JPH103928A - Nickel-hydrogen secondary battery - Google Patents

Nickel-hydrogen secondary battery

Info

Publication number
JPH103928A
JPH103928A JP8154324A JP15432496A JPH103928A JP H103928 A JPH103928 A JP H103928A JP 8154324 A JP8154324 A JP 8154324A JP 15432496 A JP15432496 A JP 15432496A JP H103928 A JPH103928 A JP H103928A
Authority
JP
Japan
Prior art keywords
paste
nickel
substrate
dimensional substrate
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8154324A
Other languages
Japanese (ja)
Inventor
Hiroshi Kaneko
浩 金子
Masayoshi Hiruma
雅義 蛭間
Kunihiko Miyamoto
邦彦 宮本
Tetsuya Yamane
哲哉 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP8154324A priority Critical patent/JPH103928A/en
Priority to US08/874,406 priority patent/US5965295A/en
Publication of JPH103928A publication Critical patent/JPH103928A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/005Apparatus or processes specially adapted for the manufacture of electric switches of reed switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nickel-hydrogen secondary battery, equipped with a paste type positive electrode and/or a paste type negative electrode having a high capacity wherein the packing density of paste is effectively increased, a high collecting efficiency in accordance with a low electric resistance, and a high tensile strength. SOLUTION: This battery is equipped with a paste type positive electrode 2 wherein a conductive substrate is filled with a paste containing an active material, and a paste type negative electrode 4 wherein the conductive substrate is filled with a paste containing a hydrogen storage alloy; and the conductive substrate of one of the positive and negative electrodes 2 and 4, or of both are composed of a two-dimensional substrate obtained by forming and baking metallic powder obtained by power rolling method, having many pores and a thickness of 60μm or less, and laminating a three dimensional substrate formed of nickel on both sides of the two-dimensional substrate respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル−水素二
次電池に関し、特に導電性基板を改良したニッケル−水
素二次電池に係わる。
The present invention relates to a nickel-hydrogen secondary battery, and more particularly to a nickel-hydrogen secondary battery having an improved conductive substrate.

【0002】[0002]

【従来の技術】ニッケル−水素二次電池に用いられるペ
ースト式正極は、例えば活物質である水酸化ニッケル粉
末、導電材料および高分子結着剤を水の存在下で混練し
てペーストを調製し、このペーストを導電性基板に充填
した後、乾燥し、必要に応じてロールプレスを行うこと
により作製される。また、前記二次電池に用いられるペ
ースト式負極は例えば水素吸蔵合金および高分子結着剤
を水の存在下で混練してペーストを調製し、このペース
トを導電性基板に充填した後、乾燥し、必要に応じてロ
ールプレスを行うことにより作製される。
2. Description of the Related Art A paste-type positive electrode used for a nickel-hydrogen secondary battery is prepared by kneading, for example, nickel hydroxide powder as an active material, a conductive material and a polymer binder in the presence of water. After the paste is filled in a conductive substrate, the paste is dried and, if necessary, roll-pressed. The paste type negative electrode used in the secondary battery is prepared, for example, by kneading a hydrogen storage alloy and a polymer binder in the presence of water to prepare a paste, filling the paste into a conductive substrate, and then drying. It is manufactured by performing a roll press as needed.

【0003】前記導電性基板としては従来より、エキス
パンデッドメタル、穿孔鋼板などの二次元基板や、ビビ
リ切削振動による繊維状金属多孔体(非メッキタイ
プ)、メッキタイプであるスポンジ状金属多孔体やフェ
ルト状金属多孔体などの三次元基板が用いられている。
Conventionally, as the conductive substrate, a two-dimensional substrate such as an expanded metal or a perforated steel plate, a fibrous metal porous body (non-plated type) produced by chattering vibration, and a sponge-like metal porous body of a plated type have been used. A three-dimensional substrate such as or a porous metal body in the form of felt is used.

【0004】前記二次元基板は、電気抵抗が低く、かつ
高い引張り強度を有するものの、ペーストの保持性およ
び集電効率に劣る。一方、前記三次元基板は二次元基板
に比べてペーストの保持性に優れ、かつ高い集電効率を
有する。しかしながら、三次元基板においてペーストの
充填量(電極容量)を高めるために目付量を低減させ
る、つまり空隙率を高くすると、電気抵抗および引張り
強度が低下する。
[0004] The two-dimensional substrate has low electric resistance and high tensile strength, but is inferior in paste retention and current collection efficiency. On the other hand, the three-dimensional substrate has better paste holding properties and higher current collection efficiency than the two-dimensional substrate. However, when the basis weight is reduced to increase the filling amount (electrode capacity) of the paste in the three-dimensional substrate, that is, when the porosity is increased, the electric resistance and the tensile strength are reduced.

【0005】このようなことから、特開平8−1069
06号公報には二次元基板であるパンチングメタルシー
トを芯材とし、この両面に発泡樹脂の薄膜を接着剤によ
り被覆し、ニッケル粉末含有溶液を塗布し、焼成により
前記発泡樹脂薄膜等の焼き抜きを行うことにより前記パ
ンチングメタルシートの両面に発泡ニッケル多孔体(三
次元基板)を一体的に結合された活物質保持基板の製造
方法が開示されている。
For these reasons, Japanese Patent Application Laid-Open No. Hei 8-1069 discloses
No. 06 discloses a two-dimensional substrate, a punched metal sheet as a core material, a foamed resin thin film coated on both sides with an adhesive, a nickel powder-containing solution applied, and baking out of the foamed resin thin film and the like by firing. A method for manufacturing an active material holding substrate in which a porous nickel foam body (three-dimensional substrate) is integrally bonded to both surfaces of the punched metal sheet by performing the method described above.

【0006】前記活物質保持基板は、パンチングメタル
シートによる二次元基板としての低抵抗性および高強度
化と、発泡ニッケル多孔体による三次元基板としてのペ
ーストの保持性、高い集電効率を備える。このような保
持基板を有するペースト式電極において、より容量を向
上させるためにはペーストの充填量の増大に寄与せず、
むしろ保持基板の体積増大を招く前記パンチングメタル
シートを薄くすることが望まれる。しかしながら、パン
チングメタルシートは、メタルシートをパンチング装置
により穴あけすることにより作られるため、メタルシー
トを薄くするとパンチング後のバリ除去が困難になる、
反りが発生する。バリが残存しかつ反りのあるパンチン
グメタルシートを用いてその両面に発泡ニッケル多孔体
を形成して作られた活物質保持基板は、前記パンチング
メタルシートに起因する反り等がそのまま転写される。
このため、前記保持基板を有するペースト式正極やペー
スト式負極をセパレータを間に挟んで巻回して渦巻状の
電極群を作製すると、前記反り等に起因して電極群の空
隙率が高くなるため、結果的には容量の増大が望めなく
なる。同時に、前記反りの程度が大きい場合は捲回時に
セパレータを突き破って対極と接触し、短絡を誘発する
ことがある。
The active material holding substrate has low resistance and high strength as a two-dimensional substrate made of a punched metal sheet, and has a paste holding property as a three-dimensional substrate made of a porous nickel foam and high current collection efficiency. In a paste electrode having such a holding substrate, in order to further improve the capacity, it does not contribute to an increase in the filling amount of the paste,
Rather, it is desired to reduce the thickness of the punched metal sheet which causes an increase in the volume of the holding substrate. However, a punched metal sheet is made by punching a metal sheet with a punching device, so if the metal sheet is made thinner, it becomes difficult to remove burrs after punching.
Warpage occurs. On an active material holding substrate formed by forming a porous nickel foam on both surfaces of a punched metal sheet having burrs remaining and warped, warpage or the like caused by the punched metal sheet is transferred as it is.
For this reason, when a paste-type positive electrode or a paste-type negative electrode having the holding substrate is wound with a separator interposed therebetween to produce a spiral electrode group, the porosity of the electrode group increases due to the warpage or the like. As a result, an increase in capacity cannot be expected. At the same time, if the degree of the warpage is large, the separator may break through during the winding and come into contact with the counter electrode, thereby causing a short circuit.

