JPH0470559B2 - - Google Patents

Info

Publication number
JPH0470559B2
JPH0470559B2 JP59201700A JP20170084A JPH0470559B2 JP H0470559 B2 JPH0470559 B2 JP H0470559B2 JP 59201700 A JP59201700 A JP 59201700A JP 20170084 A JP20170084 A JP 20170084A JP H0470559 B2 JPH0470559 B2 JP H0470559B2
Authority
JP
Japan
Prior art keywords
heat transfer
liquid
heat
porous layer
liquid film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59201700A
Other languages
Japanese (ja)
Other versions
JPS6183895A (en
Inventor
Tooru Morimoto
Toshihisa Oogaki
Heikichi Kuwabara
Hisashi Nakayama
Tadakatsu Nakajima
Takahiro Ooguro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20170084A priority Critical patent/JPS6183895A/en
Publication of JPS6183895A publication Critical patent/JPS6183895A/en
Publication of JPH0470559B2 publication Critical patent/JPH0470559B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は低沸点媒体を作動流体としたランキン
サイクルの蒸発器、冷凍機の蒸発器、電子機器の
冷却器および原子力発電プラントの蒸気発生器な
どの熱交器の伝熱面の製造方法に関するものであ
る。 〔発明の背景〕 従来、最も広く用いられている蒸発器は、多数
の円管を円筒形胴の内部に収納した、いわゆるシ
エルチユーブ形式の熱交換器である。この熱交換
器は、前記円筒形胴内部に作動流体の低沸点媒体
液を充満させ、前記円筒形胴内の円筒表面から媒
体液を沸騰させる形式のものである。 近年は廃熱、地熱および海洋温度差などの温度
差エネルギーの有効利用をはかるために、低沸点
媒体を作動流体としたランキンサイクル発電プラ
ントが注目され、さらに高性能である、いわゆる
薄膜式蒸発器が提案されている。 上記蒸発器は伝熱面上に低沸点媒体液の薄液膜
を形成し、これを蒸発させる方式である。すなわ
ち第7図に示すように水平に設置した任意数の伝
熱管2に、この上方より液1をスプレー状に降り
注ぎ、伝熱管2の外周面に液膜4を形成させる。 この液膜4からの蒸発伝熱機構は、まず伝熱管
2内を流通する加熱流体5から管壁に熱が伝達さ
れ、この熱は管壁内部、管壁と液膜との境界面6
および液膜4を経て液膜表面7に達し、この液膜
表面7における蒸発潜熱を供給する作用を行う。
この際、伝熱管2の表面上の液膜4を薄く保つこ
とができれば、熱流に対する液膜部分の抵抗が減
少し、熱伝達率を向上させることができる。 化学工業および食品工業などで用いられる薄膜
蒸発器は第8図に示すように、垂直な円管2の外
周に液の薄膜4を形成して流下させて蒸発させる
ものである。例えば果汁の濃縮のように、液と加
熱面との接触時間を短くし、液の品質劣化を防止
する場合に適用されている。 さらに、第9図に示すように加熱流体5が流通
する偏平管8を積層してなる熱交換器9では、こ
の上方より液1を流下させて熱交換器9の側面上
に形成される薄膜4上で蒸発が行われる。このよ
うに偏平管8を積層することにより、熱交換器の
小形化をはかることができる。また薄膜蒸発を利
用した熱交換器では、伝熱面の構造として多孔伝
熱面を用いることにより、伝熱性能を高めること
ができる。前記多孔伝熱面は、機械的加工による
ものおよび微細粒子を焼結したものなどが利用さ
れている。 現在では上記の機械的加工法と焼結法の優劣の
差異は明確でない。微細粒子を焼結する方法は、
特公昭49−47349号、特公昭49−47350に記述され
ているように、沸騰液の種類、作動状況に応じて
高い伝熱性能がえられる粒子径、粒子層の厚さお
よび空隙率などの最適値が異なり、品質管理をか
なり厳格に行わねばならない。また前記文献で
は、熱伝導性の良好な金属板上に金属粉粒を散布
し、所定の粒子層厚さを形成させた後、炉内にお
いて無加圧状態で焼結を行つている。この際、金
属粒子の平均粒径はメツシユにより揃えられる
が、粒径が小さすぎると金属粉粒を散布するとき
に、粒子は飛散するから焼結層の生産性が低下す
る。一方、粒径が大きすぎると、粒子の飛散は起
りにくいが、金属板上で一様な厚さで粒子層を設
けることが容易でなく、品質管理は困難となる恐
れがある。 また、従来より伝熱表面に水の薄膜流を形成
し、この薄液膜を蒸発させる薄膜蒸発熱伝達で
は、プール沸騰熱伝達より伝熱性能が向上するこ
とは既に公知である。 一方、フレオンなどの有機冷媒により、上記の
薄膜蒸発熱伝達を行うとする場合には、フレオン
液の蒸発潜熱、比熱および熱伝導率などが水に比
べて小さいため、水の場合ほど伝熱促進効果が現
われないと考えられてきた。 ところが、エメリー#1000で磨かれた平滑面を
用い、大気圧状態下の飽和フレオンR−11を作動
流体として、薄膜蒸発を行わせた結果によると、
プール沸騰の場合に比べて、特に熱流束が小さい
領域で高い熱伝達率がえられている。 一方、上記薄膜蒸発熱伝達の伝熱面に平滑面を
用いた場合、伝熱面上での冷媒液膜の広がり性が
悪い。したがつて、伝熱面上に乾いた部分ができ
易いため、多くの液冷媒を伝熱面上に流さなけれ
ばならない。このため、伝熱面上での冷媒液膜の
広がり性を良好にし、できるだけ少ない液流量で
も乾いた部分が伝熱面上に現われにくく、高い伝
熱性能を有する伝熱面が必要となる。 このような伝熱面として、冷媒液をその表面張
力で引き込み、伝熱面上の隅々まで冷媒液膜を形
成する多孔質伝熱面が考えられる。平滑面に比べ
て飛躍的に高い性能を示しているし、また、多孔
質伝熱面は流下液流量の影響をあまり受けず、安
定した性能を維持でき熱交換器の設計上、優れた
特性を有している。 〔発明の目的〕 本発明は上記にかんがみ焼結多孔質伝熱面を利
用し、ほぼ一様な高い伝熱性能をうることがで
き、かつ生産性と品質管理の優れた伝熱面の製造
方法を提供することを目的とするものである。 〔発明の概要〕 上記目的は、伝熱壁面に沿つて冷媒液を流下さ
せて、前記伝熱壁上に薄液膜流を形成し、該薄液
膜の蒸発により前記伝熱壁面を冷却するようにし
た熱交換器において、前記伝熱壁面上にアルミニ
ウムまたはアルミニウム合金の粉粒状ベース材と
該粉粒状ベース材よりも融点が少なくとも10℃低
くかつ小粒子径のアルミニウム合金の粉粒状材を
混合した粒子径が100〜300μmの粉粒体を、前記
粉粒状ベース材の融点よりも少なくとも10℃低く
かつ前記小径のアルミニウム合金の粉粒状材の融
点よりも高い温度でしかも実質的に無加圧状態に
おいて非酸化性雰囲気中で焼結して焼結多孔質層
を形成すると共に、該焼結多孔質の空隙率を25〜
50%に構成することにより達成される。 〔発明の実施例〕 以下、本発明の実施例を図面について説明す
る。 第1図は本実施例を適用した熱交換器の斜視図
で、2は加熱流体5の流通する伝熱管、3は伝熱
管2の外周面上に100〜300μmを直径の金属粉粒
を焼結して形成された焼結多孔質層、4は伝熱管
2の上方より流下された冷媒液1により、前記多
孔質層の外側面に形成された薄液膜である。 上記のような構成からなる伝熱管の伝熱面の製
造方法について下記に詳述する。 まず、アルミニウム粉末を標準ふるいにより粒
子径の一様な粒子群を選び、この粒子群を金属板
上に散布して一様な厚さの粒子層を形成し、炉内
で焼結して前記金属板上に焼結多孔質層を形成す
る。このようにして試作した5種類の伝熱管の伝
熱面の構造特性を下記表に示す。
