JPH10321890A - Solar battery cooling system - Google Patents

Solar battery cooling system

Info

Publication number
JPH10321890A
JPH10321890A JP9125490A JP12549097A JPH10321890A JP H10321890 A JPH10321890 A JP H10321890A JP 9125490 A JP9125490 A JP 9125490A JP 12549097 A JP12549097 A JP 12549097A JP H10321890 A JPH10321890 A JP H10321890A
Authority
JP
Japan
Prior art keywords
heat
solar cell
metal plate
cooling box
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9125490A
Other languages
Japanese (ja)
Inventor
Koji Nishimura
厚司 西村
Toshiji Yoshikawa
利次 吉川
Tatsuya Uchida
達也 内田
Akira Shinozaki
明 篠崎
Hirofumi Ishida
浩文 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP9125490A priority Critical patent/JPH10321890A/en
Publication of JPH10321890A publication Critical patent/JPH10321890A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide the cooling system of high conversion efficiency, which is provided with a cooling function superior in cooling ability, by making a metallic cooling box which can be sealed adhere to the back of a solar battery panel, providing a porous metallic plate on the inner side of the face and providing a fin on an outer side. SOLUTION: Heat generated in the solar battery panel 1 and it is transmitted to the porous metallic plate 3 in the cooling box 2 from a bac plate. A refrigerant absorbs the heat as evaporated latent heat, it becomes vapor and moves to a face where a heat discharge fin 5 is provided from the porous metallic plate 3. Vapor is condensed and is returned to liquid. Then, heat is moved on the face where the heat discharge fin 5 is provided and moved heat is discharged to atmosphere through the heat discharge fin 5. The refrigerant returned to liquid is absorbed to the porous metallic plate 3 with a capillary action again and the phenomenon is repeated. Then, the heat of the solar battery panel is discharged to atmosphere. Thus, the temperature of the solar battery drops, output is stabilized and conversion efficiency can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池冷却シス
テムに関する。
The present invention relates to a solar cell cooling system.

【0002】[0002]

【従来の技術】近年、太陽エネルギ利用装置の研究開発
が盛んに行われており、熱エネルギに変換して利用する
太陽熱給湯システムや冷暖房システム、電気エネルギに
直接変換して利用する太陽電池、さらに、太陽熱により
蒸気を発生させてタービンを動かし間接的に電気エネル
ギに変換する太陽光発電などが実用化されている。太陽
エネルギは無尽蔵でクリーンなことから、地球環境保護
の面でさらに積極的な利用が求められている。
2. Description of the Related Art In recent years, research and development of a solar energy utilization apparatus have been actively carried out, such as a solar hot water supply system and a cooling / heating system which convert and use heat energy, a solar cell which directly converts and uses electric energy, and Solar power generation, which generates steam by solar heat to move a turbine and indirectly convert the energy into electric energy, has been put to practical use. Since solar energy is inexhaustible and clean, more active use is required in terms of global environmental protection.

【0003】従来の太陽電池は、ガラス−ガラスあるい
はガラス−樹脂板でサンドイツチされた構造、またはガ
ラス−フィルムラミネートの構造を採っている。従来の
太陽電池の基本的な構造を図3に示す。所定の数の太陽
電池素子7をメラミン樹脂等の樹脂基板8に接着剤で固
定し、この基板8を中枠9に固定、設置するとともに、
上面を透明なアクリル樹脂あるいは透明ガラスの透明カ
バー10で覆い、下面を鋼板等の底板11で覆ってい
る。さらに、これらをアルミニウム等の外枠12に収納
し、透明カバー10と外枠12、底板11と外枠12を
それぞれパッキング(図示せず)を介して固定し、内部
の気密性を保っている。
A conventional solar cell employs a structure in which a glass-glass or glass-resin plate is used, or a glass-film laminate structure. FIG. 3 shows a basic structure of a conventional solar cell. A predetermined number of solar cell elements 7 are fixed on a resin substrate 8 such as a melamine resin with an adhesive, and the substrate 8 is fixed and installed on a middle frame 9.
The upper surface is covered with a transparent cover 10 made of transparent acrylic resin or transparent glass, and the lower surface is covered with a bottom plate 11 such as a steel plate. Further, these are housed in an outer frame 12 made of aluminum or the like, and the transparent cover 10 and the outer frame 12, and the bottom plate 11 and the outer frame 12 are fixed via packings (not shown), respectively, to keep the inside airtight. .

【0004】[0004]