【0007】したがって、パンチングメタルシートは前
述した作り方の要因から70μm以下の薄膜にすること
が実質的に困難であるため、このパンチングメタルシー
トを芯材として含む保持基板からより高容量のペースト
式電極を得ることは限界があった。
Therefore, it is practically difficult to make the punched metal sheet into a thin film having a thickness of 70 μm or less due to the above-mentioned factors. There was a limit to getting.

【0008】[0008]

【発明が解決しようとする課題】本発明は、多数の孔を
有する厚さ60μm以下の二次元基板の両面に三次元基
板を積層した導電基板を用いることにより基板単体の低
目付化に対応するペーストの充填密度向上、高引張り強
度および基板単体の低電気抵抗に対応して高い集電効率
を有するペースト式正極および/またはペースト式負極
を備えたニッケル−水素二次電池を提供しようとするも
のである。
SUMMARY OF THE INVENTION The present invention addresses the problem of reducing the unit weight of a single substrate by using a conductive substrate in which a three-dimensional substrate is laminated on both sides of a two-dimensional substrate having a large number of holes and having a thickness of 60 μm or less. An object of the present invention is to provide a nickel-hydrogen secondary battery provided with a paste-type positive electrode and / or a paste-type negative electrode having high current collection efficiency corresponding to an improvement in paste filling density, high tensile strength, and low electric resistance of a single substrate. It is.

【0009】[0009]

【課題を解決するための手段】本発明に係わるニッケル
−水素二次電池は、導電性基板に活物質を含むペースト
を充填したペースト式正極および導電性基板に水素吸蔵
合金を含むペーストを充填したペースト式負極を具備
し、前記正極および負極のいずれか一方または両者の導
電性基板は、金属粉末を粉末圧延法により成形し、焼成
することにより得られた多数の孔を有する厚さ60μm
以下の二次元基板と、この二次元基板の両面にそれぞれ
積層された三次元基板とからなることを特徴とするもの
である。
A nickel-hydrogen secondary battery according to the present invention has a paste type positive electrode in which a conductive substrate is filled with a paste containing an active material, and a conductive substrate is filled with a paste containing a hydrogen storage alloy. Equipped with a paste type negative electrode, the conductive substrate of one or both of the positive electrode and the negative electrode is formed by molding a metal powder by a powder rolling method, and has a thickness of 60 μm having a large number of holes obtained by firing.
It is characterized by comprising the following two-dimensional substrate and three-dimensional substrates laminated on both sides of the two-dimensional substrate.

【0010】[0010]

【発明の実施の形態】以下、本発明のニッケル−水素二
次電池を図1を参照して説明する。有底円筒状の容器1
内には、正極2とセパレータ3と負極4とを積層して渦
巻き状に捲回することにより作製された電極群5が収納
されている。前記負極4は、前記電極群5の最外周に配
置されて前記容器1と電気的に接触している。アルカリ
電解液は、前記容器1内に収容されている。中央に孔6
を有する円形の第1の封口板7は、前記容器1の上部開
口部に配置されている。リング状の絶縁性ガスケット8
は、前記封口板7の周縁と前記容器1の上部開口部内面
の間に配置され、前記上部開口部を内側に縮径するカシ
メ加工により前記容器1に前記封口板7を前記ガスケッ
ト8を介して気密に固定している。正極リード9は、一
端が前記正極2に接続、他端が前記封口板7の下面に接
続されている。帽子形状をなす正極端子10は、前記封
口板7上に前記孔6を覆うように取り付けられている。
ゴム製の安全弁11は、前記封口板7と前記正極端子1
0で囲まれた空間内に前記孔6を塞ぐように配置されて
いる。中央に穴を有する絶縁材料からなる円形の押え板
12は、前記正極端子10上に前記正極端子10の突起
部がその押え板12の前記穴から突出されるように配置
されている。外装チューブ13は、前記押え板12の周
縁、前記容器1の側面及び前記容器1の底部周縁を被覆
している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A nickel-hydrogen secondary battery according to the present invention will be described below with reference to FIG. Bottomed cylindrical container 1
Inside, an electrode group 5 produced by stacking the positive electrode 2, the separator 3, and the negative electrode 4 and spirally winding them is accommodated. The negative electrode 4 is arranged at the outermost periphery of the electrode group 5 and is in electrical contact with the container 1. The alkaline electrolyte is contained in the container 1. Hole 6 in the center
The first sealing plate 7 having a circular shape is disposed at the upper opening of the container 1. Ring-shaped insulating gasket 8
Is disposed between the peripheral edge of the sealing plate 7 and the inner surface of the upper opening of the container 1, and the sealing plate 7 is connected to the container 1 through the gasket 8 by caulking to reduce the diameter of the upper opening inward. And airtightly fixed. One end of the positive electrode lead 9 is connected to the positive electrode 2, and the other end is connected to the lower surface of the sealing plate 7. The positive electrode terminal 10 having a hat shape is attached on the sealing plate 7 so as to cover the hole 6.
The safety valve 11 made of rubber includes the sealing plate 7 and the positive electrode terminal 1.
It is arranged so as to close the hole 6 in a space surrounded by 0. A circular holding plate 12 made of an insulating material having a hole in the center is arranged on the positive electrode terminal 10 such that a projection of the positive electrode terminal 10 projects from the hole of the holding plate 12. The outer tube 13 covers the periphery of the holding plate 12, the side surface of the container 1, and the periphery of the bottom of the container 1.

【0011】次に、前記正極2、負極4、セパレータ3
および電解液について説明する。 1)正極2 この正極2は、水酸化ニッケル粉末、導電剤、結着剤お
よび水を含むペーストを調製し、前記ペーストを導電性
基板に充填し、これを乾燥、加圧成形した後、所望のサ
イズに切断することにより作製される。
Next, the positive electrode 2, the negative electrode 4, the separator 3
And the electrolyte will be described. 1) Positive electrode 2 This positive electrode 2 is prepared by preparing a paste containing nickel hydroxide powder, a conductive agent, a binder, and water, filling the paste into a conductive substrate, drying and pressing the paste, It is produced by cutting to the size of.

【0012】前記水酸化ニッケル粉末としては、例えば
単一の水酸化ニッケル粉末、または亜鉛および/または
コバルトが金属ニッケルと共沈された水酸化ニッケル粉
末を用いることができる。後者の水酸化ニッケル粉末を
含む正極は、高温状態における充電効率およびサイクル
特性を向上させることが可能になる。
As the nickel hydroxide powder, for example, a single nickel hydroxide powder or a nickel hydroxide powder in which zinc and / or cobalt are coprecipitated with metallic nickel can be used. The latter positive electrode containing nickel hydroxide powder can improve charging efficiency and cycle characteristics in a high temperature state.

【0013】前記導電剤としては、例えば一酸化コバル
ト、三酸化二コバルト、水酸化コバルト等のコバルト化
合物を挙げることができる。前記結着剤としては、例え
ばポリテトラフルオロエチレン、カルボキシメチルセル
ロース、メチルセルロース、ポリアクリル酸ナトリウ
ム、ポリビニルアルコールを挙げることができる。
Examples of the conductive agent include cobalt compounds such as cobalt monoxide, dicobalt trioxide and cobalt hydroxide. Examples of the binder include polytetrafluoroethylene, carboxymethyl cellulose, methyl cellulose, sodium polyacrylate, and polyvinyl alcohol.

