JPH1032334A - Gate electrode and its forming method - Google Patents

Gate electrode and its forming method

Info

Publication number
JPH1032334A
JPH1032334A JP8352537A JP35253796A JPH1032334A JP H1032334 A JPH1032334 A JP H1032334A JP 8352537 A JP8352537 A JP 8352537A JP 35253796 A JP35253796 A JP 35253796A JP H1032334 A JPH1032334 A JP H1032334A
Authority
JP
Japan
Prior art keywords
amorphous silicon
silicon layer
gate electrode
insulating film
tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8352537A
Other languages
Japanese (ja)
Inventor
Zaisei Sai
在 成 崔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
Hyundai Electronics Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Electronics Industries Co Ltd filed Critical Hyundai Electronics Industries Co Ltd
Publication of JPH1032334A publication Critical patent/JPH1032334A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28052Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a silicide layer formed by the silicidation reaction of silicon with a metal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • H01L29/4933Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a silicide layer contacting the silicon layer, e.g. Polycide gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gate electrode which has a structure in which a tungsten silicide layer is formed on an amorphous silicon layer, for preventing degradation of characteristics due to penetration of fluorine during the formation. SOLUTION: A gate insulation film 22 is formed on a semiconductor substrate 20, an amorphous silicon layer 24 is formed on the gate insulation film 22 by using disilane gas, and a tungsten silicide layer 26 is formed on the amorphous silicon layer 24 containing trace amounts of fluorine atoms 28 as foreign matter. The grain size of the amorphous silicon layer 24 is such that the foreign matter cannot enter the gate insulation film 22. the foreign matter cannot enter the gate insulation film 22.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置に使用さ
れるトランジスターのゲート電極に関し、特に、非晶質
シリコン層上にタングステン−シリサイドが積層された
構造を有するゲート電極に関する。
The present invention relates to a gate electrode of a transistor used in a semiconductor device, and more particularly to a gate electrode having a structure in which tungsten-silicide is laminated on an amorphous silicon layer.

【0002】[0002]

【従来の技術】一般に、MOSトランジスターにおける
ゲート電極はソース、ドレイン電極の形成に先だって、
ゲート絶縁膜が形成された半導体基板上に形成される。
前記ゲート電極はポリシリコンで形成されており、該特
性の向上のために非晶質のポリシリコンで代替される
か、ポリシリコン上にタングステン−シリサイド層が積
層された構造として形成される。
2. Description of the Related Art Generally, a gate electrode of a MOS transistor is formed before forming a source electrode and a drain electrode.
The gate insulating film is formed on the semiconductor substrate.
The gate electrode is formed of polysilicon, and may be replaced with amorphous polysilicon to improve the characteristics, or may be formed as a structure in which a tungsten-silicide layer is stacked on polysilicon.

【0003】図2は従来の実施例によるものであって、
ポリシリコン層上にタングステン−シリサイドが積層さ
れた構造を有する半導体素子の部分断面図である。図2
を参照すれば、従来のゲート構造は半導体基板10の表
面にゲート酸化膜(SiO2 )12が形成されており、
ゲート酸化膜の上部にはポリシリコン層14及びタング
ステン−シリサイド層16が順次積層されている。ポリ
シリコンは結晶性を有する物質であって、それは粒界等
によって分離される小さい単結晶性領域(粒度)等で構
成される。蒸着時、ポリシリコン膜等は非晶質や結晶質
であり得るが、蒸着後に高温を受けるようになると、次
後には結晶構造を示す。
FIG. 2 shows a conventional embodiment.
FIG. 4 is a partial cross-sectional view of a semiconductor device having a structure in which tungsten-silicide is stacked on a polysilicon layer. FIG.
In the conventional gate structure, a gate oxide film (SiO 2 ) 12 is formed on the surface of a semiconductor substrate 10,
On the gate oxide film, a polysilicon layer 14 and a tungsten-silicide layer 16 are sequentially stacked. Polysilicon is a substance having crystallinity, and is composed of small single crystal regions (grain size) separated by grain boundaries and the like. At the time of vapor deposition, the polysilicon film or the like may be amorphous or crystalline, but when subjected to a high temperature after vapor deposition, it shows a crystalline structure thereafter.