【発明が解決しようとする課題】この太陽電池が吸収す
る太陽光波長は、太陽光ピーク波長よりやや長い波長域
であり、さらに変換効率が高い波長域は狭い。そのた
め、太陽電池に入射した太陽光の内、電気に変換されな
かった分は熱の形で吸収され、太陽電池を昇温させる。
一般に太陽電池は使用状態における雰囲気温度、湿度に
大きく影響され、特に高温においては出力安定性低下や
変換効率低下が発生する。従来の構造での放熱機構は、
太陽電池パネルの表面および裏面からの放射と大気への
自然対流によるものだけであり、放熱が十分でないため
上記の出力安定性低下や変換効率低下などの問題があっ
た。また、近年、太陽光吸収効率及び変換効率の高い太
陽電池が開発されているが、吸収効率が向上した分だけ
温度上昇も大きくなり、結果的には従来と同程度の出力
しか得られないという問題が発生している。
The wavelength of sunlight absorbed by this solar cell is a wavelength range slightly longer than the peak wavelength of sunlight, and the wavelength range having high conversion efficiency is narrow. Therefore, of the sunlight that has entered the solar cell, the part that has not been converted to electricity is absorbed in the form of heat, thereby increasing the temperature of the solar cell.
In general, solar cells are greatly affected by the ambient temperature and humidity in use, and especially at high temperatures, output stability and conversion efficiency decrease. The heat dissipation mechanism with the conventional structure
This is only due to radiation from the front and back surfaces of the solar cell panel and natural convection to the atmosphere, and there is a problem such as a decrease in output stability and a decrease in conversion efficiency due to insufficient heat radiation. In recent years, solar cells with high solar absorption efficiency and high conversion efficiency have been developed. However, the temperature rise increases as much as the absorption efficiency is improved, and as a result, only the same output as the conventional one can be obtained. There is a problem.

【0005】本発明は、かかる問題点の解決を図ろうと
するもので、冷却能力の優れた冷却機能を備えた変換効
率の高い太陽電池の太陽電池冷却システムを提供するも
のである。
The present invention is intended to solve such a problem, and provides a solar cell cooling system for a solar cell having a high cooling efficiency and a high conversion efficiency.

【0006】[0006]

【課題を解決するための手段】本発明は、太陽電池パネ
ルの裏面に金属製の密閉可能な冷却ボックスを密着さ
せ、その冷却ボックスの太陽電池パネル裏面に密着した
冷却ボックスの接する面の内側に多孔質の金属板を設
け、冷媒を封入するとともに、金属製の冷却ボックスの
太陽電池パネルに接しない面の外側にフィンを設けた太
陽電池冷却システムである。また、本発明は、この多孔
質の金属板の開孔率が15〜40%、表面孔数が20〜
40個/mm2、孔径が80〜120μmであると好ま
しいものである。
According to the present invention, a metal sealable cooling box is closely attached to the back surface of a solar cell panel, and the cooling box is provided inside the surface of the cooling box in contact with the cooling box closely attached to the back surface of the solar cell panel. This is a solar cell cooling system in which a porous metal plate is provided, a refrigerant is sealed, and fins are provided outside a surface of the metal cooling box which is not in contact with the solar cell panel. The present invention also provides a porous metal plate having a porosity of 15 to 40% and a surface pore number of 20 to 40%.
It is preferable that the number of holes is 40 holes / mm 2 and the hole diameter is 80 to 120 μm.

【0007】[0007]

【発明の実施の形態】本発明は、具体的には、一つの内
壁表面に多孔質の金属板を設け、少なくとも多孔質の金
属板を設けた面に対抗する面の外側にフィンを設けた金
属製の密閉可能な箱に冷媒を封入して冷却ボックスと
し、その冷却ボックスを太陽電池パネルの裏面に、裏面
と多孔質の金属板を接着した面の外面が合わさるように
密着させることにより構成される太陽電池冷却システム
である。この冷却ボックスの大きさは任意であり、大き
な太陽電池パネルと同等の大きさの冷却ボックスを1個
設けてもよいし、小さな冷却ボックスを太陽電池パネル
裏面に複数個設けてもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, specifically, a porous metal plate is provided on one inner wall surface, and fins are provided at least on the outside of a surface opposite to the surface provided with the porous metal plate. A cooling box is formed by enclosing a refrigerant in a metal sealable box, and the cooling box is adhered to the back surface of the solar cell panel so that the outer surface of the surface where the back surface and the porous metal plate are bonded is brought into contact. Solar cell cooling system. The size of the cooling box is arbitrary, and one cooling box having the same size as the large solar cell panel may be provided, or a plurality of small cooling boxes may be provided on the back surface of the solar cell panel.

【0008】本発明の多孔質の金属板は、太陽電池パネ
ルから冷媒への伝熱を促進させるためのものであり、開
孔率が15〜40%、表面孔数が20〜40個/m
2、穴径が80〜120μmの範囲にあることが好ま
しい。開孔率が15%未満、表面孔数が20個/mm2
未満、穴径が80μm未満では、多孔質の金属板の冷媒
保水量が少なく、部分的に伝熱に寄与しない領域が発生
し伝熱量が低下するため好ましくない。また、開孔率が
40%、表面孔数が40個/mm2、穴径が120μm
を超えると、多孔質の金属板の1つ1つの空隙が大きく
なり、各空隙内に保持された冷媒への伝熱量が低下する
ため好ましくない。本発明では、多孔質の金属板の厚み
は、1〜4mmとするのが、冷媒が多孔質の金属板を毛
管作用や冷媒蒸発による吸引作用により染み込み全体に
移動し、蒸発するのに適する。
The porous metal plate of the present invention is for promoting heat transfer from the solar cell panel to the refrigerant, and has a porosity of 15 to 40% and a surface pore number of 20 to 40 / m.
Preferably, m 2 and the hole diameter are in the range of 80 to 120 μm. The porosity is less than 15%, the number of surface holes is 20 / mm 2
If the hole diameter is less than 80 μm, the porous metal plate has a small water retention capacity of the refrigerant, and a region not contributing to heat transfer is generated partially, which is not preferable because the heat transfer amount is reduced. Further, the porosity is 40%, the number of surface holes is 40 / mm 2 , and the hole diameter is 120 μm.
Exceeding the range is not preferable because the voids of each of the porous metal plates become large, and the amount of heat transferred to the refrigerant held in each void decreases. In the present invention, the thickness of the porous metal plate is set to 1 to 4 mm, which is suitable for the refrigerant to move throughout the porous metal plate by the capillary action or the suction action by the evaporation of the refrigerant and to evaporate.