【0014】前記導電性基板は、図2に示すように金属
粉末を粉末圧延法により成形し、焼成することにより得
られた多数の矩形孔21を有する厚さ60μm以下の二
次元基板22と、この二次元基板22の両面にそれぞれ
積層された三次元基板231、232 とからなる構造を
有するものが用いられる。
As shown in FIG. 2, the conductive substrate is a two-dimensional substrate 22 having a thickness of 60 μm or less and having a large number of rectangular holes 21 obtained by molding a metal powder by a powder rolling method and firing the same. those having both surfaces each comprise stacked three-dimensional substrate 23 1, 23 2 which the structure of the two-dimensional substrate 22 is used.

【0015】前記二次元基板22は、例えばニッケルか
ら作られる。二次元基板の厚さが60μmを越えると、
導電性基板に占める二次元基板の体積が増大してペース
トの充填の率が低下し、結果的には前記導電性基板を有
するペースト式正極の容量を向上させることが困難にな
る。より好ましい前記二次元基板の厚さは、10〜50
μmである。
The two-dimensional substrate 22 is made of, for example, nickel. When the thickness of the two-dimensional substrate exceeds 60 μm,
The volume of the two-dimensional substrate occupying the conductive substrate increases, and the filling rate of the paste decreases, and as a result, it becomes difficult to improve the capacity of the paste-type positive electrode having the conductive substrate. More preferably, the thickness of the two-dimensional substrate is 10 to 50.
μm.

【0016】前記二次元基板22の開口率は、30〜8
0%にすることが好ましい。前記二次元基板22の孔2
1は、矩形状に限らず、円形状、楕円状等任意である。
The aperture ratio of the two-dimensional substrate 22 is 30 to 8
Preferably, it is 0%. Hole 2 of the two-dimensional substrate 22
1 is not limited to a rectangular shape but may be any shape such as a circular shape and an elliptical shape.

【0017】前記三次元基板231 、232 は、それぞ
れ例えばスポンジ状ニッケル多孔体からなる。これら三
次元基板は、厚さが0.7〜1.1mmにすることが好
ましい。また、前記各三次元基板は空隙率が90%以
上、目付量が50g/m2 〜300g/m2 であること
が好ましい。前記三次元基板の空隙率を90%未満にす
ると、ペーストの充填量が著しく低下する恐れがある。
また、前記三次元基板の目付量を50g/m2 未満にす
ると、導電性基板の機械的強度が低下するばかりか、電
気抵抗が増大する恐れがある。一方、前記三次元基板の
目付量が300g/m2 を越えると、ペーストの充填量
が低下する恐れがある。
The three-dimensional substrates 23 1 and 23 2 are each made of, for example, a sponge-like nickel porous body. These three-dimensional substrates preferably have a thickness of 0.7 to 1.1 mm. Further, the respective three-dimensional substrate porosity of 90% or more, and a basis weight is 50g / m 2 ~300g / m 2 . If the porosity of the three-dimensional substrate is less than 90%, the filling amount of the paste may be significantly reduced.
If the basis weight of the three-dimensional substrate is less than 50 g / m 2 , not only the mechanical strength of the conductive substrate decreases, but also the electrical resistance may increase. On the other hand, if the basis weight of the three-dimensional substrate exceeds 300 g / m 2 , the filling amount of the paste may decrease.

【0018】上述した導電性基板は、例えば次のような
方法により作製される。 (第1工程)まず、ニッケル粉末のような金属粉末をホ
ッパから剛性の高い材料からなるベルトコンベア上に供
給し、前記ベルトコンベアの搬送方向に配置したドクタ
ブレードを通過させて前記ベルトコンベア上に所望の厚
さの金属粉末層を形成する。つづいて、前記ベルトコン
ベアを挟んで上部側に配置した多数の突起を有するエン
ボスロールと下部側に配置した相手ロールとにより前記
ベルトコンベア上の金属粉末層を所望の圧力で加圧して
前記エンボスに対応する箇所に孔が多数開口された圧粉
シートを作製する。この工程において、圧粉シートへの
貫通孔の開口が十分になされない場合には、金属粉末に
水と共に界面活性剤を加えて流動性の高いスラリーを用
いたり、前記エンボスロールのエンボス形状を変えたり
する措置を採用すればよい。ひきつづき、前記圧粉シー
トを前記ベルトコンベアと共に焼成炉に搬送し、ここで
前記圧粉シートを焼結することにより多数の孔が開口さ
れた厚さ60μm以下の焼結金属シート、つまり二次元
基板を作製する。
The above-described conductive substrate is manufactured, for example, by the following method. (First step) First, a metal powder such as nickel powder is supplied from a hopper onto a belt conveyor made of a material having high rigidity, and passed through a doctor blade arranged in a conveying direction of the belt conveyor, onto the belt conveyor. A metal powder layer having a desired thickness is formed. Subsequently, the metal powder layer on the belt conveyor is pressed at a desired pressure by an embossing roll having a large number of projections arranged on the upper side with the mating roll arranged on the lower side with the belt conveyor interposed therebetween, and the embossing roll is pressed onto the embossing. A dust sheet having a large number of holes opened at corresponding locations is produced. In this step, if the opening of the through hole to the dust sheet is not sufficiently made, a surfactant having high fluidity by adding a surfactant together with water to the metal powder is used, or the embossed shape of the embossing roll is changed. Or other measures may be adopted. Subsequently, the compacted sheet is conveyed together with the belt conveyor to a firing furnace, where the compacted sheet is sintered to form a sintered metal sheet having a thickness of 60 μm or less, in which a large number of holes are opened, that is, a two-dimensional substrate. Is prepared.

【0019】前記金属粉末は、平均粒径が2μm以下で
あることが好ましい。 (第2工程)前記二次元基板の両面に発泡樹脂シートを
接着剤を用いて貼着する。つづいて、前記発泡樹脂シー
トに金属粉末、例えばニッケル粉末と結合剤を含むニッ
ケル粉末含有溶液を塗布、浸漬させた後、焼成して前記
発泡樹脂、接着剤およびバインダを熱分解、除去する。
ひきつづき、前記二次元基板の両面に形成された発泡性
ニッケル薄膜を還元性雰囲気中で焼結することにより前
記二次元基板の両面にニッケルからなる三次元基板を一
体的に形成された導電性基板を製造する。なお、前記発
泡性ニッケル薄膜の焼結において、表面に酸化物が形成
される場合には前記酸化物の除去処理を行う。
Preferably, the metal powder has an average particle size of 2 μm or less. (Second step) A foamed resin sheet is attached to both surfaces of the two-dimensional substrate using an adhesive. Subsequently, a metal powder, for example, a nickel powder-containing solution containing a nickel powder and a binder is applied to the foamed resin sheet, immersed, and baked to thermally decompose and remove the foamed resin, the adhesive and the binder.
Subsequently, a conductive substrate in which a three-dimensional substrate made of nickel is integrally formed on both surfaces of the two-dimensional substrate by sintering a foamable nickel thin film formed on both surfaces of the two-dimensional substrate in a reducing atmosphere. To manufacture. In the sintering of the foamable nickel thin film, if an oxide is formed on the surface, the oxide is removed.

【0020】なお、前記負極の導電性基板として前述し
た二次元基板の両面に三次元基板を積層した構造(例え
ば図2に示す構造)のものを用いた場合には、正極の導
電性基板としてエキスパンデッドメタル、穿孔鋼板など
の二次元基板や、ビビリ切削振動による繊維状金属多孔
体(非メッキタイプ)、メッキタイプであるスポンジ状
金属多孔体やフェルト状金属多孔体などの三次元基板を
用いることを許容する。
In the case where a three-dimensional substrate is laminated on both sides of the two-dimensional substrate described above (for example, the structure shown in FIG. 2) as the negative electrode conductive substrate, the positive electrode conductive substrate is used as the negative electrode conductive substrate. For two-dimensional substrates such as expanded metal and perforated steel plates, three-dimensional substrates such as fibrous metal porous material (non-plated type), sponge-like metal porous material and felt-like metal porous material by plating vibration. Allow to use.

