率5.6W/mK、鉛侵
入型では格子定数9.04オングストロームで熱伝導率
3.5W/mKであった。
Example 2 The procedure of Example 1 was repeated except that silicon powder, germanium powder, or lead powder was used instead of tin powder. A mixed powder was prepared in which the ratio, or the molar ratio of cobalt, germanium, and antimony, or the molar ratio of cobalt, lead, and antimony was 4: 1: 12. The mixed powder was sealed in quartz tubes filled with argon gas. Each quartz tube was heat-treated in an electric furnace at about 600 ° C. for 2 hours, and silicon, germanium, or lead respectively penetrated the pores by X-ray diffraction in each of the composites obtained from the inside of the quartz tube after cooling in the furnace. It was confirmed that it was a skutterudite-type cobalt triantimonide, and the thermal conductivity measured by its lattice constant was found to be 9.03 angstroms, a thermal conductivity of 5.5 W / mK, and a germanium of silicon intrusion type. In the interstitial type, the lattice constant is 9.
It had a thermal conductivity of 3.5 W / mK with a lattice constant of 9.04 angstroms for the lead penetration type.

【0016】[実施例3] 実施例1と同様のコバルト
とアンチモンとニッケルの各粉末を用い、ニッケルで2
モル%のコバルトを置換してCo0.98Ni0.02Sbの組
成になるように秤量した混合粉末をアルゴンガスを充填
させた石英管内に封入し、この石英管を電気炉にて約1
250℃で24時間加熱処理し、炉内放冷後の石英管内
の合金塊を取り出し、これを粉砕して合金粉末を得た。
該合金粉末及び錫粉末及びアンチモン粉末を用い、Co
0.98Ni0.02と錫とアンチモンのモル比が4:1:12
になる混合粉末を作製した。次いで該混合粉末をアルゴ
ンガスを充填させた石英管内に封入した。この石英管を
電気炉にて約600℃で2時間加熱処理し、炉内放冷後
の石英管内には塊状の生成物が存在した。該生成物は粉
末X線回折により錫が空孔に侵入したスクッテルダイト
型構造のCoの一部がNiで置換されたn型の三アンチ
モン化コバルトであることを確認し、その格子定数は
9.04オングストロームであり、また熱伝導率を静的
比較法により測定した結果、3.5W/mKであった。
Example 3 The same powder of cobalt, antimony and nickel as used in Example 1 was used.
A mixed powder weighed so as to have a composition of Co 0.98 Ni 0.02 Sb by substituting mol% of cobalt was sealed in a quartz tube filled with argon gas, and this quartz tube was placed in an electric furnace for about 1 hour.
Heat treatment was performed at 250 ° C. for 24 hours, and after cooling in the furnace, an alloy lump in the quartz tube was taken out and pulverized to obtain an alloy powder.
Using the alloy powder, tin powder and antimony powder, Co
0.98 Ni 0.02 , tin: antimony molar ratio of 4: 1: 12
Was prepared. Next, the mixed powder was sealed in a quartz tube filled with argon gas. This quartz tube was heated in an electric furnace at about 600 ° C. for 2 hours, and after cooling in the furnace, a lump product was present in the quartz tube. The product was confirmed by powder X-ray diffraction to be an n-type cobalt triantimonide in which part of Co having a skutterudite structure in which tin had penetrated the pores was replaced with Ni, and the lattice constant was As a result of measuring the thermal conductivity by a static comparison method, it was 3.5 W / mK.