【0009】本発明の太陽電池冷却システムの冷却ボッ
クス2における熱の移動と冷媒の移動を図2に示す。太
陽電池パネル1で発生した熱は、底板から冷却ボックス
2の内部の多孔質の金属板3に伝わる。ここで、多孔質
の金属板3に染み込んだ冷媒に熱が伝わり冷媒はその熱
を蒸発潜熱として吸収し、蒸気となって多孔質の金属板
3から放熱フィン5を設けた面へ移動する。蒸気はここ
で凝縮し、液体に戻ると同時に放熱フィン5を設けた面
に熱を移動する。放熱フィン5を設けた面に移動した熱
は、放熱フィン5を介して大気に放熱される。一方、液
体に戻った冷媒は、再び毛管作用により多孔質の金属板
3に吸収され、上記現象を繰り返し、太陽電池パネルの
熱を大気に放出する。これにより太陽電池の温度が低下
し、出力が安定し、変換効率が向上する。
FIG. 2 shows the movement of heat and the movement of refrigerant in the cooling box 2 of the solar cell cooling system of the present invention. The heat generated in the solar cell panel 1 is transmitted from the bottom plate to the porous metal plate 3 inside the cooling box 2. Here, heat is transmitted to the refrigerant permeated into the porous metal plate 3, and the refrigerant absorbs the heat as latent heat of vaporization, and moves as a vapor from the porous metal plate 3 to the surface on which the radiation fins 5 are provided. The vapor condenses here and returns to the liquid, and at the same time transfers heat to the surface on which the radiation fins 5 are provided. The heat that has moved to the surface on which the radiation fins 5 are provided is radiated to the atmosphere via the radiation fins 5. On the other hand, the refrigerant that has returned to the liquid is again absorbed by the porous metal plate 3 by capillary action, repeats the above phenomenon, and releases the heat of the solar cell panel to the atmosphere. This lowers the temperature of the solar cell, stabilizes the output, and improves the conversion efficiency.

【0010】本発明の多孔質の金属板は、例えば、三次
元網目構造体の骨格表面を有するウレタンフォーム等の
連続気泡構造を有する発泡性の樹脂、または、加熱して
焼失する例えば樹脂でできた不織布、織布等を用い、厚
みが最終的に1〜4mmとなるようにその厚さを選択す
る。この三次元網目構造体の骨格表面に金属粉体の付着
が容易にでき、そこから金属粉体が剥離するのを防止す
るために粘着性を付与する。粘着性は、アクリル系、ゴ
ム系等の粘着剤溶液またはフェノール樹脂、エポキシ樹
脂、フラン樹脂等の接着性の樹脂溶液を三次元網目構造
体に塗布することにより付与される。骨格表面に粘着性
を付与した後、金属粉体中で三次元網目構造体を揺動さ
せたり、構造体に金属粉体を吹き付ける等の方法によ
り、骨格表面に粉体を付着させる。これにより乾燥状態
の粉体を直接網目構造体の表面に付着させることができ
る。金属粉体を付着させた後、さらに粘着性を付与して
粉体を付着させることを繰返し行っても良い。金属粉体
の粒径は、網目構造体表面に付着可能な範囲であれば良
く、通常0.01〜100μmの範囲にあることが望ま
しい。粉体の形状は特に制限されるものでなく、粒径分
布は大きな粒子の隙間を小さな粒子が埋めるような密に
充填できるような分布であるとその後の焼結に有利とな
る。粉体には、目的により他の金属あるいは金属合金を
同一粉中にあるいは別の粉体として混ぜても良い。
The porous metal plate of the present invention is made of, for example, a foamable resin having an open cell structure such as urethane foam having a skeleton surface of a three-dimensional network structure, or a resin which is burned off by heating. Using a nonwoven fabric, a woven fabric, or the like, the thickness is selected so that the thickness finally becomes 1 to 4 mm. The metal powder can be easily attached to the skeleton surface of the three-dimensional network structure, and the metal powder is provided with tackiness to prevent the metal powder from peeling off. The tackiness is provided by applying an acrylic or rubber-based adhesive solution or an adhesive resin solution such as a phenol resin, an epoxy resin, or a furan resin to the three-dimensional network structure. After imparting tackiness to the skeleton surface, the powder is attached to the skeleton surface by a method such as rocking the three-dimensional network structure in the metal powder or spraying the metal powder on the structure. Thereby, the powder in a dry state can be directly attached to the surface of the network structure. After the metal powder is adhered, the process of imparting the tackiness to adhere the powder may be repeated. The particle size of the metal powder may be any range as long as it can be attached to the surface of the network structure, and is usually preferably in the range of 0.01 to 100 μm. The shape of the powder is not particularly limited, and if the particle size distribution is such that small particles can fill gaps between large particles, the distribution can be advantageous for subsequent sintering. The powder may be mixed with another metal or metal alloy in the same powder or as another powder depending on the purpose.