【0004】ポリシリコン層14は化学気状蒸着(Chemi
cal Vapor Deposition )法によって主に形成される。こ
の場合、ポリシリコンに対するソースとしてはシラン
(SiH4 )ガスが用いられる。化学気状蒸着法の適用
結果、形成されるポリシリコンの粒度は0.2乃至0.
3μmの大きさを有する。
The polysilicon layer 14 is formed by chemical vapor deposition (Chemi).
cal Vapor Deposition). In this case, a silane (SiH 4 ) gas is used as a source for the polysilicon. As a result of applying the chemical vapor deposition method, the grain size of the formed polysilicon is 0.2 to 0.5.
It has a size of 3 μm.

【0005】タングステン−シリサイド層16は、化学
気状蒸着法や物理的蒸着法によって選択的に形成でき得
る。化学気状蒸着法が適用される場合、その上にタング
ステン−シリサイド形成のためのポリシリコン層14の
対象層を有する半導体基板10はWF6 ガスを含有する
雰囲気に露出される。この場合、前記WF6 ガスに含ま
れた小量のフルオロ(fluorine)原子が前記ポリシリコン
層14の表面層に浸透される。この結果、タングステン
−シリサイド16には、小量のフルオロ原子が存在する
ようになる。
The tungsten-silicide layer 16 can be selectively formed by a chemical vapor deposition method or a physical vapor deposition method. When the chemical vapor deposition method is applied, the semiconductor substrate 10 having the target layer of the polysilicon layer 14 for forming tungsten-silicide thereon is exposed to an atmosphere containing WF 6 gas. In this case, a small amount of fluorine atoms contained in the WF 6 gas permeates the surface layer of the polysilicon layer 14. As a result, the tungsten-silicide 16 has a small amount of fluoro atoms.

【0006】[0006]

【発明が解決しようとする課題】前記タングステン−シ
リサイド層16に含まれた前記フルオロ原子は大部分後
続熱処理工程の際、前記ポリシリコン層14を経由して
前記ゲート酸化膜12へ浸透するようになる。これは前
記ポリシリコン層14を構成する構成粒度の大きさが非
常に小さいことによって、前記フルオロ原子の浸透経路
が多く存在することに基づく。その結果、前記ゲート酸
化膜12の厚さが増加し、且つ前記ゲート酸化膜12の
電気的特性が著しく低下する。
Most of the fluoro atoms contained in the tungsten-silicide layer 16 penetrate into the gate oxide film 12 through the polysilicon layer 14 during a subsequent heat treatment process. Become. This is based on the fact that there is a large number of permeation paths of the fluoro atoms due to the extremely small size of the constituent particles constituting the polysilicon layer 14. As a result, the thickness of the gate oxide film 12 increases, and the electrical characteristics of the gate oxide film 12 significantly decrease.

【0007】一方、非晶質シリコン上にタングステン−
シリサイドを形成する場合、形成された非晶質シリコン
の粒度はポリシリコンの場合に比べて大きいが、これま
た粒度の大きさが0.5μm程度に小さいためタングス
テン−シリサイドの形成時フルオロの浸透が依然として
生じる。
On the other hand, tungsten-
When forming silicide, the grain size of the formed amorphous silicon is larger than that of polysilicon, but since the size of the grain size is as small as about 0.5 μm, the penetration of fluoro during the formation of tungsten-silicide is suppressed. Still occurs.