【0017】[実施例4] 実施例1と同様のコバルト
とアンチモンと錫の各粉末を用い、錫で0.15モル%
のアンチモンを置換して CoSb0.9985Sn0.0015
なるように秤量した混合粉末をアルゴンガスを充填させ
た石英管内に封入し、この石英管を電気炉にて約125
0℃で24時間加熱処理し、炉内放冷後の石英管内の合
金塊を取り出し、これを粉砕して合金粉末を得た。該合
金粉末及び錫粉末及びアンチモン粉末を用い、コバルト
と錫とSb0.9985Sn0.0015のモル比が4:1:12に
なる混合粉末を作製した。次いで該混合粉末をアルゴン
ガスを充填させた石英管内に封入した。この石英管を電
気炉にて約600℃で2時間加熱処理し、炉内放冷後の
石英管内には塊状の生成物が存在した。該生成物は粉末
X線回折により錫が空孔に侵入したスクッテルダイト型
構造のSbの一部がSnで置換されたp型の三アンチモ
ン化コバルトであることを確認し、その格子定数は9.
04オングストロームであり、また熱伝導率を静的比較
法により測定した結果、3.5W/mKであった。
Example 4 The same powder of cobalt, antimony and tin as in Example 1 was used, and 0.15 mol% of tin was used.
The mixed powder weighed so that the antimony is replaced with CoSb 0.9985 Sn 0.0015 is sealed in a quartz tube filled with argon gas, and this quartz tube is placed in an electric furnace at about 125 ° C.
Heat treatment was performed at 0 ° C. for 24 hours, and an alloy lump in the quartz tube after cooling in the furnace was taken out and pulverized to obtain an alloy powder. Using the alloy powder, tin powder and antimony powder, a mixed powder having a molar ratio of cobalt: tin: Sb 0.9985 Sn 0.0015 of 4: 1: 12 was prepared. Next, the mixed powder was sealed in a quartz tube filled with argon gas. This quartz tube was heated in an electric furnace at about 600 ° C. for 2 hours, and after cooling in the furnace, a lump product was present in the quartz tube. The product was confirmed by powder X-ray diffraction to be p-type cobalt triantimonide in which a part of Sb of the skutterudite structure in which tin had penetrated the pores was replaced with Sn, and the lattice constant was 9.
As a result of measuring the thermal conductivity by a static comparison method, it was 3.5 W / mK.

【0018】[比較例1] コバルトとアンチモンのモ
ル比が1:3になるようにコバルト粉末((株)高純度
化学研究所、純度99.9%)とアンチモン粉末(住友
金属鉱山(株)、純度99.999%)を混合したもの
をアルゴンガスを充填させた石英管内に封入した。この
石英管を電気炉にて約1250℃で24時間加熱処理
し、炉内放冷後の石英管内の合金塊を取り出した。該合
金塊は粉末X線回折による定性分析から空孔内に原子を
含まないスクッテルダイト型構造の三アンチモン化コバ
ルト(CoSb3)であることを確認した。また、この
三アンチモン化コバルトの熱伝導率を静的比較法で測定
したところ、5.8W/mKであった。
Comparative Example 1 Cobalt powder (high purity chemical laboratory, purity 99.9%) and antimony powder (Sumitomo Metal Mining Co., Ltd.) so that the molar ratio of cobalt to antimony was 1: 3. , Purity 99.999%) was sealed in a quartz tube filled with argon gas. This quartz tube was subjected to heat treatment in an electric furnace at about 1250 ° C. for 24 hours, and an alloy lump in the quartz tube after cooling in the furnace was taken out. Qualitative analysis by powder X-ray diffraction confirmed that the alloy mass was cobalt triantimonide (CoSb 3 ) having a skutterudite-type structure containing no atoms in the pores. The thermal conductivity of the cobalt triantimonide measured by a static comparison method was 5.8 W / mK.

【0019】[比較例2] コバルトとアンチモンのモ
ル比が1:1になるようにコバルト粉末((株)高純度
化学研究所、純度99.9%)とアンチモン粉末(住友
金属鉱山(株)、純度99.999%)を混合したもの
をアルゴンガスを充填させた石英管内に封入した。この
石英管を電気炉にて約1250℃で24時間加熱処理
し、炉内放冷後の石英管内の合金塊を取り出し、これを
粉砕して、アンチモン化コバルト粉末を得た。この粉末
及びチタン粉末及びアンチモン粉末を用い、コバルトと
チタンとアンチモンのモル比が4:1:12になる混合
粉末を作製した。次いで該混合粉末をアルゴンガスを充
填させた石英管内に封入した。この石英管を電気炉にて
約600℃で2時間加熱処理し、炉内放冷後の石英管内
には塊状の合成物が存在した。該合成物は粉末X線回折
による定性分析からチタンが空孔に侵入したスクッテル
ダイト型構造の三アンチモン化コバルトであることを確
認した。また、得られた合成物の熱伝導率は静的比較法
による測定の結果、3.7W/mKであった。
Comparative Example 2 Cobalt powder (High Purity Chemical Laboratory Co., Ltd., purity 99.9%) and antimony powder (Sumitomo Metal Mining Co., Ltd.) so that the molar ratio of cobalt to antimony was 1: 1. , Purity 99.999%) was sealed in a quartz tube filled with argon gas. The quartz tube was heated in an electric furnace at about 1250 ° C. for 24 hours, and after cooling in the furnace, an alloy lump in the quartz tube was taken out and pulverized to obtain a cobalt antimonide powder. Using this powder, titanium powder and antimony powder, a mixed powder having a molar ratio of cobalt, titanium and antimony of 4: 1: 12 was prepared. Next, the mixed powder was sealed in a quartz tube filled with argon gas. The quartz tube was heat-treated at about 600 ° C. for 2 hours in an electric furnace, and after cooling in the furnace, there was a massive compound in the quartz tube. Qualitative analysis by powder X-ray diffraction confirmed that the synthesized product was cobalt triantimonide having a skutterudite structure in which titanium had entered pores. The thermal conductivity of the obtained composite was 3.7 W / mK as a result of measurement by a static comparison method.