【0011】本発明で使用する金属あるいは金属合金と
しては、金、銀、銅、ニッケル、アルミニウム、チタ
ン、クロム、亜鉛、錫、マンガン、タングステン、コバ
ルト等の金属粉やその金属と他の元素との化合物、例え
ば、酸化物、硫化物、ハロゲン化物等、また、その金属
と他の金属との合金である。これらの金属粉体は、不活
性もしくは還元性雰囲気で加熱によりそれぞれ単独に、
または、混合体として容易に焼結する性質を利用するこ
とで、三次元網目構造の金属焼結体を得るもので、さら
にこの多孔質の金属板は、単一孔径のみならず孔径の異
なる複数層の多孔質の金属板とすることもできる。
The metal or metal alloy used in the present invention includes metal powders such as gold, silver, copper, nickel, aluminum, titanium, chromium, zinc, tin, manganese, tungsten, cobalt, etc .; , For example, oxides, sulfides, and halides, and alloys of the metal with other metals. These metal powders are each independently heated by heating in an inert or reducing atmosphere,
Alternatively, by utilizing the property of easily sintering as a mixture, a metal sintered body having a three-dimensional network structure is obtained. Further, this porous metal plate has a plurality of pores having different pore sizes as well as a single pore size. The layer may be a porous metal plate.

【0012】三次元網目構造体の骨格表面に、金属また
は金属合金の粉体を付着させたものを金属板(冷却ボッ
クス)の表面に積層する。この際、単に積層しても良い
が、金属板表面に粉体を付着させたり、金属板表面ある
いは粉体付着三次元網目構造体の表面を水、有機溶剤、
金属塩を含む溶液等で濡らして積層すると得られる金属
焼結体と金属板の接着性が良好となり好ましい。金属塩
は、液体に溶解するものであれば良いが、三次元網目構
造体を構成する樹脂が分解除去される温度付近で酸化物
を形成するものが強度の向上効果が大きく好ましい。こ
のため、一般的な樹脂が分解する500℃以下で酸化物
を生成する硝酸塩、酢酸塩、ぎ酸塩等の塩が好ましい。
金属塩の種類は粉体と同種の金属イオンを含有するもの
でも良いし、異種の金属イオンを含有しても良い。これ
らは、金属粉体付着三次元網目構造体に適用し、浸漬や
スプレーなどにより粉体を濡らし、乾燥させることによ
り粉体同士を凝集させることにより加熱中の強度維持や
得られる金属多孔質体層の強度を高めることができる。
A metal or metal alloy powder adhered to the skeleton surface of the three-dimensional network structure is laminated on the surface of a metal plate (cooling box). At this time, the layers may be simply laminated, but powder may be attached to the surface of the metal plate, or the surface of the metal plate or the surface of the powder-attached three-dimensional network structure may be water, an organic solvent,
It is preferable to wet and laminate with a solution containing a metal salt or the like because the obtained metal sintered body and the metal plate have good adhesion. Any metal salt may be used as long as it dissolves in a liquid. However, a metal salt which forms an oxide at a temperature near the temperature at which the resin constituting the three-dimensional network structure is decomposed and removed is preferred because the effect of improving strength is large. For this reason, salts such as nitrates, acetates, and formates that form oxides at 500 ° C. or lower at which general resins decompose are preferred.
The kind of the metal salt may contain the same kind of metal ion as the powder, or may contain a different kind of metal ion. These are applied to a metal powder-attached three-dimensional network structure, wet the powder by immersion or spraying, etc., and maintain the strength during heating by agglomerating the powders by drying. The strength of the layer can be increased.

【0013】金属板表面に積層した粉体付着三次元網目
構造体の加熱は、樹脂の除去と金属粉体の焼結を目的と
したものである。加熱条件は、使用する樹脂及び金属粉
体の性状に応じて、処理温度、時間、雰囲気を適宜選択
する。樹脂に発泡樹脂を使用した場合には、樹脂の焼失
は酸化性雰囲気、金属粉体の焼結は還元性雰囲気となる
よう雰囲気を変えることが好ましい。以上のように形成
した多孔質の金属板は、密度が低いので、開孔率が15
〜40%、表面孔数が20〜40個/mm2、穴径が8
0〜120μmとなるように厚さ方向に圧縮して、前記
の値の範囲となるようにする。これには、移動距離を制
御できるプレス機を用い、所定の厚みとなるように小さ
な圧縮速度で圧縮する方法により行うことができる。
[0013] The heating of the three-dimensional mesh structure with powder attached to the surface of the metal plate is intended to remove the resin and sinter the metal powder. As for the heating conditions, the processing temperature, time and atmosphere are appropriately selected according to the properties of the resin and metal powder used. When a foamed resin is used as the resin, it is preferable to change the atmosphere so that the burning of the resin becomes an oxidizing atmosphere and the sintering of the metal powder becomes a reducing atmosphere. Since the porous metal plate formed as described above has a low density, the porosity is 15%.
4040%, number of surface holes 20-40 / mm 2 , hole diameter 8
It is compressed in the thickness direction so as to have a thickness of 0 to 120 μm so as to fall within the above-mentioned range. This can be performed by a method using a press machine capable of controlling the moving distance and compressing at a small compression speed so as to have a predetermined thickness.