[Field of Application of the Invention] The present invention is applicable to heat transfer in heat exchangers such as Rankine cycle evaporators, refrigerator evaporators, electronic device coolers, and steam generators in nuclear power plants that use a low boiling point medium as a working fluid. This invention relates to a method for manufacturing surfaces. [Background of the Invention] Conventionally, the most widely used evaporator is a so-called shell tube type heat exchanger in which a large number of circular tubes are housed inside a cylindrical body. This heat exchanger is of a type in which the inside of the cylindrical shell is filled with a low boiling point medium liquid of the working fluid, and the medium liquid is boiled from the cylindrical surface within the cylindrical shell. In recent years, Rankine cycle power plants that use low boiling point media as the working fluid have attracted attention in order to effectively utilize temperature difference energy such as waste heat, geothermal heat, and ocean temperature differences. is proposed. The evaporator is of a type that forms a thin liquid film of a low boiling point medium liquid on a heat transfer surface and evaporates it. That is, as shown in FIG. 7, the liquid 1 is sprayed onto an arbitrary number of heat transfer tubes 2 installed horizontally from above to form a liquid film 4 on the outer circumferential surface of the heat transfer tubes 2. In this evaporative heat transfer mechanism from the liquid film 4, heat is first transferred from the heating fluid 5 flowing in the heat transfer tube 2 to the tube wall, and this heat is transferred inside the tube wall and at the interface between the tube wall and the liquid film.
It then reaches the liquid film surface 7 via the liquid film 4, and acts to supply the latent heat of vaporization on the liquid film surface 7.
At this time, if the liquid film 4 on the surface of the heat transfer tube 2 can be kept thin, the resistance of the liquid film portion to heat flow will be reduced, and the heat transfer coefficient can be improved. A thin film evaporator used in the chemical industry, food industry, etc., as shown in FIG. 8, forms a thin film 4 of liquid around the outer periphery of a vertical circular tube 2 and evaporates it by flowing it down. For example, it is applied to the case of concentrating fruit juice, where the contact time between the liquid and the heating surface is shortened to prevent the quality of the liquid from deteriorating. Furthermore, as shown in FIG. 9, in a heat exchanger 9 formed by stacking flat tubes 8 through which heating fluid 5 flows, a thin film is formed on the side surface of the heat exchanger 9 by flowing liquid 1 from above. Evaporation takes place on 4. By stacking the flat tubes 8 in this manner, the heat exchanger can be made smaller. Furthermore, in a heat exchanger using thin film evaporation, heat transfer performance can be improved by using a porous heat transfer surface as the structure of the heat transfer surface. The porous heat transfer surface is formed by mechanical processing or by sintering fine particles. At present, the difference between the superiority and inferiority of the mechanical processing method and the sintering method described above is not clear. The method of sintering fine particles is