【0008】従って、本発明の目的は、ゲート電極をポ
リシリコンとタングステン−シリサイドの積層構造を形
成する際、フルオロの浸透によるゲート酸化膜の電気的
特性の低下及び厚さの増加を防止できるゲート電極及び
その形成方法を提供することにある。
Accordingly, an object of the present invention is to provide a gate electrode which can prevent a decrease in electrical characteristics and an increase in thickness of a gate oxide film due to permeation of fluoro when forming a laminated structure of polysilicon and tungsten-silicide. An object of the present invention is to provide an electrode and a method for forming the electrode.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するため
に、本発明は、半導体基板上部に形成されたゲート絶縁
膜と、前記ゲート絶縁膜の上部にジシランガスによって
形成された非晶質シリコン層と前記非晶質シリコン層の
上部に形成され、微量の異物質を含むタングステン−シ
リサイド層を備え、前記非晶質シリコン層は前記異物質
のゲート絶縁膜側への浸透が防止されるほどの粒度の大
きさがあることを特徴とするゲート電極を提供する。本
発明によれば、ゲート電極はゲート酸化膜の上部に非常
に大きい構成粒子を有する非晶質ポリシリコン層を持
つ。前記大きい構成粒子等を有するポリシリコン層は前
記ゲート酸化膜側へ浸透する異物質の経路を最小化す
る。
In order to achieve the above object, the present invention provides a gate insulating film formed on a semiconductor substrate and an amorphous silicon layer formed on the gate insulating film by using disilane gas. And a tungsten-silicide layer formed on the amorphous silicon layer and containing a trace amount of a foreign substance, wherein the amorphous silicon layer has such an extent that the foreign substance is prevented from penetrating to the gate insulating film side. Provided is a gate electrode characterized by having a large grain size. According to the present invention, the gate electrode has an amorphous polysilicon layer having very large constituent particles on top of the gate oxide film. The polysilicon layer having the large constituent particles and the like minimizes a path of a foreign substance penetrating into the gate oxide film.

【0010】[0010]

【発明の実施の形態】以下、本発明の望ましい実施例を
図1を参照して詳細に説明する。図1を参照すれば、半
導体基板20の上部にゲート絶縁膜22が形成され、前
記ゲート絶縁膜22の上部には大きい構成粒子を有する
非晶質シリコン層24及び微量のフルオロ原子が含まれ
たタングステン−シリサイド層26が積層されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to FIG. Referring to FIG. 1, a gate insulating layer 22 is formed on a semiconductor substrate 20, and an amorphous silicon layer 24 having large constituent particles and a small amount of fluoro atoms are included on the gate insulating layer 22. A tungsten-silicide layer 26 is stacked.

【0011】前記非晶質シリコン層24はジシラン(S
26 )をソースにした化学気状蒸着法によって形成
されるが、該構成粒度は概ね2乃至3μmの大きさとし
て、結晶質ポリシリコンが積層された従来の構造に比べ
10倍程度の大きい粒度を有する。従って、前記非晶質
シリコン層24は従来のゲート電極に使用されるポリシ
リコン層に比べて前記ゲート絶縁膜22側への異物質の
浸透経路を少なくとも1/10程度に減少させることが
できる。その結果、前記ゲート絶縁膜22の厚さは増加
しないようになり、且つ前記ゲート絶縁膜22の電気的
特性も大きく低下しない。本発明で適用されたタングス
テン−シリサイドはWSi2 であることが望ましい。
The amorphous silicon layer 24 is made of disilane (S
Although i 2 H 6) is formed by a chemical gaseous deposition method was the source of the configuration granularity is approximately 2 to 3μm as size, the crystalline polysilicon of 10 times compared with the conventional structure that is laminated Has a large particle size. Accordingly, the amorphous silicon layer 24 can reduce the permeation path of the foreign substance to the gate insulating film 22 side at least about 1/10 as compared with the polysilicon layer used for the conventional gate electrode. As a result, the thickness of the gate insulating film 22 does not increase, and the electrical characteristics of the gate insulating film 22 do not significantly decrease. It applied tungsten in the present invention - it is desired silicide is WSi 2.

【0012】以下、前記構造のゲート電極を形成するた
めの過程を説明する。前記ゲート絶縁膜24は、前記半
導体基板20をO2 ガスに露出させ酸化(SiO2 )が
前記半導体基板20の表面から成長されるようにするこ
とによって形成される。
Hereinafter, a process for forming the gate electrode having the above structure will be described. The gate insulating film 24 is formed by exposing the semiconductor substrate 20 to O 2 gas so that oxidation (SiO 2 ) is grown from the surface of the semiconductor substrate 20.

【0013】そして、前記非晶質シリコン層24は、4
50乃至580℃の温度で前記ゲート絶縁膜22が形成
された前記半導体基板20を所定圧力のジシラン(Si
26 )ガスに露出させることによって、2乃至3μm
の大きさの構成粒子を有するように形成される。前記ジ
シランガス反応時圧力は概ね0.1乃至数十Torr程
度に設定される。
The amorphous silicon layer 24 is composed of 4
The semiconductor substrate 20 on which the gate insulating film 22 is formed is heated at a temperature of 50 to 580 ° C. with disilane (Si
2 to 3 μm by exposure to 2 H 6 ) gas
Is formed so as to have constituent particles of a size. The pressure during the reaction of the disilane gas is set to about 0.1 to several tens Torr.