【0021】2)負極4 この負極4は、水素吸蔵合金粉末、導電材、結着剤およ
び水と共に混練してペーストを調製し、前記ペーストを
導電性基板に充填し、乾燥した後、成形することにより
製造される。
2) Negative electrode 4 This negative electrode 4 is kneaded with a hydrogen storage alloy powder, a conductive material, a binder and water to prepare a paste, and the paste is filled in a conductive substrate, dried, and then molded. It is manufactured by

【0022】前記水素吸蔵合金は、格別制限されるもの
ではなく、電解液中で電気化学的に発生させた水素を吸
蔵でき、かつ放電時にその吸蔵水素を容易に放出できる
ものであればよい。例えば、LaNi5 、MmNi5
(Mmはミッシュメタル)、LmNi5 (LmはLaを
含む希土類元素から選ばれる少なくとも一種)、これら
合金のNiの一部をAl、Mn、Co、Ti、Cu、Z
n、Zr、Cr、Bのような元素で置換した多元素系の
もの、またはTiNi系、TiFe系のものを挙げるこ
とができる。特に、一般式LmNiw Cox Mny Al
z (原子比w,x,y,zの合計値は5.00≦w+x
+y+z≦5.50である)で表される組成の水素吸蔵
合金は充放電サイクルの進行に伴う微粉化を抑制して充
放電サイクル寿命を向上できるための好適である。
The hydrogen storage alloy is not particularly limited, as long as it can store hydrogen electrochemically generated in an electrolytic solution and can easily release the stored hydrogen during discharge. For example, LaNi 5 , MmNi 5
(At least one is Lm selected from rare earth elements including La) (Mm is misch metal), LmNi 5, a part of Ni of alloy Al, Mn, Co, Ti, Cu, Z
Examples thereof include a multi-element-based material substituted with an element such as n, Zr, Cr, and B, or a TiNi-based or TiFe-based material. In particular, the general formula LmNi w Co x Mn y Al
z (the total value of the atomic ratios w, x, y and z is 5.00 ≦ w + x
+ Y + z ≦ 5.50) is suitable for suppressing the pulverization accompanying the progress of the charge / discharge cycle and improving the charge / discharge cycle life.

【0023】前記導電材としては、例えばカーボンブラ
ック、黒鉛等を挙げることができる。前記結着剤として
は、例えばポリアクリル酸ソーダ、ポリアクリル酸カリ
ウムなどのポリアクリル酸塩、ポリテトラフルオロエチ
レン(PTFE)などのフッ素系樹脂、またはカルボキ
シメチルセルロース(CMC)等を挙げることができ
る。
Examples of the conductive material include carbon black and graphite. Examples of the binder include polyacrylates such as sodium polyacrylate and potassium polyacrylate, fluorine-based resins such as polytetrafluoroethylene (PTFE), and carboxymethyl cellulose (CMC).

【0024】前記導電性基板としては、前記正極で説明
したものと同様な二次元基板の両面に三次元基板を積層
した、例えば図2に示す構造のものが使用される。な
お、前記正極の導電性基板として前述した二次元基板の
両面に三次元基板とを積層した構造(例えば図2に示す
構造)のものを用いた場合には、負極の導電性基板とし
てエキスパンデッドメタル、穿孔鋼板などの二次元基板
や、ビビリ切削振動による繊維状金属多孔体(非メッキ
タイプ)、メッキタイプであるスポンジ状金属多孔体や
フェルト状金属多孔体などの三次元基板を用いることを
許容する。
As the conductive substrate, a two-dimensional substrate similar to that described for the positive electrode, in which a three-dimensional substrate is laminated on both surfaces, for example, having a structure shown in FIG. 2 is used. When a three-dimensional substrate is laminated on both sides of the two-dimensional substrate described above (for example, the structure shown in FIG. 2) as the conductive substrate for the positive electrode, an expandable conductive substrate for the negative electrode is used. Use a two-dimensional substrate such as dead metal or perforated steel plate, a fibrous metal porous body (non-plated type) due to chatter cutting vibration, or a three-dimensional substrate such as a plated sponge-like metal porous body or felt-like metal porous body. Tolerate.

【0025】3)セパレータ3 このセパレータ3としては、例えば、ポリアミド繊維製
不織布、ポリエチレンやポリプロピレンなどのポリオレ
フィン繊維製不織布に親水性官能基を付与したものを挙
げることができる。
3) Separator 3 Examples of the separator 3 include a nonwoven fabric made of a polyamide fiber and a nonwoven fabric made of a polyolefin fiber such as polyethylene or polypropylene provided with a hydrophilic functional group.

【0026】4)アルカリ電解液 このアルカリ電解液は、水酸化カリウム(KOH)単
独、またはこれに水酸化ナトリウム(NaOH)および
水酸化リチウム(LiOH)のいずれか一方または両者
を添加した組成を有する。
4) Alkaline Electrolyte The alkaline electrolyte has a composition in which potassium hydroxide (KOH) is used alone, or one or both of sodium hydroxide (NaOH) and lithium hydroxide (LiOH) are added thereto. .

【0027】以上説明した本発明に係わるニッケル−水
素二次電池によれば、ペースト式正極およびペースト式
負極のいずれか一方または両者を構成する導電性基板は
例えば図2に示すように金属粉末を粉末圧延法により成
形し、焼成することにより得られた多数の矩形孔21を
有する厚さ60μm以下の二次元基板22と、この二次
元基板22の両面にそれぞれ積層された三次元基板23
1 、232 とからなる構造を有する。
According to the above-described nickel-hydrogen secondary battery according to the present invention, the conductive substrate constituting one or both of the paste-type positive electrode and the paste-type negative electrode is made of, for example, a metal powder as shown in FIG. A two-dimensional substrate 22 having a large number of rectangular holes 21 and having a thickness of 60 μm or less, obtained by molding and firing by a powder rolling method, and a three-dimensional substrate 23 laminated on both surfaces of the two-dimensional substrate 22, respectively.
Having a structure comprising one, 23 2.

【0028】このような導電性基板は、中心に配置され
た二次元基板が電気抵抗の低減および引張り強度の向上
を担うため、ペースト充填密度を高める目的で前記二次
元基板の両面に積層される三次元基板の目付量を低くす
る、つまり空隙率を高くして低抵抗化と高強度化が維持
される。例えば、多数の孔を有する厚さ30μmの二次
元基板の両面にスポンジ状金属多孔体からなる三次元基
板を積層した導電性基板(本発明)と、スポンジ状金属
多孔体のみからなる導電性基板(従来例)とにおける目
付量と電気抵抗の関係を図3に、目付量と引張り強度と
の関係を図4にそれぞれ示す。なお、本発明の導電性基
板における目付量は三次元基板のみならず、二次元基板
の開口部も合算され、異なる三次元基板を用いて目付量
を変化させた。これらの図3、図4から本発明の導電性
基板は従来のスポンジ状金属多孔体のみからなる導電性
基板に比べて低い目付量で低抵抗、高い引張り強度を有
することがわかる。
Such a conductive substrate is laminated on both surfaces of the two-dimensional substrate for the purpose of increasing the paste filling density, since the two-dimensional substrate disposed at the center is responsible for reducing the electric resistance and improving the tensile strength. The weight per unit area of the three-dimensional substrate is reduced, that is, the porosity is increased to maintain low resistance and high strength. For example, a conductive substrate (the present invention) in which a three-dimensional substrate made of a sponge-like metal porous body is laminated on both sides of a two-dimensional substrate having a thickness of 30 μm having many holes, and a conductive substrate made of only a sponge-like metal porous body FIG. 3 shows the relationship between the weight per unit area and the electric resistance of the conventional example, and FIG. 4 shows the relationship between the weight per unit area and the tensile strength. The weight per unit area of the conductive substrate of the present invention was calculated not only for the three-dimensional substrate but also for the opening of the two-dimensional substrate, and the weight per unit area was changed using a different three-dimensional substrate. From FIGS. 3 and 4, it can be seen that the conductive substrate of the present invention has a lower basis weight, a lower resistance, and a higher tensile strength than the conventional conductive substrate consisting of only a sponge-like porous metal body.