As described in Japanese Patent Publication No. 49-47349 and Japanese Patent Publication No. 49-47350, depending on the type of boiling liquid and the operating conditions, the particle size, particle layer thickness, porosity, etc. that can obtain high heat transfer performance are determined. The optimum values are different, and quality control must be conducted quite strictly. Further, in the above document, metal powder particles are spread on a metal plate having good thermal conductivity to form a predetermined particle layer thickness, and then sintering is performed in a furnace in a non-pressurized state. At this time, the average particle size of the metal particles is made uniform by the mesh, but if the particle size is too small, the particles will scatter when the metal powder particles are sprinkled, which will reduce the productivity of the sintered layer. On the other hand, if the particle size is too large, scattering of particles is unlikely to occur, but it is not easy to provide a particle layer with a uniform thickness on a metal plate, and quality control may become difficult. Furthermore, it is already known that thin film evaporative heat transfer, in which a thin film of water is formed on a heat transfer surface and the thin liquid film is evaporated, has improved heat transfer performance compared to pool boiling heat transfer. On the other hand, when performing the above-mentioned thin film evaporative heat transfer using an organic refrigerant such as Freon, the heat transfer is accelerated in the case of water because the latent heat of vaporization, specific heat, and thermal conductivity of the Freon liquid are smaller than that of water. It was thought that there would be no effect. However, according to the results of thin film evaporation using a smooth surface polished with emery #1000 and saturated Freon R-11 as the working fluid under atmospheric pressure conditions,
Compared to the case of pool boiling, a high heat transfer coefficient is obtained, especially in the region where the heat flux is small. On the other hand, when a smooth surface is used as the heat transfer surface for the thin film evaporative heat transfer, the spreadability of the refrigerant liquid film on the heat transfer surface is poor. Therefore, a large amount of liquid refrigerant must flow over the heat transfer surface because dry areas are likely to form on the heat transfer surface. Therefore, there is a need for a heat transfer surface that has good spreadability of the refrigerant liquid film on the heat transfer surface, prevents dry areas from appearing on the heat transfer surface even with as low a liquid flow rate as possible, and has high heat transfer performance. A possible example of such a heat transfer surface is a porous heat transfer surface that draws in the refrigerant liquid by its surface tension and forms a refrigerant liquid film over every corner of the heat transfer surface. It shows significantly higher performance than a smooth surface, and porous heat transfer surfaces are not affected by the flow rate of flowing liquid and can maintain stable performance, which is an excellent characteristic in the design of heat exchangers. have. [Object of the Invention] In view of the above, the present invention utilizes a sintered porous heat transfer surface to produce a heat transfer surface that can obtain almost uniform high heat transfer performance and has excellent productivity and quality control. The purpose is to provide a method. [Summary of the Invention] The above object is to cause a refrigerant liquid to flow down along a heat transfer wall surface, form a thin liquid film flow on the heat transfer wall, and cool the heat transfer wall surface by evaporation of the thin liquid film. In the heat exchanger, a granular aluminum or aluminum alloy powder base material and an aluminum alloy powder granular material having a melting point at least 10°C lower than the powder base material and having a small particle size are mixed on the heat transfer wall surface. A powder having a particle size of 100 to 300 μm is heated at a temperature that is at least 10°C lower than the melting point of the powder base material and higher than the melting point of the small diameter aluminum alloy powder and granule material, and substantially without pressure. sintered in a non-oxidizing atmosphere to form a sintered porous layer, and the porosity of the sintered porous layer is sintered in a non-oxidizing atmosphere.