【0014】最後に、前記タングステン−シリサイド層
26は、非晶質シリコン層24が形成された半導体基板
20をWF6 ガスに露出させ前記WF6 ガスに含まれた
タングステン原子が前記液晶質シリコン層24と反応す
ることによって形成される。前記タングステン−シリサ
イド層26の形成時、前記WF6 ガスに含まれた小量の
フルオロ原子28が前記非晶質シリコン層24の表面層
に浸透される。この結果、前記タングステン−シリサイ
ド層26には小量のフルオロ原子が存在するようにな
る。
[0014] Finally, the tungsten - silicide layer 26, the tungsten atoms liquid crystalline silicon layer included in the WF 6 gas to expose the semiconductor substrate 20 on which an amorphous silicon layer 24 is formed on the WF 6 gas It is formed by reacting with 24. When the tungsten-silicide layer 26 is formed, a small amount of fluoro atoms 28 contained in the WF 6 gas penetrates into the surface layer of the amorphous silicon layer 24. As a result, the tungsten-silicide layer 26 has a small amount of fluoro atoms.

【0015】前記タングステン−シリサイド26に含ま
れた前記フルオロ原子28は、後続熱処理時、前記非晶
質シリコン層24を経由して前記ゲート絶縁膜22側へ
浸透される量が著しく少なくなる。これは前記非晶質シ
リコン層24を構成する構成粒子が非常に大きくて前記
ゲート絶縁膜22側への浸透経路が減少したことに起因
する。
The amount of the fluoro atoms 28 contained in the tungsten-silicide 26 permeating the gate insulating film 22 through the amorphous silicon layer 24 during the subsequent heat treatment is significantly reduced. This is because the constituent particles constituting the amorphous silicon layer 24 are very large, and the penetration path to the gate insulating film 22 is reduced.

【0016】その結果、前記ゲート絶縁膜22の厚さの
増加が最小化され且つ、前記ゲート絶縁膜22の電気的
特性の低下が最小化される。前記ゲート絶縁膜22の増
加は5乃至10Å以下に抑制され従来のゲート電極に比
べて200%程度改善される。そして前記ゲート絶縁膜
22の電気的特性も一定な電流を印加した試験結果によ
れば、従来のゲート電極の場合に比べて200%程度向
上させることができた。
As a result, an increase in the thickness of the gate insulating film 22 is minimized, and a decrease in the electrical characteristics of the gate insulating film 22 is minimized. The increase in the gate insulating film 22 is suppressed to 5 to 10 ° or less, which is improved by about 200% as compared with the conventional gate electrode. According to a test result in which a constant current was applied to the electrical characteristics of the gate insulating film 22, the electrical characteristics could be improved by about 200% as compared with the conventional gate electrode.

【0017】[0017]

【発明の効果】上述したように、本発明はゲート酸化膜
上に結晶質のポリシリコンとタングステン−シリサイド
層が順次積層されたポリサイド構造のゲート電極で、ジ
シランガスと用いて前記結晶質のポリシリコンを非晶質
のシリコンで代替し、その構成粒度のサイズを可能な限
り大きくすることによって、前記タングステン−シリサ
イド層に含まれたフルオロ原子が前記ゲート絶縁膜側へ
浸透することを最小化する。これによって、本発明は前
記ゲート絶縁膜の厚さの増加を最小化でき、また、前記
ゲート絶縁膜の電気的特性の低下を最小化でき得る長所
を提供する。
As described above, the present invention relates to a gate electrode having a polycide structure in which crystalline polysilicon and a tungsten-silicide layer are sequentially laminated on a gate oxide film. Is replaced with amorphous silicon, and the size of the constituent grain size is made as large as possible to minimize the penetration of fluoro atoms contained in the tungsten-silicide layer into the gate insulating film side. Accordingly, the present invention provides advantages that an increase in the thickness of the gate insulating layer can be minimized and a decrease in electrical characteristics of the gate insulating layer can be minimized.