【0029】このような二次元基板の両面に三次元基板
を積層した構造の導電性基板に正負極いずれかのペース
トを充填することによって、高集電効率でペースト充填
密度の高い、つまり高容量のペースト式正極および/ま
たはペースト式負極を得ることができる。
By filling a conductive substrate having a structure in which a three-dimensional substrate is laminated on both sides of such a two-dimensional substrate with either a positive electrode or a negative electrode, a high current collecting efficiency and a high paste filling density, that is, a high capacity can be obtained. Can be obtained.

【0030】したがって、前述した高容量のペースト式
正極および/またはペースト式負極を備えたニッケル−
水素二次電池は充放電サイクル寿命が向上される。さら
に、スポンジ状ニッケル多孔体のような三次元基板の中
心に配置される多数の孔を有する二次元基板の厚さ60
μm以下にすることによって、柔軟性に富む導電性基板
を得ることができる。その結果、前記導電性基板を有す
るペースト式電極を少なくとも正極および負極として用
い、セパレータを間に挟んで渦巻状に巻回することによ
って空隙率の低い電極群を作製できるため、有底円筒形
容器内に高容量の前記電極群を収納することができる。
したがって、高容量かつ充放電サイクル寿命の長いニッ
ケル−水素二次電池を得ることができる。
Accordingly, the nickel-containing paste-type positive electrode and / or the paste-type negative electrode having the above-mentioned high capacity can be used.
The charge / discharge cycle life of the hydrogen secondary battery is improved. Further, the thickness 60 of a two-dimensional substrate having a large number of holes disposed at the center of a three-dimensional substrate such as a sponge-like nickel porous body is used.
By setting the thickness to not more than μm, a conductive substrate having high flexibility can be obtained. As a result, an electrode group having a low porosity can be produced by using the paste-type electrode having the conductive substrate as at least a positive electrode and a negative electrode, and spirally winding the separator with the separator interposed therebetween. The high-capacity electrode group can be accommodated therein.
Therefore, a nickel-hydrogen secondary battery having a high capacity and a long charge-discharge cycle life can be obtained.

【0031】[0031]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。 <ペースト式正極Aの作製>まず、平均粒径0.5μm
のニッケル粉末をホッパから剛性の高い材料からなるベ
ルトコンベア上に供給し、前記ベルトコンベアの搬送方
向に配置したドクタブレードを通過させて前記ベルトコ
ンベア上に所望の厚さのニッケル粉末層を形成した。つ
づいて、前記ベルトコンベアを挟んで上部側に配置した
多数の突起を有するエンボスロールと下部側に配置した
相手ロールとにより前記ベルトコンベア上の金属粉末層
を所望の圧力で加圧して前記エンボスに対応する箇所に
孔が多数開口された圧粉シートを作製した。ひきつづ
き、前記圧粉シートを前記ベルトコンベアと共に焼成炉
に搬送し、ここで前記圧粉シートをアルゴンガス雰囲気
中、1000℃で焼結することにより多数の孔が開口さ
れた焼結ニッケルシート、つまり二次元基板を得た。こ
の二次元基板は、厚さが30μm、矩形孔の寸法が2×
2mmで、開口率が60%であった。
Embodiments of the present invention will be described below in detail with reference to the drawings. <Preparation of Paste-Type Positive Electrode A> First, the average particle size was 0.5 μm.
The nickel powder was supplied from a hopper onto a belt conveyor made of a material having high rigidity, and passed through a doctor blade arranged in the conveying direction of the belt conveyor to form a nickel powder layer having a desired thickness on the belt conveyor. . Subsequently, the metal powder layer on the belt conveyor is pressed at a desired pressure by an embossing roll having a large number of projections arranged on the upper side with the mating roll arranged on the lower side with the belt conveyor interposed therebetween, and the embossing roll is pressed onto the embossing. A dust sheet having a large number of holes opened at corresponding locations was prepared. Subsequently, the compacted sheet is conveyed to a firing furnace together with the belt conveyor, and the compacted sheet is sintered in an argon gas atmosphere at 1000 ° C. to form a sintered nickel sheet having a large number of holes, that is, A two-dimensional substrate was obtained. This two-dimensional substrate has a thickness of 30 μm and a rectangular hole size of 2 ×
At 2 mm, the aperture ratio was 60%.

【0032】次いで、前記二次元基板の両面に厚さ約
0.8mmのウレタン発泡樹脂シートを接着剤を用いて
貼着した。つづいて、前記二次元基板両面のウレタン発
泡樹脂シートを一対のロールで圧縮しながら、ニッケル
粉末と結合剤を含むニッケル粉末含有溶液を塗布、含浸
させた後、余分のニッケル粉末含有溶液を前記ウレタン
発泡樹脂シートから除去し、さらに還元性雰囲気に焼成
炉内で焼成して前記ウレタン発泡樹脂、接着剤およびバ
インダを熱分解、除去した。ひきつづき、前記二次元基
板の両面に形成された発泡性ニッケル薄膜を還元性雰囲
気中で焼結することにより前記二次元基板の両面にニッ
ケルからなる三次元基板を一体的に形成された導電性基
板を作製した。前記各三次元基板は、厚さが0.8m
m、空隙率が98%、目付量が100g/m2 であっ
た。
Next, a urethane foam resin sheet having a thickness of about 0.8 mm was attached to both surfaces of the two-dimensional substrate using an adhesive. Subsequently, while compressing the urethane foamed resin sheets on both surfaces of the two-dimensional substrate with a pair of rolls, applying and impregnating a nickel powder-containing solution containing a nickel powder and a binder, an excess nickel powder-containing solution is added to the urethane foam. The urethane foam resin, the adhesive and the binder were thermally decomposed and removed by firing in a firing furnace in a reducing atmosphere after removing from the foamed resin sheet. Subsequently, a conductive substrate in which a three-dimensional substrate made of nickel is integrally formed on both surfaces of the two-dimensional substrate by sintering a foamable nickel thin film formed on both surfaces of the two-dimensional substrate in a reducing atmosphere. Was prepared. Each of the three-dimensional substrates has a thickness of 0.8 m.
m, the porosity was 98%, and the basis weight was 100 g / m 2 .

【0033】また、水酸化ニッケル粉末90重量部およ
び一酸化コバルト粉末10重量部からなる混合粉体に、
前記水酸化ニッケル粉末に対してカルボキシメチルセル
ロース0.5重量部、ポリテトラフルオロエチレンの懸
濁液(比重1.5,固形分60重量%)を固形分換算で
3.0重量部添加し、これらに純水を45重量部添加し
て混練することによりペーストを調製した。つづいて、
このペーストを前記導電性基板内に充填した後、乾燥
し、ローラプレスを行って圧延して厚さが0.7mmの
ペースト式正極を作製した。
A mixed powder consisting of 90 parts by weight of nickel hydroxide powder and 10 parts by weight of cobalt monoxide powder is
To the nickel hydroxide powder, 0.5 part by weight of carboxymethylcellulose and 3.0 parts by weight of a suspension of polytetrafluoroethylene (specific gravity 1.5, solid content 60% by weight) in terms of solid content were added. Was mixed with 45 parts by weight of pure water to prepare a paste. Then,
After filling the paste into the conductive substrate, the paste was dried and rolled by roller pressing to prepare a paste-type positive electrode having a thickness of 0.7 mm.