【0020】[0020]

【発明の効果】本発明による、三アンチモン化コバルト
系複合材料は、接合界面を有しないので界面で発生する
電気抵抗の増加も無く、かつスクッテルダイト型構造か
らの格子を歪ませた構造を有すことによって電気抵抗が
上昇することなく熱伝導率を大幅に下げることができる
為、更には低減化された熱伝導率に加えてp型若しくは
n型半導体としてキャリア濃度の調整を施すことにより
電気抵抗を下げることもできる為、何れの場合も少なく
とも低温〜概ね500℃迄の幅広い温度範囲で高い性能
指数、即ち優れた熱電特性を発現できる。このため本複
合材料は熱電冷却或いは熱電発電等の用途に対し優れた
適用性を有する可能性が高いものである。
The cobalt triantimonide-based composite material according to the present invention does not have a junction interface, so there is no increase in electric resistance generated at the interface, and the lattice distorted structure from the skutterudite structure is obtained. By having this, the thermal conductivity can be greatly reduced without increasing the electrical resistance, and further by adjusting the carrier concentration as a p-type or n-type semiconductor in addition to the reduced thermal conductivity. Since the electrical resistance can be reduced, a high figure of merit, that is, excellent thermoelectric properties can be exhibited in any case at least in a wide temperature range from low temperature to about 500 ° C. Therefore, the composite material is highly likely to have excellent applicability to applications such as thermoelectric cooling or thermoelectric power generation.

フロントページの続き (72)発明者 滝沢 博胤 宮城県仙台市太白区富沢4丁目8番50号 コ−ポしらかば102Continuation of front page (72) Inventor Hirotane Takizawa 4-80, Tomizawa, Tashiro-ku, Sendai-shi, Miyagi Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 スクッテルダイト型構造の三アンチモン
化コバルトの空孔に原子半径1.4オングストローム以
上の原子が充填されていることを特徴とする三アンチモ
ン化コバルト系複合材料。
1. A cobalt triantimonide-based composite material, characterized in that vacancy of a skutterudite-type cobalt triantimonide is filled with atoms having an atomic radius of 1.4 angstroms or more.
【請求項2】 スクッテルダイト型構造の三アンチモン
化コバルトのコバルトサイトのCoの一部またはアンチ
モンサイトのSbの一部をCo及びSb以外の金属原子
で置換したものであることを特徴とする請求項1記載の
三アンチモン化コバルト系複合材料。
2. Cobalt triantimonide having a skutterudite structure in which a part of Co of cobalt site or a part of Sb of antimony site is substituted with a metal atom other than Co and Sb. The cobalt triantimonide composite material according to claim 1.
JP8237160A 1996-08-20 1996-08-20 Cobalt triantimonide series composite material Pending JPH1060563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8237160A JPH1060563A (en) 1996-08-20 1996-08-20 Cobalt triantimonide series composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8237160A JPH1060563A (en) 1996-08-20 1996-08-20 Cobalt triantimonide series composite material

Publications (1)

Publication Number Publication Date
JPH1060563A true JPH1060563A (en) 1998-03-03

Family

ID=17011291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8237160A Pending JPH1060563A (en) 1996-08-20 1996-08-20 Cobalt triantimonide series composite material

Country Status (1)