【0014】冷却ボックス2と放熱フィン5の材質は、
熱伝導率の高いものが望ましく、銅以外にアルミニウム
を用いてもよい。冷媒は、HCF132a以外に冷凍機
で使用されているHFC152aやHCFC22、ある
いは、水をもちいてもよい。水を冷媒として用いる場合
は、使用条件により酸化されやすい場含がある。この対
応策として、予め酸化しておく方法がある。即ち、ペル
オキソアンモニウムや過マンガン酸カリウム、過塩素酸
ソーダ等の溶液中で容易に酸化されるので、これらの処
理液により予め酸化させても良い。また、腐蝕に対応す
るため二酸化珪素を含んだ親水性塗料をコーティングす
ると濡れ性向上による伝熱性能の向上または維持が可能
である。以下実施例により本発明を具体的に説明する。
The materials of the cooling box 2 and the radiation fins 5 are as follows.
Those having high thermal conductivity are desirable, and aluminum other than copper may be used. The refrigerant may be HFC152a or HCFC22 used in a refrigerator other than the HCF132a, or water. When water is used as the refrigerant, there are cases where it is easily oxidized depending on the use conditions. As a countermeasure for this, there is a method of oxidizing in advance. That is, since it is easily oxidized in a solution of peroxoammonium, potassium permanganate, sodium perchlorate, or the like, it may be oxidized in advance with these treatment solutions. Further, when a hydrophilic paint containing silicon dioxide is coated to cope with corrosion, the heat transfer performance can be improved or maintained by improving the wettability. Hereinafter, the present invention will be described specifically with reference to examples.

【0015】[0015]

【実施例】三次元網目構造体として、厚さ3mmのポリ
ウレタンフォーム(エバーライトSF、(株)ブリジス
トン製商品名)を使用した。このポリウレタンフォーム
を下記の樹脂分8重量%のアクリル系の粘着剤溶液に浸
漬した後、余分な溶液をロールを通して除去し、ポリウ
レタンフォームの構造体表面に粘着性を付与した。 アクリル系共重合体 HTR−600LB(帝国化学産業(株)製商品名) 50重量部 アクリル系共重合体 Q−1851(日本カーバイド工業(株)製商品名) 50重量部 架橋剤 コロネートL(日本ポリウレタン工業(株)製商品名)1重量部 溶剤 トルエン 1161.5重量部 これをさらに、100℃で10分間乾燥し、溶剤を除去
した後、平均粒径5μmの銅粉中に構造体を挿入し揺動
させることにより付着させた。一方、冷却ボックスの一
部を形成する金属板として外寸法500×500mm、
厚み1mmの銅板を使用し、その片面に銅粉を付着し、
その上に銅粉を付着したポリウレタンフォームの構造体
を重ねて積層した。そして、500℃で10分間大気雰
囲気中で加熱保持し、ポリウレタンフォームを分解除去
させた。ついで、900℃で20分間、水素ガスを流し
た還元性雰囲気中に保持した。これにより酸化銅が還元
され銅粉が焼結してポリウレタンフォームの三次元網目
構造を転写した形状をもつ三次元銅網目構造体である多
孔質の金属板付銅板を得た。多孔質の金属板となる金属
焼結体の厚みは2mmで、空隙率は95%であった。こ
の多孔質の金属板付銅板をプレス機のプレス盤に設置
し、室温で10kgf/cm2の圧力でプレスした。金
属焼結体をプレスした後の厚みは、1mmで開孔率2
6.5%、表面孔数34個/mm2、穴径100μmで
あった。
EXAMPLES As a three-dimensional network structure, a polyurethane foam having a thickness of 3 mm (Everlight SF, trade name, manufactured by Bridgestone Corporation) was used. This polyurethane foam was immersed in an acrylic pressure-sensitive adhesive solution having the following resin content of 8% by weight, and an excess solution was removed through a roll to impart tackiness to the surface of the polyurethane foam structure. Acrylic copolymer HTR-600LB (trade name of Teikoku Chemical Industry Co., Ltd.) 50 parts by weight Acrylic copolymer Q-1851 (trade name of Nippon Carbide Industry Co., Ltd.) 50 parts by weight Crosslinking agent Coronate L (Japan 11.5 parts by weight of Polyurethane Industry Co., Ltd. Solvent Toluene 1161.5 parts by weight After further drying at 100 ° C. for 10 minutes to remove the solvent, the structure was inserted into copper powder having an average particle diameter of 5 μm. Then, they were attached by rocking. On the other hand, as a metal plate forming a part of the cooling box, the outer dimensions are 500 × 500 mm,
Using a 1mm thick copper plate, attach copper powder to one side,
On top of this, a polyurethane foam structure to which copper powder was attached was overlaid and laminated. Then, the polyurethane foam was heated and held at 500 ° C. for 10 minutes in an air atmosphere to decompose and remove the polyurethane foam. Then, it was kept at 900 ° C. for 20 minutes in a reducing atmosphere in which a hydrogen gas was flowed. As a result, a copper plate with a porous metal plate, which is a three-dimensional copper network having a shape obtained by transferring the three-dimensional network structure of the polyurethane foam by reducing the copper oxide and sintering the copper powder, was obtained. The thickness of the metal sintered body to be a porous metal plate was 2 mm, and the porosity was 95%. This porous copper plate with a metal plate was set on a press plate of a press machine and pressed at room temperature under a pressure of 10 kgf / cm 2 . The thickness after pressing the metal sintered body is 1 mm and the porosity is 2
6.5%, the number of surface holes was 34 / mm 2 , and the hole diameter was 100 μm.