【0018】ここでは、本発明の特定実施例に対して説
明し図示したが、当業者によって、これに対する修正と
変更ができる。従って、特許請求の範囲は本発明の真正
な思想と範囲に属する限り全ての修正と変更を含むもの
と理解できる。
Although specific embodiments of the present invention have been described and illustrated herein, modifications and changes may be made by those skilled in the art. It is therefore understood that the appended claims will cover all such modifications and changes as fall within the true spirit and scope of the invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例によるものであって、ポリシリ
コン層上にタングステン−シリサイドが積層された構造
を有するゲート電極の断面図である。
FIG. 1 is a cross-sectional view of a gate electrode having a structure in which tungsten-silicide is stacked on a polysilicon layer according to an embodiment of the present invention.

【図2】従来の実施例によるものであって、ポリシリコ
ン層上にタングステン−シリサイドが積層された構造を
有するゲート電極の断面図である。
FIG. 2 is a cross-sectional view of a gate electrode having a structure in which tungsten-silicide is stacked on a polysilicon layer according to a conventional example.

【符号の説明】[Explanation of symbols]

10,20 半導体基板 14 ポリシリコン層 22 ゲート電極 24 非晶質シリコン層 16,26 タングステン−シリサイド層 28 フルオロ原子 10, 20 semiconductor substrate 14 polysilicon layer 22 gate electrode 24 amorphous silicon layer 16, 26 tungsten-silicide layer 28 fluoro atom

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上部に形成されたゲート絶
縁膜と、前記ゲート絶縁膜の上部にジシランガスによっ
て形成された非晶質シリコン層と前記非晶質シリコン層
の上部に形成され、微量の異物質を含むタングステン−
シリサイド層を備え、前記非晶質シリコン層は前記異物
質のゲート絶縁膜側への浸透が防止されるほどの粒度の
大きさがあることを特徴とするゲート電極。
A gate insulating film formed on a semiconductor substrate; an amorphous silicon layer formed on the gate insulating film by a disilane gas; Tungsten containing substances
A gate electrode comprising a silicide layer, wherein the amorphous silicon layer has a particle size large enough to prevent penetration of the foreign substance into the gate insulating film side.
【請求項2】 前記非晶質シリコン層の粒度の大きさは
2乃至3μmであることを特徴とする請求項1記載のゲ
ート電極。
2. The gate electrode according to claim 1, wherein said amorphous silicon layer has a particle size of 2 to 3 μm.
【請求項3】 前記異物質はフルオル元素であることを
特徴とする請求項1記載のゲート電極。
3. The gate electrode according to claim 1, wherein said foreign substance is a fluoro element.
【請求項4】 ゲート絶縁膜がその上に形成された半導
体基板を提供する工程と、 化学気状蒸着用反応器に装着された半導体基板をジシラ
ンガスの雰囲気で熱処理して前記ゲート絶縁膜上に非晶
質シリコン層を形成する工程と、 前記非晶質シリコン層上にタングステン−シリサイドを
形成する工程とを含むことを特徴とするゲート電極形成
方法。
4. A process for providing a semiconductor substrate having a gate insulating film formed thereon, and heat treating the semiconductor substrate mounted in a chemical vapor deposition reactor in an atmosphere of disilane gas to form a semiconductor substrate on the gate insulating film. A method of forming a gate electrode, comprising: forming an amorphous silicon layer; and forming tungsten-silicide on the amorphous silicon layer.
【請求項5】前記タングステン−シリサイドはWSi2
のものを特徴とする請求項4記載のゲート電極形成方
法。
5. The method of claim 1, wherein said tungsten-silicide is WSi 2.
5. The method for forming a gate electrode according to claim 4, wherein:
【請求項6】 前記反応器の圧力は0.1乃至数十To
rrであることを特徴とする請求項4記載のゲート電極
形成方法。
6. The pressure of the reactor is 0.1 to several tens of To.
5. The method according to claim 4, wherein rr is rr.
【請求項7】 ポリシリコンの形成のために前記ジシラ
ンガスが反応する反応器の温度は450乃至580℃で
あることを特徴とする請求項4記載のゲート電極形成方
法。
7. The method according to claim 4, wherein a temperature of a reactor in which the disilane gas reacts to form polysilicon is 450 to 580 ° C.
JP8352537A 1995-12-15 1996-12-16 Gate electrode and its forming method Pending JPH1032334A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1995P50441 1995-12-15
KR1019950050441A KR100203896B1 (en) 1995-12-15 1995-12-15 Manufacturing method of the gate electrode

Publications (1)

Publication Number Publication Date
JPH1032334A true JPH1032334A (en) 1998-02-03

Family

ID=19440439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8352537A Pending JPH1032334A (en) 1995-12-15 1996-12-16 Gate electrode and its forming method

Country Status (5)

Country Link
JP (1) JPH1032334A (en)
KR (1) KR100203896B1 (en)
CN (1) CN1172378C (en)
DE (1) DE19652070C2 (en)
GB (1) GB2308233B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100710645B1 (en) * 2001-05-18 2007-04-24 매그나칩 반도체 유한회사 Method for forming the metal line in semiconductor device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9802940D0 (en) * 1998-02-11 1998-04-08 Cbl Ceramics Ltd Gas sensor
CN101572228B (en) * 2008-04-28 2011-03-23 中芯国际集成电路制造(北京)有限公司 Methods for forming polysilicon thin film and gate
CN112514031A (en) * 2018-08-11 2021-03-16 应用材料公司 Graphene diffusion barrier

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0459770B1 (en) * 1990-05-31 1995-05-03 Canon Kabushiki Kaisha Method for producing a semiconductor device with gate structure
JP2901423B2 (en) * 1992-08-04 1999-06-07 三菱電機株式会社 Method for manufacturing field effect transistor
US5364803A (en) * 1993-06-24 1994-11-15 United Microelectronics Corporation Method of preventing fluorine-induced gate oxide degradation in WSix polycide structure
JP2560993B2 (en) * 1993-09-07 1996-12-04 日本電気株式会社 Method for manufacturing compound semiconductor device
DE4440857C2 (en) * 1993-11-16 2002-10-24 Hyundai Electronics Ind Method of manufacturing a gate electrode of a semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100710645B1 (en) * 2001-05-18 2007-04-24 매그나칩 반도체 유한회사 Method for forming the metal line in semiconductor device

Also Published As

Publication number Publication date
GB2308233B (en) 2000-11-15
DE19652070C2 (en) 2003-02-20
DE19652070A1 (en) 1997-06-19
GB9626113D0 (en) 1997-02-05
GB2308233A (en) 1997-06-18
CN1172378C (en) 2004-10-20
KR100203896B1 (en) 1999-06-15
KR970053905A (en) 1997-07-31
CN1155159A (en) 1997-07-23

Similar Documents

Publication Publication Date Title
EP0757379B1 (en) Method for manufacturing an oxide film on the surface of a semiconductor substrate
US4751101A (en) Low stress tungsten films by silicon reduction of WF6
JP3102974B2 (en) Method of forming insulating film in semiconductor device
US5500380A (en) Method for fabricating thin film transistor
US20060040414A1 (en) Methods of forming conductive materials
US5360768A (en) Method of forming oxide film
JPH0793443B2 (en) Method of manufacturing thin film transistor
JPH05259297A (en) Manufacture of semiconductor device
JP2001237418A (en) Method of manufacturing mos transistor
JPH1032334A (en) Gate electrode and its forming method
US6579614B2 (en) Structure having refractory metal film on a substrate
JPH0922884A (en) Manufacture of semiconductor element
JPH07297151A (en) Fabrication of semiconductor device
JPH04111362A (en) Thin-film transistor and its manufacture
JPH07263686A (en) Manufacture of semiconductor device
JPH09260372A (en) Manufacture of insulating film of semiconductor device
US5534453A (en) Method of manufacturing titanium silicide containing semiconductors
JPH08335703A (en) Thin-film transistor and its manufacture
JPH04326576A (en) Manufacture of semiconductor device
JP2002324809A (en) Thin film transistor and method for manufacturing the same
JP3155822B2 (en) Manufacturing method of mask ROM
KR960012321A (en) Gate electrode formation method of semiconductor device
JPH07249772A (en) Polysilicon thin film transistor and its fabrication
JPH0427166A (en) Manufacture of semiconductor nonvolatile memory
KR100332134B1 (en) Method for forming gate electrode in semiconductor device