【0034】<ペースト式正極Bの作製>目付量300
g/m2 、厚さ1.7mmのスポンジ状ニッケル多孔体
からなる導電性基板に前記正極Aで用いたのと同様なペ
ーストを充填した後、乾燥し、ローラプレスを行って圧
延して厚さが0.7mmのペースト式正極を作製した。
<Preparation of Paste-Type Positive Electrode B> Weight 300
g / m 2, after filling the same paste as that used in a thickness 1.7mm spongy nickel consists porous conductive substrate to said positive electrode A, dried and the thickness and rolling performed roller press A paste-type positive electrode having a thickness of 0.7 mm was produced.

【0035】<ペースト式負極Aの作製>市販のランタ
ン富化したミッシュメタルLmおよびNi、Co、M
n、Alを用いて高周波炉によって、LmNi4.0 Co
0.4 Mn0.3 Al0.3 の組成からなる水素吸蔵合金を作
製した。前記水素吸蔵合金を機械粉砕し、これを200
メッシュのふるいを通過させた。得られた合金粉末10
0重量部に対してポリアクリル酸ナトリウム0.5重量
部、カルボキシメチルセルロース(CMC)0.125
重量部、ポリテトラフルオロエチレンのディスパージョ
ン(比重1.5,固形分60wt%)を固形分換算で
1.5重量部および導電材としてカーボン粉末1.0重
量部を水50重量部と共に混合することによって、ペー
ストを調製した。このペーストを前記正極Aで用いたの
と同様な導電性基板(二次元基板の両面に三次元基板を
それぞれ積層した構造)に塗布、充填した後、乾燥し、
加圧成形することによって厚さ0.4mmのペースト式
負極を作製した。
<Preparation of Paste Type Negative Electrode A> Commercially available lanthanum-enriched misch metal Lm and Ni, Co, M
n, Al and LmNi 4.0 Co
A hydrogen storage alloy having a composition of 0.4 Mn 0.3 Al 0.3 was produced. The hydrogen storage alloy is mechanically pulverized and
Passed through a mesh sieve. The obtained alloy powder 10
0.5 parts by weight of sodium polyacrylate and 0.125 of carboxymethyl cellulose (CMC) per 0 parts by weight
Parts by weight, 1.5 parts by weight of a polytetrafluoroethylene dispersion (specific gravity 1.5, solid content 60 wt%) in terms of solids and 1.0 part by weight of carbon powder as a conductive material are mixed with 50 parts by weight of water. Thus, a paste was prepared. This paste is applied and filled on the same conductive substrate as that used for the positive electrode A (a structure in which a three-dimensional substrate is laminated on both surfaces of a two-dimensional substrate), and then dried,
A paste-type negative electrode having a thickness of 0.4 mm was produced by pressure molding.

【0036】<ペースト式負極Bの作製>孔径2μm、
開口率55%、厚さ80μmのパンチングニッケルシー
トからなる導電性基板に前記負極Aで用いたのと同様な
ペーストを充填した後、乾燥し、加圧成形することによ
って厚さ0.4mmのペースト式負極を作製した。
<Preparation of Paste-Type Negative Electrode B>
A conductive substrate made of a punched nickel sheet having an aperture ratio of 55% and a thickness of 80 μm is filled with a paste similar to that used for the negative electrode A, dried, and pressed to form a paste having a thickness of 0.4 mm. A formula negative electrode was produced.

【0037】(実施例1)前述した方法で作製したペー
スト式正極Aとペースト式負極Aの間に親水性処理が施
されたポリオレフィン繊維製不織布からなるセパレータ
を介装し、渦巻状に捲回して電極群を作製した。このよ
うな電極群と7NのKOHおよび1NのLiOHからな
る電解液を有底円筒状容器に収納して前述した図1に示
す構造を有する理論容量が1200mAhのAA型の円
筒形ニッケル水素二次電池を組み立てた。
(Example 1) A separator made of a nonwoven fabric made of polyolefin fiber subjected to hydrophilic treatment was interposed between the paste-type positive electrode A and the paste-type negative electrode A produced by the above-described method, and spirally wound. To form an electrode group. Such an electrode group and an electrolytic solution composed of 7N KOH and 1N LiOH are housed in a bottomed cylindrical container, and the AA-type cylindrical nickel-hydrogen secondary battery having a theoretical capacity of 1200 mAh and having a structure shown in FIG. The battery was assembled.

【0038】(実施例2)前述した方法で作製したペー
スト式正極Aとペースト式負極Bの間に親水性処理が施
されたポリオレフィン繊維製不織布からなるセパレータ
を介装し、渦巻状に捲回して電極群を作製した。このよ
うな電極群と7NのKOHおよび1NのLiOHからな
る電解液を有底円筒状容器に収納して前述した図1に示
す構造を有する理論容量が1200mAhのAA型の円
筒形ニッケル水素二次電池を組み立てた。
(Example 2) A separator made of a nonwoven fabric made of a polyolefin fiber subjected to hydrophilic treatment was interposed between the paste-type positive electrode A and the paste-type negative electrode B produced by the above-described method, and spirally wound. To form an electrode group. Such an electrode group and an electrolytic solution composed of 7N KOH and 1N LiOH are housed in a bottomed cylindrical container, and the AA-type cylindrical nickel-hydrogen secondary battery having a theoretical capacity of 1200 mAh and having a structure shown in FIG. The battery was assembled.

【0039】(実施例3)前述した方法で作製したペー
スト式正極Bとペースト式負極Aの間に親水性処理が施
されたポリオレフィン繊維製不織布からなるセパレータ
を介装し、渦巻状に捲回して電極群を作製した。このよ
うな電極群と7NのKOHおよび1NのLiOHからな
る電解液を有底円筒状容器に収納して前述した図1に示
す構造を有する理論容量が1200mAhのAA型の円
筒形ニッケル水素二次電池を組み立てた。
(Example 3) A separator made of a nonwoven fabric made of polyolefin fiber subjected to hydrophilic treatment was interposed between the paste-type positive electrode B and the paste-type negative electrode A produced by the above-described method, and spirally wound. To form an electrode group. Such an electrode group and an electrolytic solution composed of 7N KOH and 1N LiOH are housed in a bottomed cylindrical container, and the AA-type cylindrical nickel-hydrogen secondary battery having a theoretical capacity of 1200 mAh and having a structure shown in FIG. The battery was assembled.

【0040】(比較例1)前述した方法で作製したペー
スト式正極Bとペースト式負極Bの間に親水性処理が施
されたポリオレフィン繊維製不織布からなるセパレータ
を介装し、渦巻状に捲回して電極群を作製した。このよ
うな電極群と7NのKOHおよび1NのLiOHからな
る電解液を有底円筒状容器に収納して前述した図1に示
す構造を有する理論容量が1200mAhのAA型の円
筒形ニッケル水素二次電池を組み立てた。
(Comparative Example 1) A separator made of a nonwoven fabric made of polyolefin fiber subjected to hydrophilic treatment was interposed between the paste-type positive electrode B and the paste-type negative electrode B produced by the above-described method, and spirally wound. To form an electrode group. Such an electrode group and an electrolytic solution composed of 7N KOH and 1N LiOH are housed in a bottomed cylindrical container, and the AA-type cylindrical nickel-hydrogen secondary battery having a theoretical capacity of 1200 mAh and having a structure shown in FIG. The battery was assembled.