【0016】図1に本発明の太陽電池冷却システムの例
を示す。多孔質の金属板付銅板に凹状にプレス成形した
銅キヤップを多孔質の金属板が冷却ボックスの内側にな
るようにかぶせ、ろう付を行い密閉可能な冷却ボックス
を作製した。なお、多孔質の金属板付銅板と銅キャップ
の接続する部分は予め、多孔質の金属板をナイフ等で除
去した。この冷却ボックスの多孔質の金属板付銅板に対
抗する面の外側に銅製の放熱フィン5を取り付けた。取
り付け方法は、ろう付とネジ止めの場合の二通り行っ
た。ネジ止めで固定する場合は、ボックスと放熱フイン
5の間に熱伝導性のシリコーン樹脂を塗布した。この場
合、熱伝導性のフイルムを介在させることもできる。そ
して、図1に示すように、ボックスの別の面に冷媒封入
用のパイプをろう付し、冷媒封入口4とした。この冷媒
封入口4より、真空ポンプでボックス内を真空にした
後、冷媒として代替フロンHFC132aを所定量封入
し、冷却ボックス2を得た。冷媒の封入量は、多孔質の
金属板3が毛管作用で冷媒を吸い上げ、さらに太陽電池
パネル1を傾斜させて設置した際に図1に示す如く冷却
ボックス2の下部に溜まって多孔質の金属板3の下端に
触れる位とする。さらに、この冷却ボックス2を多孔質
の金属板3を設けた面と太陽電池パネル1の底板とを熱
伝導性フィルムを介在して合わせてネジ止めし太陽電池
冷却システムを作製した。
FIG. 1 shows an example of a solar cell cooling system according to the present invention. A copper cap pressed into a concave shape on a porous copper plate with a metal plate was covered so that the porous metal plate was inside the cooling box, and brazing was performed to produce a hermetically sealable cooling box. In addition, the porous metal plate was previously removed with a knife or the like at the portion where the copper plate with the porous metal plate is connected to the copper cap. Copper radiating fins 5 were attached to the outside of the surface of the cooling box facing the porous copper plate. There were two mounting methods, brazing and screwing. When fixing with a screw, a heat conductive silicone resin was applied between the box and the heat radiation fin 5. In this case, a heat conductive film can be interposed. Then, as shown in FIG. 1, a pipe for charging a refrigerant was brazed to another surface of the box to form a refrigerant charging port 4. After the inside of the box was evacuated with a vacuum pump from the coolant inlet 4, a predetermined amount of alternative Freon HFC 132 a was sealed as a coolant to obtain a cooling box 2. The amount of the refrigerant to be filled is such that the porous metal plate 3 sucks up the refrigerant by the capillary action, and when the solar cell panel 1 is installed at an angle, it collects in the lower part of the cooling box 2 as shown in FIG. The lower end of the plate 3 is touched. Further, the surface of the cooling box 2 on which the porous metal plate 3 was provided and the bottom plate of the solar cell panel 1 were screwed together with a heat conductive film interposed therebetween to produce a solar cell cooling system.

【0017】多孔質の金属板の代わりに表面に溝加工を
施した金属板を用いたもので、蒸発熱伝達率を比較する
と、多孔質の金属板を用いたものの方が1.5倍大きい
値を示した。以上のように、本発明の太陽電池冷却シス
テムを用いると、太陽電池パネルの熱を効率よく大気に
放出することが可能となり、出力安定性が向上し、さら
に変換効率も向上した。
In place of the porous metal plate, a metal plate having a grooved surface is used. In comparison with the evaporation heat transfer coefficient, the one using the porous metal plate is 1.5 times larger. The value was shown. As described above, by using the solar cell cooling system of the present invention, the heat of the solar cell panel can be efficiently released to the atmosphere, the output stability has been improved, and the conversion efficiency has been improved.

【0018】[0018]

【発明の効果】本発明の太陽電池冷却システムは、冷媒
の蒸発部に多孔質の金属板を用いているため、冷媒の吸
収力が大きく太陽電池パネル全体を均一に冷却すること
ができる。さらに、材質が金属で骨格が連続でつなっが
っているため熱伝導率が高く、冷媒への熱交換効率が高
くなる。そのため、太陽電池パネルの熱を効率よく大気
に放出することが可能となり、出力安定性が向上し、さ
らに変換効率も向上させることができる。
According to the solar cell cooling system of the present invention, since a porous metal plate is used in the evaporating portion of the refrigerant, the cooling power of the refrigerant is large and the entire solar cell panel can be uniformly cooled. Further, since the material is metal and the skeleton is continuously connected, the heat conductivity is high, and the efficiency of heat exchange with the refrigerant increases. Therefore, the heat of the solar cell panel can be efficiently released to the atmosphere, the output stability can be improved, and the conversion efficiency can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例を示す図である。FIG. 1 is a diagram showing one embodiment of the present invention.

【図2】 本発明の太陽電池冷却システムの冷却ボック
スにおける熱と冷媒の流れを説明する図である。
FIG. 2 is a diagram illustrating the flow of heat and refrigerant in a cooling box of the solar cell cooling system of the present invention.