This is achieved by configuring it to 50%. [Embodiments of the Invention] Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of a heat exchanger to which this embodiment is applied, where 2 is a heat exchanger tube through which heating fluid 5 flows, and 3 is a heat exchanger tube in which metal powder particles with a diameter of 100 to 300 μm are baked on the outer peripheral surface of the heat exchanger tube 2. The sintered porous layer 4 thus formed is a thin liquid film formed on the outer surface of the porous layer by the refrigerant liquid 1 flowing down from above the heat transfer tube 2. A method for manufacturing a heat transfer surface of a heat transfer tube having the above structure will be described in detail below. First, a group of particles with a uniform particle size is selected from aluminum powder using a standard sieve, and this particle group is scattered on a metal plate to form a particle layer with a uniform thickness, and then sintered in a furnace. A sintered porous layer is formed on the metal plate. The structural characteristics of the heat transfer surfaces of the five types of heat transfer tubes prototyped in this manner are shown in the table below.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、100〜
300μmのアルミニウムを含む粉粒により、アル
ミニウム板上(壁面上)に0.9〜1.1mmの焼結多孔
層を形成することにより、ほぼ一様な高い伝熱性
能を有し、かつ生産性と品質管理の優れた伝熱面
をうることができる。また、薄膜蒸発式の伝熱面
として使用することにより、高い伝熱性能を前記
多孔層により安定にうることができるばかりでな
く、壁面と作動の流体間の温度差が小さくなつて
も、高い伝熱性能をうることが可能である。 更に、基板金属にアルミニウム多孔質材を直接
粉末焼結にて複合し、伝熱面を形成できるのでそ
の間に接合層は存在せず、熱伝達特性が向上する
効果が得られる。
As explained above, according to the present invention, 100 to
By forming a sintered porous layer of 0.9 to 1.1 mm on the aluminum plate (wall surface) using powder particles containing 300 μm of aluminum, it has almost uniform high heat transfer performance and improves productivity and quality control. An excellent heat transfer surface can be obtained. In addition, by using the thin film evaporation type heat transfer surface, not only can high heat transfer performance be stably obtained by the porous layer, but even if the temperature difference between the wall surface and the working fluid is small, the high It is possible to obtain heat transfer performance. Furthermore, since the heat transfer surface can be formed by directly combining the porous aluminum material with the substrate metal by powder sintering, there is no bonding layer between them, resulting in the effect of improving heat transfer characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の伝熱面の一実施例を適用した
垂直円管の斜視図、第2図および第3図は同実施
例の粒径分布説明図および沸騰曲線の説明図、第
4図は同実施例の平均粒子径と熱伝達率との関係
を示す説明図、第5図は同実施例の薄膜蒸発熱伝
達の一例を示す図、第6図は同実施例の流下液流
量と熱伝達率との関係を示す図、第7図および第
8図と第9図は従来の伝熱面を適用した各従来例
の縦断面図および斜視図である。 1……冷媒液、2……熱交換器、3……焼結多
孔質層、4……薄液膜流。
FIG. 1 is a perspective view of a vertical circular tube to which an embodiment of the heat transfer surface of the present invention is applied, FIGS. 2 and 3 are illustrations of the particle size distribution and boiling curve of the same embodiment, and FIG. The figure is an explanatory diagram showing the relationship between the average particle diameter and the heat transfer coefficient in the same example, Figure 5 is a diagram showing an example of thin film evaporation heat transfer in the same example, and Figure 6 is the flow rate of the flowing liquid in the same example. FIGS. 7, 8, and 9 are longitudinal cross-sectional views and perspective views of conventional examples to which conventional heat transfer surfaces are applied. 1... Refrigerant liquid, 2... Heat exchanger, 3... Sintered porous layer, 4... Thin liquid film flow.

Claims (1)

【特許請求の範囲】[Claims] 1 伝熱壁面に沿つて冷媒液を流下させて、前記
伝熱壁上に薄液膜流を形成し、該薄液膜の蒸発に
より前記伝熱壁面を冷却するようにした熱交換器
において、前記伝熱壁面上に、アルミニウムまた
はアルミニウム合金の粉粒状ベース材と該粉粒状
ベース材よりも融点が少なくとも10℃低くかつ小
粒子径のアルミニウム合金の粉粒状材を混合した
粒子径が100〜300μmの粉粒体を、前記粉粒状ベ
ース材の融点よりも少なくとも10℃低くかつ前記
小径のアルミニウム合金の粉粒状材の融点よりも
高い温度でしかも実質的に無加圧状態において非
酸化性雰囲気中で焼結して焼結多孔質層を形成す
ると共に、該焼結多孔質の空隙率を25〜50%に構
成することを特徴とする伝熱面の製造方法。
1. A heat exchanger in which a refrigerant liquid flows down along a heat transfer wall surface to form a thin liquid film flow on the heat transfer wall, and the heat transfer wall surface is cooled by evaporation of the thin liquid film, On the heat transfer wall surface, a powdery base material of aluminum or an aluminum alloy and a powdery and granular material of an aluminum alloy having a melting point at least 10°C lower than the powdery base material and a small particle size are mixed, and the particle size is 100 to 300 μm. in a non-oxidizing atmosphere at a temperature that is at least 10°C lower than the melting point of the powder base material and higher than the melting point of the small diameter aluminum alloy powder and granule material, and in a substantially non-pressurized state. A method for manufacturing a heat transfer surface, comprising: forming a sintered porous layer by sintering the sintered porous layer, and configuring the sintered porous layer to have a porosity of 25 to 50%.
JP20170084A 1984-09-28 1984-09-28 Heating surface and manufacture thereof Granted JPS6183895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20170084A JPS6183895A (en) 1984-09-28 1984-09-28 Heating surface and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20170084A JPS6183895A (en) 1984-09-28 1984-09-28 Heating surface and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS6183895A JPS6183895A (en) 1986-04-28
JPH0470559B2 true JPH0470559B2 (en) 1992-11-11

Family

ID=16445464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20170084A Granted JPS6183895A (en) 1984-09-28 1984-09-28 Heating surface and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6183895A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04118919U (en) * 1991-02-05 1992-10-23 大阪瓦斯株式会社 Auxiliary tool for hole saw
WO2001013057A1 (en) * 1999-08-12 2001-02-22 Nkk Corporation Heat exchange tube and heat recovery method using it
US7059130B2 (en) * 2002-02-13 2006-06-13 Ship & Ocean Foundation Heat exchanger applicable to fuel-reforming system and turbo-generator system
JP2007078276A (en) * 2005-09-15 2007-03-29 Tlv Co Ltd Evaporative cooling device
FR2940766B1 (en) * 2009-01-06 2011-05-27 Commissariat Energie Atomique METHOD FOR MAKING AN INCREASED ADHESIONED NANOPARTICLE DEPOSITION AND DEVICE FOR IMPLEMENTING SUCH A METHOD
JP2015090242A (en) * 2013-11-06 2015-05-11 住友電気工業株式会社 Metal pipe, heat transfer pipe, heat exchange device, and manufacturing method of metal pipe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947349A (en) * 1972-03-22 1974-05-08
JPS5852993A (en) * 1981-09-25 1983-03-29 Hitachi Ltd Porous heat transfer surface

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947349A (en) * 1972-03-22 1974-05-08
JPS5852993A (en) * 1981-09-25 1983-03-29 Hitachi Ltd Porous heat transfer surface

Also Published As

Publication number Publication date
JPS6183895A (en) 1986-04-28

Similar Documents

Publication Publication Date Title
US7124809B2 (en) Brazed wick for a heat transfer device
KR950014046B1 (en) Optimized integral heat pipe and electronic circuit module arrangement
US6911231B2 (en) Method for producing a heat transfer medium and device
WO2018218943A1 (en) Method for enhancing boiling performance of chip surface
US3666006A (en) Heat exchanger
CN106211726A (en) The phase-change radiation system of a kind of band porous inner rib plate and preparation method
CN111412776A (en) Vapor-liquid flow-dividing capillary-core vapor chamber heat exchanger and preparation method thereof
JPH0470559B2 (en)
CN111076592A (en) Treatment method of alkali metal heat pipe liquid absorption core
JPH10321890A (en) Solar battery cooling system
JPH04148194A (en) Heat exchanger with adsorbent
CN112702899A (en) Ultrathin soaking plate based on self-wetting fluid as working solution and application
Volodin et al. Heat Transfer Enhancement on Multilayer Wire Mesh Coatings and Wire Mesh Coatings Combined with Other Surface Modifications—A Review
JP2001077257A (en) Boiling cooling device
TWI816524B (en) Two-phase immersion-cooling heat-dissipation structure having skived fin with high porosity
JPS61131553A (en) Immersion liquid cooling apparatus
JPS58199546A (en) Semiconductor cooler
TW519865B (en) High efficiency heat sink
JP3086493U (en) Heat dissipation device
JPS59232165A (en) Thermal energy storage element
TWI809848B (en) Evaporating portion structure and heat transfer member having the evaporating portion structure
SU779798A1 (en) Heat exchange element
JPH0254955A (en) Vaporization cooling semiconductor device
TW202409495A (en) Two-phase immersion-cooling heat-dissipation structure having skived fin with high porosity
JPS61228292A (en) Heat transfer tube with heat pipe built-in fins