【0041】(比較例2)まず、厚さ80μmのニッケ
ルシートをパンチング装置によりパンチングすることに
より孔径が2mm、開口率が55%の二次元基板として
のパンチングニッケルシートを作製した。このパンチン
グニッケルシートの両面に厚さ約0.8mmのウレタン
発泡樹脂シートを接着剤を用いて貼着した。つづいて、
前記二次元基板両面のウレタン発泡樹脂シートを一対の
ロールで圧縮しながら、ニッケル粉末と結合剤を含むニ
ッケル粉末含有溶液を塗布、含浸させた後、余分のニッ
ケル粉末含有溶液を前記ウレタン発泡樹脂シートから除
去し、さらに還元性雰囲気に焼成炉内で焼成して前記ウ
レタン発泡樹脂、接着剤およびバインダを熱分解、除去
した。ひきつづき、前記二次元基板の両面に形成された
発泡性ニッケル薄膜を還元性雰囲気中で焼結することに
より前記二次元基板の両面にニッケルからなる三次元基
板を一体的に形成された導電性基板を作製した。前記各
三次元基板は、厚さが0.8mm、空隙率98%、目付
量が100g/m2 であった。
Comparative Example 2 First, a punched nickel sheet as a two-dimensional substrate having a hole diameter of 2 mm and an aperture ratio of 55% was prepared by punching a nickel sheet having a thickness of 80 μm by a punching apparatus. A urethane foam resin sheet having a thickness of about 0.8 mm was attached to both sides of the punched nickel sheet using an adhesive. Then,
While compressing the urethane foam resin sheet on both surfaces of the two-dimensional substrate with a pair of rolls, applying and impregnating a nickel powder-containing solution containing nickel powder and a binder, an excess nickel powder-containing solution is applied to the urethane foam resin sheet. , And fired in a firing furnace in a reducing atmosphere to thermally decompose and remove the urethane foam resin, adhesive and binder. Subsequently, a conductive substrate in which a three-dimensional substrate made of nickel is integrally formed on both surfaces of the two-dimensional substrate by sintering a foamable nickel thin film formed on both surfaces of the two-dimensional substrate in a reducing atmosphere. Was prepared. Each of the three-dimensional substrates had a thickness of 0.8 mm, a porosity of 98%, and a basis weight of 100 g / m 2 .

【0042】次いで、前記導電性基板内に前述した正極
Aで用いたのと同様なペーストを充填した後、乾燥し、
ローラプレスを行って圧延して厚さが0.7mmのペー
スト式正極を作製した。
Next, the conductive substrate is filled with the same paste as that used for the positive electrode A, and then dried.
Rolling was performed by roller pressing to prepare a paste-type positive electrode having a thickness of 0.7 mm.

【0043】また、前記導電性基板に前述した負極Aで
用いたのと同様なペーストを塗布、充填した後、乾燥
し、加圧成形することによって厚さ0.4mmのペース
ト式負極を作製した。
A paste type negative electrode having a thickness of 0.4 mm was prepared by applying and filling the same paste as used for the above-mentioned negative electrode A to the conductive substrate, followed by drying and pressure molding. .

【0044】次いで、前述した方法で作製したペースト
式の正極と負極の間に親水性処理が施されたポリオレフ
ィン繊維製不織布からなるセパレータを介装し、渦巻状
に捲回して電極群を作製した。このような電極群と7N
のKOHおよび1NのLiOHからなる電解液を有底円
筒状容器に収納して前述した図1に示す構造を有する理
論容量が1200mAhのAA型の円筒形ニッケル水素
二次電池を組み立てた。
Next, a separator made of a nonwoven fabric made of polyolefin fiber subjected to hydrophilic treatment was interposed between the paste-type positive electrode and the negative electrode prepared by the above-described method, and spirally wound to form an electrode group. . Such an electrode group and 7N
The electrolytic solution comprising KOH and 1N LiOH was stored in a cylindrical container having a bottom, and an AA-type cylindrical nickel-metal hydride secondary battery having a structure of FIG. 1 having a theoretical capacity of 1200 mAh was assembled.

【0045】得られた実施例1〜3および比較例1、2
のニッケル水素二次電池について、1C、−ΔVで充電
し、1C、1Vカットで放電する充放電を繰り返し行っ
た。各二次電池における充放電サイクル数と放電電圧と
の関係を図5に、充放電サイクル数と正極の利用率との
関係を図6に、それぞれ示す。
The obtained Examples 1 to 3 and Comparative Examples 1 and 2
Was repeatedly charged and discharged at 1 C and −ΔV and discharged at 1 C and 1 V cut. FIG. 5 shows the relationship between the number of charge / discharge cycles and the discharge voltage in each secondary battery, and FIG. 6 shows the relationship between the number of charge / discharge cycles and the utilization rate of the positive electrode.

【0046】図5から明らかなように実施例1〜3のニ
ッケル水素二次電池は、500回の充放電の繰り返し後
においても負極の導電性基板としてパンチングニッケル
シートを用いた比較例1に比べて高い放電電圧を維持で
きることをわかる。特に、正極および負極の両方の導電
性基板としてニッケル粉末を粉末圧延法により成形し、
焼成することにより得られた多数の孔を有する厚さ60
μm以下の二次元基板と、この二次元基板の両面にそれ
ぞれ積層された三次元基板とからるものを用いた実施例
1の二次電池は、実施例2、3に比べてより高い放電電
圧を維持できることをわかる。
As apparent from FIG. 5, the nickel-metal hydride secondary batteries of Examples 1 to 3 were compared with Comparative Example 1 in which a punched nickel sheet was used as the conductive substrate of the negative electrode even after repeated charging and discharging 500 times. It can be seen that a high discharge voltage can be maintained. In particular, nickel powder was formed by a powder rolling method as a conductive substrate for both the positive electrode and the negative electrode,
Thickness 60 having many holes obtained by firing
The secondary battery of Example 1 using a two-dimensional substrate of μm or less and a three-dimensional substrate laminated on both sides of the two-dimensional substrate has a higher discharge voltage than those of Examples 2 and 3. It can be seen that can be maintained.

【0047】これに対し、厚さ80μmのパンチングニ
ッケルシートを二次元基板として用い、この両面に三次
元基板を積層した構造の導電性基板を有する正極および
負極を備えた比較例2の二次電池は、比較例1の二次電
池に比べて良好な放電電圧維持特性を有するものの、実
施例1〜3の二次電池に比べ劣ることがわかる。これ
は、比較例2の二次電池は正極、負極の導電性基板が芯
材として厚さ80μmで、バリや反りを有するパンチン
グニッケルシートを用いているため、これら正負極およ
びセパレータを渦巻状に巻回して得られた電極群を有底
円筒形容器内に収納する際、電極群の空隙率が高くなる
ことに起因するものと考えられる。また、図6から明ら
かなように実施例1〜3の二次電池は比較例1、2の二
次電池に比べて正極の利用率が向上することがわかる。
On the other hand, the secondary battery of Comparative Example 2 provided with a positive electrode and a negative electrode having a conductive substrate having a structure in which a punched nickel sheet having a thickness of 80 μm was used as a two-dimensional substrate and a three-dimensional substrate was laminated on both sides of the nickel sheet. It can be seen that は has better discharge voltage maintenance characteristics than the secondary battery of Comparative Example 1, but is inferior to the secondary batteries of Examples 1 to 3. This is because the secondary battery of Comparative Example 2 uses a punched nickel sheet having a thickness of 80 μm as a core and a conductive substrate of a positive electrode and a negative electrode as a core material and having burrs and warpages. It is considered that when the wound electrode group is housed in a bottomed cylindrical container, the porosity of the electrode group is increased. In addition, as is apparent from FIG. 6, the secondary batteries of Examples 1 to 3 have higher utilization rates of the positive electrodes than the secondary batteries of Comparative Examples 1 and 2.