【図3】 従来の太陽電池システムの構造を示す図であ
る。
FIG. 3 is a diagram showing a structure of a conventional solar cell system.

【符号の説明】[Explanation of symbols]

1.太陽電池パネル 2.冷却ボックス 3.多孔質の金属板 4.冷媒封入口 5.放熱フィン 6.冷媒 7.太陽電池素子 8.樹脂基板 9.中枠 10.透明カバー 11.底板 12.外枠 1. Solar panel 2. Cooling box 3. 3. Porous metal plate 4. Refrigerant charging port Heat radiation fins 6. Refrigerant 7. Solar cell element 8. Resin substrate 9. Medium frame 10. Transparent cover 11. Bottom plate 12. Outer frame

───────────────────────────────────────────────────── フロントページの続き (72)発明者 篠崎 明 茨城県下館市大字下江連1250番地 日立化 成工業株式会社結城工場内 (72)発明者 石田 浩文 茨城県下館市大字下江連1250番地 日立化 成工業株式会社結城工場内 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Akira Shinozaki 1250 Shimoedori, Shimodate-shi, Ibaraki Pref.Hitachi Kasei Kogyo Co., Ltd. Seiki Kogyo Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 太陽電池パネルの裏面に金属製の密閉可
能な冷却ボックスを密着させ、その冷却ボックスの太陽
電池パネル裏面に密着した冷却ボックスの接する面の内
側に多孔質の金属板を設け、冷媒を封入するとともに、
金属製の冷却ボックスの太陽電池パネルに接しない面の
外側にフィンを設けたことを特徴とする太陽電池冷却シ
ステム。
1. A metal-closeable cooling box is closely attached to the back surface of a solar cell panel, and a porous metal plate is provided inside a surface of the cooling box in contact with the cooling box closely attached to the back surface of the solar cell panel, While filling the refrigerant,
A solar cell cooling system characterized in that fins are provided outside a surface of a metal cooling box not in contact with a solar cell panel.
【請求項2】 多孔質の金属板の開孔率が15〜40
%、表面孔数が20〜40個/mm2、孔径が80〜1
20μmであることを特徴とする請求項1に記載の太陽
電池冷却システム。
2. The porosity of a porous metal plate is 15 to 40.
%, The number of surface holes is 20 to 40 / mm 2 , and the hole diameter is 80 to 1
The solar cell cooling system according to claim 1, wherein the thickness is 20 µm.
JP9125490A 1997-05-15 1997-05-15 Solar battery cooling system Pending JPH10321890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9125490A JPH10321890A (en) 1997-05-15 1997-05-15 Solar battery cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9125490A JPH10321890A (en) 1997-05-15 1997-05-15 Solar battery cooling system

Publications (1)

Publication Number Publication Date
JPH10321890A true JPH10321890A (en) 1998-12-04

Family

ID=14911395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9125490A Pending JPH10321890A (en) 1997-05-15 1997-05-15 Solar battery cooling system

Country Status (1)

Country Link
JP (1) JPH10321890A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10251446A1 (en) * 2002-11-05 2004-05-19 Day4 Energy Inc. Cooling arrangement for a photovoltaic light concentrating unit has heat pipe attached to the heat transmitting surfaces of the device or devices
EP1552564A1 (en) * 2002-05-17 2005-07-13 Jason E. Schripsema Photovoltaic module with adjustable heat sink and method of fabrication
KR100910623B1 (en) * 2009-04-21 2009-08-04 주식회사 유나티앤이 Solar cell module with cooling apparatus and fabricating method of cooling apparatus thereof
DE102009012720A1 (en) * 2009-03-11 2010-09-16 Meuleman, André, Dipl.-Ing. Cooling system for photovoltaic module that is utilized on e.g. roofs, for converting sunlight into electricity, has corrugated plate and chamber connected to each other by openings to form cooling circuit for photovoltaic module
WO2010123210A2 (en) * 2009-04-21 2010-10-28 주식회사 유나티앤이 Photovoltaic module with cooling device and manufacturing method of cooling device
WO2011009993A1 (en) * 2009-07-24 2011-01-27 Pedro Jimenez Del Amo Cooling device for photovoltaic panel
ES2351490A1 (en) * 2009-07-24 2011-02-07 Pedro Jimenez Del Amo Photovoltaic panel refrigerator (Machine-translation by Google Translate, not legally binding)
KR101043506B1 (en) 2009-05-13 2011-06-23 주식회사 유나티앤이 Electric Bulletin Board with Cooling Apparatus
KR101044860B1 (en) 2010-01-29 2011-06-28 주식회사 유나티앤이 Cooling apparatus of solar cell module
WO2011155564A1 (en) * 2010-06-10 2011-12-15 旭ビルウォール株式会社 Louver unit for buildings
US20120156541A1 (en) * 2010-12-21 2012-06-21 Kwon Sohn Battery pack
JP2013187403A (en) * 2012-03-08 2013-09-19 Takasago Thermal Eng Co Ltd Cooling device of solar cell panel
CN114530516A (en) * 2022-01-26 2022-05-24 中国长江三峡集团有限公司 Fully-passive heat dissipation device for low-power concentrating photovoltaic