Country Link
JP (1) JPH1060563A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100348755C (en) * 2003-12-25 2007-11-14 同济大学 Method for synthesizing tin white cobalt series thermoelectric material
WO2008150026A1 (en) 2007-06-05 2008-12-11 Toyota Jidosha Kabushiki Kaisha Thermoelectric conversion element and process for producing the thermoelectric conversion element
KR100910158B1 (en) 2007-09-10 2009-07-30 충주대학교 산학협력단 Sn-FILLED AND Te-DOPED SKUTTERUDITE THERMOELECTRIC MATERIAL AND METHOD FOR MANUFACTURING THE SAME
US8394284B2 (en) 2007-06-06 2013-03-12 Toyota Jidosha Kabushiki Kaisha Thermoelectric converter and method of manufacturing same
US8828277B2 (en) 2009-06-18 2014-09-09 Toyota Jidosha Kabushiki Kaisha Nanocomposite thermoelectric conversion material and method of producing the same
JP2016066795A (en) * 2014-09-22 2016-04-28 国立研究開発法人物質・材料研究機構 Silicon- and tellurium-doped skutterudite thermoelectric conversion semiconductor, method for manufacturing the same, and thermoelectric power-generation element arranged by use thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100348755C (en) * 2003-12-25 2007-11-14 同济大学 Method for synthesizing tin white cobalt series thermoelectric material
WO2008150026A1 (en) 2007-06-05 2008-12-11 Toyota Jidosha Kabushiki Kaisha Thermoelectric conversion element and process for producing the thermoelectric conversion element
US8617918B2 (en) 2007-06-05 2013-12-31 Toyota Jidosha Kabushiki Kaisha Thermoelectric converter and method thereof
US8394284B2 (en) 2007-06-06 2013-03-12 Toyota Jidosha Kabushiki Kaisha Thermoelectric converter and method of manufacturing same
KR100910158B1 (en) 2007-09-10 2009-07-30 충주대학교 산학협력단 Sn-FILLED AND Te-DOPED SKUTTERUDITE THERMOELECTRIC MATERIAL AND METHOD FOR MANUFACTURING THE SAME
US8828277B2 (en) 2009-06-18 2014-09-09 Toyota Jidosha Kabushiki Kaisha Nanocomposite thermoelectric conversion material and method of producing the same
JP2016066795A (en) * 2014-09-22 2016-04-28 国立研究開発法人物質・材料研究機構 Silicon- and tellurium-doped skutterudite thermoelectric conversion semiconductor, method for manufacturing the same, and thermoelectric power-generation element arranged by use thereof

Similar Documents

Publication Publication Date Title
JP3092463B2 (en) Thermoelectric material and thermoelectric conversion element
Dilley et al. Thermoelectric properties of chemically substituted skutterudites Yb y Co 4 Sn x Sb 12− x
US20200024701A1 (en) THERMOELECTRIC COMPOSITIONS AND METHODS OF FABRICATING HIGH THERMOELECTRIC PERFORMANCE MgAgSb-BASED MATERIALS
US8003002B2 (en) P-type thermoelectric materials, a process for their manufacture and uses thereof
JP2016529699A (en) Thermoelectric materials based on tetrahedral copper ore structure for thermoelectric elements
Nakayama et al. Thermoelectric properties of metal-doped β-rhombohedral boron
JP6608961B2 (en) P-type skutterudite thermoelectric material, method for producing the same, and thermoelectric element including the same
KR20130078478A (en) Fabrication method for te-based thermoelectric materials containing twins formed by addition of dopant and nano particle sintering
JP4865531B2 (en) Yb-AE-Fe-Co-Sb (AE: Ca, Sr, Ba, Ag) based thermoelectric conversion material
EP3219817B1 (en) Thermoelectric conversion material and method of production thereof
JPH1060563A (en) Cobalt triantimonide series composite material
EP3575452B1 (en) Chalcogen compound, method for preparing same, and thermoelectric element comprising the compound
JP2016072594A (en) Thermoelectric material, thermoelectric conversion element arranged by use thereof, and thermoelectric conversion module
KR102049009B1 (en) New compound semiconductors and their application
US20020175312A1 (en) Thermoelectric materials formed based on chevrel phases
JPH10102160A (en) Production of cobalt triantimonide type composite material
JP3541549B2 (en) Thermoelectric material for high temperature and method for producing the same
Uher et al. Materials with open crystal structure as prospective novel thermoelectrics
JPWO2018135286A1 (en) p-type thermoelectric conversion material, thermoelectric conversion module and method for producing p-type thermoelectric conversion material
JP2001135865A (en) Thermoelectric conversion material and manufacturing method for it
JP2003188425A (en) Thermoelectric transductional material and element using the same
JPH11186615A (en) Semiconductor thermo-electrical material
KR102573731B1 (en) Chalcogen-containing compound, its preparation method and thermoelectric element comprising the same
WO2022009586A1 (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, power generation method, and heat transfer method
Bos Intermetallic Thermoelectrics–Design and Preparation of Half-Heuslers, Skutterudites and Zintl-type Materials