【0048】[0048]

【発明の効果】以上詳述したように本発明によれば、基
板単体のペーストの充填密度が実効的に増大され、かつ
低電気抵抗、高引張り強度に対応して高い集電効率を有
するペースト式正極および/またはペースト式負極を備
え、充放電サイクル特性の優れたニッケル−水素二次電
池を提供できる。
As described in detail above, according to the present invention, the paste density of the paste of the substrate alone is effectively increased, and the paste having high current collecting efficiency corresponding to low electric resistance and high tensile strength is obtained. A nickel-hydrogen secondary battery having a positive electrode and / or a paste negative electrode and having excellent charge / discharge cycle characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るニッケル水素二次電池を示す斜視
図。
FIG. 1 is a perspective view showing a nickel-metal hydride secondary battery according to the present invention.

【図2】本発明の係るニッケル水素二次電池のペースト
式正極および/またはペースト式負極に用いられる導電
性基板を示す部分切欠斜視図。
FIG. 2 is a partially cutaway perspective view showing a conductive substrate used for a paste-type positive electrode and / or a paste-type negative electrode of a nickel-metal hydride secondary battery according to the present invention.

【図3】本発明の導電性基板および従来の導電性基板に
おける目付量と電気抵抗との関係を示す特性図。
FIG. 3 is a characteristic diagram showing the relationship between the weight per unit area and the electric resistance of the conductive substrate of the present invention and a conventional conductive substrate.

【図4】本発明の導電性基板および従来の導電性基板に
おける目付量と引張り強度との関係を示す特性図。
FIG. 4 is a characteristic diagram showing a relationship between a basis weight and a tensile strength in the conductive substrate of the present invention and a conventional conductive substrate.

【図5】実施例1〜3および比較例1、2のニッケル水
素二次電池における充放電サイクル数と放電電圧との関
係を示す特性図。
FIG. 5 is a characteristic diagram showing the relationship between the number of charge / discharge cycles and the discharge voltage in the nickel-metal hydride secondary batteries of Examples 1 to 3 and Comparative Examples 1 and 2.

【図6】実施例1〜3および比較例1、2のニッケル水
素二次電池における充放電サイクル数と正極の利用率と
の関係を示す特性図。
FIG. 6 is a characteristic diagram showing the relationship between the number of charge / discharge cycles and the utilization rate of a positive electrode in the nickel-hydrogen secondary batteries of Examples 1 to 3 and Comparative Examples 1 and 2.

【符号の説明】[Explanation of symbols]

1…容器、 2…正極、 3…セパレータ、 4…負極、 7…封口板、 8…絶縁ガスケット、 21…矩形孔、 22…二次元基板、 231 、232 …三次元基板。1 ... container, 2 ... positive electrode, 3 ... Separator, 4 ... negative electrode, 7 ... sealing plate, 8: insulating gasket, 21 ... rectangular hole, 22 ... two-dimensional substrate, 23 1, 23 2 ... three-dimensional substrate.

フロントページの続き (72)発明者 山根 哲哉 東京都品川区南品川3丁目4番10号 東芝 電池株式会社内Continuation of front page (72) Inventor Tetsuya Yamane 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 導電性基板に活物質を含むペーストを充
填したペースト式正極および導電性基板に水素吸蔵合金
を含むペーストを充填したペースト式負極を具備し、 前記正極および負極のいずれか一方または両者の導電性
基板は、金属粉末を粉末圧延法により成形し、焼成する
ことにより得られた多数の孔を有する厚さ60μm以下
の二次元基板と、この二次元基板の両面にそれぞれ積層
された三次元基板とからることを特徴とするニッケル−
水素二次電池。
1. A paste-type positive electrode in which a conductive substrate is filled with a paste containing an active material, and a paste-type negative electrode in which a conductive substrate is filled with a paste containing a hydrogen storage alloy, wherein either one of the positive electrode and the negative electrode or Both conductive substrates were formed by molding a metal powder by a powder rolling method, and a two-dimensional substrate having a thickness of 60 μm or less and having a large number of holes obtained by firing, and laminated on both surfaces of the two-dimensional substrate, respectively. Nickel characterized by being bonded to a three-dimensional substrate
Hydrogen secondary battery.
【請求項2】 前記三次元基板は、スポンジ状金属多孔
体であることを特徴とする請求項1記載のニッケル−水
素二次電池。
2. The nickel-hydrogen secondary battery according to claim 1, wherein the three-dimensional substrate is a sponge-like porous metal body.
JP8154324A 1996-06-14 1996-06-14 Nickel-hydrogen secondary battery Pending JPH103928A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8154324A JPH103928A (en) 1996-06-14 1996-06-14 Nickel-hydrogen secondary battery
US08/874,406 US5965295A (en) 1996-06-14 1997-06-13 Alkaline secondary battery, paste type positive electrode for alkaline secondary battery, method for manufacturing alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8154324A JPH103928A (en) 1996-06-14 1996-06-14 Nickel-hydrogen secondary battery

Publications (1)

Publication Number Publication Date
JPH103928A true JPH103928A (en) 1998-01-06

Family

ID=15581659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8154324A Pending JPH103928A (en) 1996-06-14 1996-06-14 Nickel-hydrogen secondary battery

Country Status (1)

Country Link
JP (1) JPH103928A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343366A (en) * 2001-05-17 2002-11-29 Matsushita Electric Ind Co Ltd Electrode plate for alkaline storage battery and alkaline battery using same
JP2008097997A (en) * 2006-10-12 2008-04-24 Matsushita Electric Ind Co Ltd Electrode plate for alkaline storage battery, and its manufacturing method
JP2010114007A (en) * 2008-11-07 2010-05-20 Panasonic Corp Electrode for alkaline storage battery, and alkaline storage battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343366A (en) * 2001-05-17 2002-11-29 Matsushita Electric Ind Co Ltd Electrode plate for alkaline storage battery and alkaline battery using same
JP2008097997A (en) * 2006-10-12 2008-04-24 Matsushita Electric Ind Co Ltd Electrode plate for alkaline storage battery, and its manufacturing method
JP2010114007A (en) * 2008-11-07 2010-05-20 Panasonic Corp Electrode for alkaline storage battery, and alkaline storage battery

Similar Documents

Publication Publication Date Title
US5585142A (en) Method for preparing conductive electrochemically active material
JP2000090903A (en) Secondary battery
JPH11185767A (en) Manufacture of nickel-hydrogen secondary battery and electrode
JP2002025604A (en) Alkaline secondary battery
JPH103928A (en) Nickel-hydrogen secondary battery
JPH11162468A (en) Alkaline secondary battery
JP3567021B2 (en) Alkaline secondary battery
JP3352338B2 (en) Manufacturing method of alkaline storage battery
JP3094033B2 (en) Nickel hydride rechargeable battery
JP2002100396A (en) Cylindrical alkaline secondary cell
JP2000200612A (en) Rectangular alkaline secondary battery
JP2000299104A (en) Manufacture of nickel hydrogen secondary battery
JPH11265712A (en) Alkaline secondary battery
JP2000113901A (en) Alkaline secondary battery
JP2001006723A (en) Alkaline secondary battery and manufacture of alkaline secondary battery
JP2001307764A (en) Alkaline secondary battery and its production
JP2004031140A (en) Square alkaline secondary battery
JPH11162469A (en) Electrode, alkaline secondary battery, and manufacture of alkaline secondary battery
JP2000268800A (en) Alkaline secondary battery
JP2001068145A (en) Rectangular alkaline secondary battery
JP2001135310A (en) Producing method of paste hydrogen absorption alloy electrode, and producing method of angular alkaline secondary battery
JP2000357510A (en) Manufacture of nickel-hydrogen secondary battery
JPH11297318A (en) Paste filling device, and manufacture of alkaline secondary battery
JPH1186864A (en) Sealed nickel hydrogen secondary battery
JP2000113903A (en) Alkaline secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070313