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1552564A1 (en) * 2002-05-17 2005-07-13 Jason E. Schripsema Photovoltaic module with adjustable heat sink and method of fabrication
EP1552564A4 (en) * 2002-05-17 2006-05-17 Jason E Schripsema Photovoltaic module with adjustable heat sink and method of fabrication
DE10251446B4 (en) * 2002-11-05 2004-11-11 Day4 Energy Inc. Cooling arrangement for light-bundling photovoltaic systems
DE10251446A1 (en) * 2002-11-05 2004-05-19 Day4 Energy Inc. Cooling arrangement for a photovoltaic light concentrating unit has heat pipe attached to the heat transmitting surfaces of the device or devices
DE102009012720A1 (en) * 2009-03-11 2010-09-16 Meuleman, André, Dipl.-Ing. Cooling system for photovoltaic module that is utilized on e.g. roofs, for converting sunlight into electricity, has corrugated plate and chamber connected to each other by openings to form cooling circuit for photovoltaic module
CN102422436A (en) * 2009-04-21 2012-04-18 优纳T&E株式会社 Photovoltaic module with cooling device and manufacturing method of cooling device
KR100910623B1 (en) * 2009-04-21 2009-08-04 주식회사 유나티앤이 Solar cell module with cooling apparatus and fabricating method of cooling apparatus thereof
WO2010123210A2 (en) * 2009-04-21 2010-10-28 주식회사 유나티앤이 Photovoltaic module with cooling device and manufacturing method of cooling device
WO2010123210A3 (en) * 2009-04-21 2011-01-06 주식회사 유나티앤이 Photovoltaic module with cooling device and manufacturing method of cooling device
JP2015092131A (en) * 2009-04-21 2015-05-14 ユナ ティーアンドイー カンパニーリミテッドYouna T&E Co.,Ltd. Solar module cooling device
US8646281B2 (en) 2009-04-21 2014-02-11 Youna T & E Co., Ltd. Photovoltaic module with cooling device and manufacturing method of cooling device
JP2012524998A (en) * 2009-04-21 2012-10-18 ユナ ティーアンドイー カンパニーリミテッド Solar module with cooling device and method of manufacturing the same
KR101043506B1 (en) 2009-05-13 2011-06-23 주식회사 유나티앤이 Electric Bulletin Board with Cooling Apparatus
ES2351490A1 (en) * 2009-07-24 2011-02-07 Pedro Jimenez Del Amo Photovoltaic panel refrigerator (Machine-translation by Google Translate, not legally binding)
WO2011009993A1 (en) * 2009-07-24 2011-01-27 Pedro Jimenez Del Amo Cooling device for photovoltaic panel
KR101044860B1 (en) 2010-01-29 2011-06-28 주식회사 유나티앤이 Cooling apparatus of solar cell module
JP2011256646A (en) * 2010-06-10 2011-12-22 Taisei Corp Louver unit for building
WO2011155564A1 (en) * 2010-06-10 2011-12-15 旭ビルウォール株式会社 Louver unit for buildings
US20120156541A1 (en) * 2010-12-21 2012-06-21 Kwon Sohn Battery pack
US8835036B2 (en) * 2010-12-21 2014-09-16 Samsung Sdi Co., Ltd. Battery pack
JP2013187403A (en) * 2012-03-08 2013-09-19 Takasago Thermal Eng Co Ltd Cooling device of solar cell panel
CN114530516A (en) * 2022-01-26 2022-05-24 中国长江三峡集团有限公司 Fully-passive heat dissipation device for low-power concentrating photovoltaic

Similar Documents

Publication Publication Date Title
JPH10321890A (en) Solar battery cooling system
EP1333710B1 (en) Method and apparatus for absorbing thermal energy
US5092129A (en) Space suit cooling apparatus
CN110966882B (en) Temperature-uniforming plate, preparation method of temperature-uniforming plate and electronic equipment
CA1321886C (en) Space suit cooling apparatus
KR101146676B1 (en) Solid electrolyte and thermoelectric convertor containing same
EP2836784B1 (en) Method of producing a latent heat storage device with phase change material and graphite matrix
CN110591656B (en) Composite phase change material for heating non-combustion type tobacco heat source and preparation method thereof
CN113978046B (en) Thermal protection structure and preparation method thereof
KR20180048293A (en) Sulfide all-solid-state battery
US5320866A (en) Method of wet coating a ceramic substrate with a liquid suspension of metallic particles and binder applying similar dry metallic particles onto the wet surface, then drying and heat treating the article
Pan et al. A low-cost portable cotton-based aluminum-air battery with high specific energy
WO2012057115A1 (en) Thermal receiver and solar thermal power generation device
EP3285329A1 (en) Hybrid fuel cell
JP2000353536A (en) Fuel cell and its operating method
JPH10121110A (en) Boiling heat-transfer member and its production
Shimoyama et al. Porous Aluminum for Heat Exchanger
US20200340757A1 (en) Expanded graphite-enhanced vapor-based heat transfer device and production process
JPH0470559B2 (en)
EP0033174A1 (en) Solar collector provided with a liquid-absorbing layer
CN110156473A (en) A kind of hollow C of S cladding3N4Nano ceramics sphere and preparation method thereof
US6003509A (en) Solar collector and method for production thereof
CN220418197U (en) Overheat protection device
CN212573417U (en) Ultrathin heat conduction patch and electronic equipment
CN108899529A (en) A kind of preparation method of silicon based composite material

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees