JP2000353536A - Fuel cell and its operating method - Google Patents

Fuel cell and its operating method

Info

Publication number
JP2000353536A
JP2000353536A JP11162152A JP16215299A JP2000353536A JP 2000353536 A JP2000353536 A JP 2000353536A JP 11162152 A JP11162152 A JP 11162152A JP 16215299 A JP16215299 A JP 16215299A JP 2000353536 A JP2000353536 A JP 2000353536A
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
gas
heat pipe
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11162152A
Other languages
Japanese (ja)
Inventor
Yukio Shitaya
幸夫 下谷
Maki Ishizawa
真樹 石沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP11162152A priority Critical patent/JP2000353536A/en
Publication of JP2000353536A publication Critical patent/JP2000353536A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To minimize the apparatus to be arranged around a cell and a device to simplify the structure by constituting a separator having a fuel gas passage and an oxidizer gas passage arranged therein so as to be usable also as a cooling plate. SOLUTION: The fuel cell 7 of a solid polymer type fuel cell 1 comprises a solid polymer electrolytic film 2, a conductive and air-permeable fuel electrode film 3 and oxidizer electrode film 4 arranged on both sides of the solid polymer electrolytic film 2, a fuel gas separator 5 having a fuel gas passage for supplying a gas to the electrode film 4 and discharging the gas from the electrode film 4, and an oxidizer gas separator 6 having an oxidizer gas passage. Further, a heat pipe 9 having a radiation fin 11 is provided at the end of the oxidizer gas separator 6. In this case, the heat pipe 9 with the radiation fin 11 is connected to one side of the substantially rectangular oxidizer gas separator 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子電解質
膜を電解質として用いる固体高分子型燃料電池のセル構
造、特にヒートパイプより構成されるセパレータを備え
た燃料電池及びその運転方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cell structure of a polymer electrolyte fuel cell using a polymer electrolyte membrane as an electrolyte, and more particularly to a fuel cell having a separator composed of a heat pipe and a method of operating the fuel cell. is there.

【0002】[0002]

【従来の技術】図4に従来の燃料電池の構成を示す。固
体高分子型燃料電池1′は、固体高分子電解質膜2と、
この固体高分子電解質膜2の両面に配された導電性と通
気性とを兼ね備えた燃料電極膜3及び酸化剤電極膜4、
さらにその電極膜にガスを供給し、あるいは電極膜から
ガスを排出するための燃料ガス流路を有する燃料ガス用
セパレータ5及び酸化剤ガス流路を有する酸化剤ガス用
セパレータ6からなる燃料電池セル7が複数枚積層さ
れ、積層枚数毎にまたは燃料電池セル7と交互に冷却媒
体流路を有する冷却板8が配置され構成されている。
2. Description of the Related Art FIG. 4 shows the structure of a conventional fuel cell. The polymer electrolyte fuel cell 1 ′ includes a polymer electrolyte membrane 2,
A fuel electrode membrane 3 and an oxidant electrode membrane 4 having both conductivity and air permeability disposed on both sides of the solid polymer electrolyte membrane 2;
Further, a fuel cell comprising a fuel gas separator 5 having a fuel gas flow path for supplying gas to or discharging gas from the electrode film and an oxidizing gas separator 6 having an oxidizing gas flow path A plurality of cooling plates 8 having cooling medium passages are arranged and arranged for every number of stacked layers or alternately with the fuel cells 7.

【0003】この燃料電池1′において、水素を主燃料
とする燃料ガスと空気あるいは酸素等の酸化剤ガスをそ
れぞれ供給し、電気化学的に反応する際に発熱する反応
熱を排熱し、燃料電池セル7の温度を一定に保つため、
冷却板8が配置されている。
In this fuel cell 1 ', a fuel gas containing hydrogen as a main fuel and an oxidizing gas such as air or oxygen are supplied, respectively, and the reaction heat generated during the electrochemical reaction is exhausted to remove the heat. In order to keep the temperature of the cell 7 constant,
A cooling plate 8 is provided.

【0004】また、図5に従来の燃料電池システム図を
示す。図において、14は燃料電池システム、17は固
体高分子型燃料電池1′に接続されたポンプ、19は同
じく燃料電池1′に接続された冷却装置であり、この冷
却装置19は冷却循環水配管18を介し水タンク20に
接続されている。21は燃料部である。この燃料電池シ
ステム14では、冷却媒体として主に水が用いられ、ポ
ンプ17等の動力により冷却媒体流路に供給され、図4
に示した燃料電池セル7の温度を一定に保ちながら冷却
板8から排出された高温となった冷却媒体は専用の冷却
装置19または空冷手段等により冷却され低温となった
後、再度冷却板8に供給され循環していた。
FIG. 5 shows a conventional fuel cell system. In the figure, 14 is a fuel cell system, 17 is a pump connected to the polymer electrolyte fuel cell 1 ', 19 is a cooling device also connected to the fuel cell 1', and this cooling device 19 is a cooling circulating water pipe. 18 is connected to a water tank 20. 21 is a fuel section. In this fuel cell system 14, water is mainly used as a cooling medium, and is supplied to the cooling medium flow path by the power of a pump 17 and the like.
The high-temperature cooling medium discharged from the cooling plate 8 while keeping the temperature of the fuel cell 7 constant as shown in FIG. 4 is cooled by a dedicated cooling device 19 or air cooling means to a low temperature, and then cooled again. Was circulated.

【0005】従来、このような燃料電池1′において
は、前記燃料電池セル7を冷却するためのポンプ17、
冷却循環水配管18、専用の冷却装置19または空冷手
段等の設備、冷却媒体を循環させるためのポンプ動力、
冷却媒体である水の管理等の保守が必要であった。ま
た、燃料電池セル7の構成部材であるセパレータ、冷却
板8は導電性を有するカーボンから形成されており、材
料・加工費を含め製作コストが高価であり、また冷却装
置等の設備のコストもかかり低コスト化を阻害してい
た。
Conventionally, in such a fuel cell 1 ′, a pump 17 for cooling the fuel cell 7,
Equipment such as a cooling circulating water pipe 18, a dedicated cooling device 19 or air cooling means, a pump power for circulating a cooling medium,
Maintenance such as management of water as a cooling medium was required. Further, the separator and the cooling plate 8 which are constituent members of the fuel cell unit 7 are formed of conductive carbon, so that the manufacturing cost including material and processing costs is high, and the cost of equipment such as a cooling device is also low. This hindered cost reduction.

【0006】[0006]

【発明が解決しようとする課題】従来の燃料電池におい
ては、燃料電池セルを冷却するためのポンプ、冷却循環
水配管、専用の冷却装置または空冷手段等の設備が必要
で、かつ燃料電池セルの製作コストが高価であることか
ら装置の小型化・軽量化と低コスト化を阻止しており、
また冷却媒体を循環させるためのポンプ動力が必要で発
電中の効率を低下させ、冷却媒体である水の管理等の保
守稼動が必要であるという欠点があり、燃料電池及び装
置の周辺に配置される機器をできるだけ少なくして簡単
な構成にすることが望まれる。
In the conventional fuel cell, a pump for cooling the fuel cell, a cooling circulating water pipe, a dedicated cooling device or an air cooling means, etc. are required, and the fuel cell is required to be cooled. The high production cost prevents miniaturization, weight reduction and cost reduction of the device.
In addition, there is a drawback that a pump power for circulating the cooling medium is required, which lowers efficiency during power generation, and requires maintenance operation such as management of water as the cooling medium. It is desired that the number of devices be as small as possible and the configuration be simple.

【0007】本発明は、上記課題を解決するために提案
されたもので、その目的とするところは、燃料ガス流路
及び酸化剤ガス流路が配置されたセパレータと冷却板を
兼ねた構造とすることにより、燃料電池セルを冷却する
ためのポンプ、冷却循環水配管、専用の冷却装置または
空冷手段等の設備が不用で、冷却媒体を循環させるため
のポンプ動力、さらに冷却媒体である水の管理等を必要
とせず、装置の小型・軽量化と低コスト化を達成し、発
電中の効率を向上させ、保守管理が容易で、安価に得ら
れる燃料電池及びその運転方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been proposed to solve the above-mentioned problems, and an object of the present invention is to provide a structure in which a cooling plate and a separator in which a fuel gas passage and an oxidizing gas passage are arranged are used. This eliminates the need for a pump for cooling the fuel cell, cooling circulating water pipes, a dedicated cooling device or air cooling means, etc., a pump power for circulating a cooling medium, and water for cooling medium. It is intended to provide a fuel cell and a method for operating the same that can be manufactured at a low cost without requiring any management or the like, achieving a small, lightweight, and low-cost device, improving efficiency during power generation, easily performing maintenance and management, and the like. is there.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明は、固体高分子電解質膜2と、この固体高分子
電解質膜2の両面に配置された導電性と通気性とを兼ね
備えた燃料電極膜3及び酸化剤電極膜4と、この燃料電
極膜3、酸化剤電極膜4にガスを供給し、あるいは電極
膜3、4からガスを排出するための燃料ガス流路を有す
る燃料ガス用セパレータ5及び酸化剤ガス流路を有する
酸化剤ガス用セパレータ6から構成される燃料電池セル
7を複数枚積層して積層体を構成する固体高分子型の燃
料電池1において、前記燃料ガス用セパレータ5及び酸
化剤ガス用セパレータ6がヒートパイプ9を有し、この
ヒートパイプ9に放熱用フィン11が設けられた構造で
あることを特徴とする。
In order to achieve the above object, the present invention provides a solid polymer electrolyte membrane 2 having both conductivity and air permeability disposed on both surfaces of the solid polymer electrolyte membrane 2. A fuel gas having a fuel electrode film 3 and an oxidant electrode film 4 and a fuel gas passage for supplying gas to the fuel electrode film 3 and the oxidant electrode film 4 or discharging gas from the electrode films 3 and 4 Polymer fuel cell 1 comprising a plurality of fuel cells 7 each comprising a separator 5 for oxidizing gas and a separator 6 for oxidizing gas having an oxidizing gas passage, and forming a stacked body, The separator 5 and the oxidant gas separator 6 have a heat pipe 9, and the heat pipe 9 is provided with a radiating fin 11.

【0009】また、前記ヒートパイプ9を有する燃料ガ
ス用セパレータ5及び酸化剤ガス用セパレータ6は、導
電性を有する金属プレート中に円管状のパイプを配置
し、このパイプ中に熱輸送媒体である作動液10が封入
された構造であることを特徴とする。
In the fuel gas separator 5 and the oxidizing gas separator 6 having the heat pipe 9, a circular pipe is arranged in a conductive metal plate, and the pipe is a heat transport medium. It is characterized in that it has a structure in which the working fluid 10 is sealed.

【0010】また、前記ヒートパイプ9の放熱部は、ヒ
ートパイプの内部に空気、窒素ガス等の不活性ガスをベ
ローズ12等の容器に封入することにより、一定温度以
上に達すると冷却効果が発現する構造であることを特徴
とする。
The heat radiating portion of the heat pipe 9 has a cooling effect when a certain temperature or more is reached by filling an inert gas such as air or nitrogen gas into a vessel such as the bellows 12 inside the heat pipe. The structure is characterized by the following.

【0011】また、上記構成の燃料電池の運転方法とし
ては、燃料ガス、酸化剤ガスを供給することにより燃料
電池1を発電させ、燃料電池1の起動時にはヒートパイ
プ9の断熱効果により燃料電池セル7自身の発熱によ
り、迅速に温度上昇させるとともに、燃料電池セル7が
ある温度以上になった時、ヒートパイプ9の冷却機能が
作動し電池反応とともに発生する反応熱をヒートパイプ
9を介して大気中に放出することを特徴とする。
In the operation method of the fuel cell having the above configuration, the fuel cell 1 is powered by supplying a fuel gas and an oxidizing gas, and the fuel cell 1 is activated by the heat insulating effect of the heat pipe 9 when the fuel cell 1 is started. The temperature of the fuel cell 7 rises rapidly due to the heat generated by the fuel cell 7 itself. When the temperature of the fuel cell 7 exceeds a certain temperature, the cooling function of the heat pipe 9 is activated, and the reaction heat generated along with the battery reaction is released to the atmosphere via the heat pipe 9. It is characterized by being released into.

【0012】[0012]

【発明の実施の形態】本発明は、燃料電池において、燃
料電池セルのセパレータにヒートパイプを用いて電気化
学的に反応する際に発熱する反応熱をヒートパイプを介
して複数個の放熱用フィンに熱を伝達して大気中に排熱
し、複数枚積層して積層体を構成する燃料電池の温度を
均一に保つことを最も主要な特徴とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to a fuel cell, wherein a reaction heat generated when electrochemically reacting with a separator of a fuel cell using a heat pipe through a heat pipe is used to form a plurality of radiating fins through the heat pipe. The most important feature of the fuel cell system is that heat is transferred to the fuel cell and exhausted to the atmosphere, and the temperature of the fuel cells constituting the stacked body formed by laminating a plurality of the stacked bodies is uniform.

【0013】従来の技術とは、燃料ガス流路及び酸化剤
ガス流路が配されてなるセパレータと冷却媒体流路を有
する冷却板、専用の冷却装置がそれぞれ独立して配置さ
れていた代わりに、燃料ガス流路及び酸化剤流路が配さ
れたセパレータがヒートパイプより構成され、前記ヒー
トパイプに複数個の放熱用フィンを形成し、熱輸送媒体
である作動液を金属プレート中に封入して一体化構造と
し、冷却効果を有する点が異なる。
The prior art is different from the prior art in that a separator having a fuel gas flow path and an oxidizing gas flow path, a cooling plate having a cooling medium flow path, and a dedicated cooling device are independently arranged. The separator in which the fuel gas flow path and the oxidant flow path are arranged is constituted by a heat pipe, a plurality of heat radiation fins are formed in the heat pipe, and a working fluid as a heat transport medium is sealed in a metal plate. In that they have a cooling effect.

【0014】このように、前記燃料電池セルを燃料ガス
流路及び酸化剤ガス流路が配置されたセパレータと冷却
板とを兼ね一体化構造として燃料電池を構成すること
で、図3に示す本発明による燃料電池システム14のよ
うに、燃料電池及び装置の周辺に配置される機器を簡略
にすることが可能となり、その結果、製作コストが従来
装置の約1/3、容積・重量が1/2削減可能となり、
かつ保守管理が容易になり、装置の小型・軽量化と低コ
スト化を達成できる。また、本発明よる燃料電池の運転
方法は、燃料ガス、酸化剤ガスを供給することにより燃
料電池を発電させ、電池反応とともに発生する反応熱を
ヒートパイプを介して大気中に放出することを特徴とす
る。また、ヒートパイプに空気、窒素ガス等の不活性ガ
スをベローズ等の容器に封入し、ヒートパイプの内部に
形成することにより、燃料電池起動時には断熱効果を有
し、迅速に燃料電池セルを加熱して起動時間の短縮を図
り、燃料電池セル温度がある温度以上となった時にはヒ
ートパイプが作動することにより冷却効果が発現し、温
度制御により燃料電池セルの温度を均一に保つ燃料電池
を提供する。
As described above, by constructing the fuel cell as an integrated structure in which the fuel cell unit serves as the cooling plate and the separator in which the fuel gas flow path and the oxidizing gas flow path are disposed, the fuel cell shown in FIG. Like the fuel cell system 14 according to the present invention, it is possible to simplify the devices arranged around the fuel cell and the device, and as a result, the manufacturing cost is about 1/3 that of the conventional device, and the volume and weight are 1/3. 2 can be reduced,
In addition, the maintenance and management are facilitated, and the size, weight, and cost of the device can be reduced. Further, the method of operating a fuel cell according to the present invention is characterized in that the fuel cell generates electricity by supplying a fuel gas and an oxidizing gas, and the reaction heat generated along with the cell reaction is released to the atmosphere via a heat pipe. And In addition, an inert gas such as air or nitrogen gas is sealed in a bellows or other container in the heat pipe and formed inside the heat pipe, which has a heat insulating effect at the start of the fuel cell and quickly heats the fuel cell. In order to shorten the start-up time, when the fuel cell temperature rises above a certain temperature, the heat pipe operates to produce a cooling effect, and a fuel cell that maintains the temperature of the fuel cell uniformly by controlling the temperature is provided. I do.

【0015】[0015]

【実施例】図1は本発明の一実施例にかかる固体高分子
型燃料電池1の分解斜視図を示す。以下、図1を用いて
本発明の一実施例について説明する。本発明において
は、固体高分子電解質膜2と、前記固体高分子電解質膜
2の両面に配された導電性と通気性とを兼ね備えた燃料
電極膜3及び酸化剤電極膜4と、前記電極膜にガスを供
給し、あるいは電極膜からガスを排出するための燃料ガ
ス流路を有する燃料ガス用セパレータ5及び酸化剤ガス
流路を有する酸化剤ガス用セパレータ6とを備え、燃料
ガス用セパレータ5、酸化剤ガス用セパレータ6に、端
部に放熱用フィン11を有するヒートパイプ8が設けら
れ、これらによって燃料電池セル7が構成されている。
FIG. 1 is an exploded perspective view of a polymer electrolyte fuel cell 1 according to one embodiment of the present invention. Hereinafter, an embodiment of the present invention will be described with reference to FIG. In the present invention, the solid polymer electrolyte membrane 2, the fuel electrode film 3 and the oxidant electrode film 4 having both conductivity and gas permeability disposed on both sides of the solid polymer electrolyte membrane 2, A fuel gas separator 5 having a fuel gas flow path for supplying gas to or discharging a gas from the electrode film, and an oxidizing gas separator 6 having an oxidizing gas flow path. The oxidant gas separator 6 is provided with a heat pipe 8 having a radiating fin 11 at an end, and these constitute a fuel cell 7.

【0016】この場合、放熱用フィン11付きヒートパ
イプ8はほぼ矩形をなす酸化剤ガス用セパレータ6の一
方の側部に接続されている。また、下側に配置された同
ほぼ矩形をなす燃料ガス用セパレータ5には酸化剤ガス
用セパレータ6とは異なる他方の側部側に同様のヒート
パイプ8が設けられている。そして、この燃料電池セル
7を複数枚積層して積層体を構成し、固体高分子型燃料
電池1を構成している。
In this case, the heat pipe 8 with the heat radiating fins 11 is connected to one side of a substantially rectangular oxidizing gas separator 6. Further, a similar heat pipe 8 is provided on the other side different from the oxidizing gas separator 6 in the substantially rectangular fuel gas separator 5 disposed on the lower side. Then, a plurality of the fuel cells 7 are stacked to form a stacked body, and the polymer electrolyte fuel cell 1 is formed.

【0017】本発明で用いられるヒートパイプ9は、金
属プレート表面に耐腐食性に優れた貴金属にて蒸着等に
よる表面コーティングを施してもよい。また、導電性を
有する金属プレート中に円管状のパイプを配置し、この
パイプ中に熱輸送媒体である作動液10が封入されてい
る。導電性を有する金属プレートには、アルミニウム、
ステンレス、銅等の導電性、加工性に優れた金属のもの
が用いられ、表面コーティングには、耐腐食性に優れた
金、銀、ニッケル、アルミナ合金、チタン等のものが用
いられる。本発明のヒートパイプ9に導電性が必要とさ
れる理由は、複数の燃料電池セル7間を電気的に直列に
接続させるためである
In the heat pipe 9 used in the present invention, the surface of the metal plate may be coated with a noble metal having excellent corrosion resistance by vapor deposition or the like. Further, a circular pipe is disposed in a conductive metal plate, and the working fluid 10 as a heat transport medium is sealed in the pipe. Aluminum,
Metals having excellent conductivity and workability such as stainless steel and copper are used, and gold, silver, nickel, alumina alloy, titanium and the like having excellent corrosion resistance are used for the surface coating. The reason why the heat pipe 9 of the present invention is required to have conductivity is to electrically connect the plurality of fuel cells 7 in series.

【0018】ヒートパイプ9の先端に金属の薄板を加工
した放熱用フィン11を設け、これを複数個取付けるこ
とにより熱輸送を容易に行えるよう配置する。作動液1
0は、液体から気体へ、気体から液体に相変化すること
によって熱源から熱を輸送するための燃料電池の使用温
度領域に適した水、アンモニア、アセトン、メタノール
系作動液が用いられる。
A heat radiating fin 11 formed by processing a thin metal plate is provided at the end of the heat pipe 9, and a plurality of fins 11 are arranged so that heat transport can be easily performed. Hydraulic fluid 1
For 0, water, ammonia, acetone, and methanol-based hydraulic fluids suitable for the operating temperature range of the fuel cell for transferring heat from a heat source by changing phase from liquid to gas and from gas to liquid are used.

【0019】ヒートパイプ9の冷却方法は、図2
(a)、(b)に示す。図2(a)は冷却作動中、図2
(b)は冷却停止状態を示す。ヒートパイプ8の構造と
しては、ヒートパイプ9の放熱部にあたる円管の金属パ
イプの中に、ベローズ12等の容器が挿入されその中に
空気、窒素ガス等の不活性ガス13がある一定の圧力を
有し封入されている。燃料電池セル7の温度上昇ととも
にヒートパイプ9の熱輸送媒体である作動液10の蒸発
圧力がベローズ12等の容器圧力より高くなる時、ベロ
ーズ12等の容器を押し上げ放熱部にあたる容積が広く
なる。この空間に蒸気となった作動液10が移動し放熱
フィン11に熱を伝達することにより冷却され作動液が
凝縮されて液体になり、ヒートパイプ9の内壁にそって
下部の加熱領域に戻り冷却効果が発現する。
The method of cooling the heat pipe 9 is shown in FIG.
(A) and (b) show. FIG. 2A shows the state during the cooling operation.
(B) shows a cooling stop state. As a structure of the heat pipe 8, a container such as a bellows 12 is inserted into a circular metal pipe corresponding to a heat radiating portion of the heat pipe 9, and an inert gas 13 such as air or nitrogen gas has a certain pressure therein. And is enclosed. When the evaporating pressure of the working fluid 10 as the heat transport medium of the heat pipe 9 becomes higher than the pressure of the container such as the bellows 12 as the temperature of the fuel cell 7 rises, the container such as the bellows 12 is pushed up, and the volume corresponding to the heat radiating portion becomes large. The working fluid 10, which has been vaporized, moves into this space and is cooled by transferring heat to the radiating fins 11, whereby the working fluid is condensed into a liquid and returned to the lower heating area along the inner wall of the heat pipe 9 for cooling. The effect appears.

【0020】図3は、上述の本発明にかかる燃料電池1
が適形状の筐体内に収納された固体高分子型燃料電池シ
ステム14を示す。この図に示すように、ヒートパイプ
9の放熱用フィン11をダクトで囲い、ダクトの上部に
設けられた冷却ファン等で強制冷却して迅速に冷却効果
が得られるようにしてもよい。なお、図中矢印は空気の
流れを示す。また、21は燃料部である。
FIG. 3 shows the above-described fuel cell 1 according to the present invention.
Shows the polymer electrolyte fuel cell system 14 housed in an appropriately shaped housing. As shown in this figure, the heat radiating fins 11 of the heat pipe 9 may be surrounded by a duct and forcedly cooled by a cooling fan or the like provided at the top of the duct so that the cooling effect can be obtained quickly. The arrows in the figure indicate the flow of air. Reference numeral 21 denotes a fuel unit.

【0021】一方、ヒートパイプ9の冷却停止時は、作
動液10の蒸発圧力がベローズ12等の容器のガス圧力
よりも低いため、放熱用フィン11に熱を放出する空間
がなく熱を蓄積して燃料電池セル7を速やかに加熱す
る。
On the other hand, when the cooling of the heat pipe 9 is stopped, since the evaporating pressure of the working fluid 10 is lower than the gas pressure of the container such as the bellows 12, there is no space for releasing heat in the radiating fins 11 and heat is accumulated. To quickly heat the fuel cell 7.

【0022】このように燃料電池セル7の温度が上昇し
て、ある温度に到達した時点、例えば本発明の固体高分
子型燃料電池1の場合、約80℃に到達した時点で冷却
が作動するようベローズ12等の容器のガス圧力を調整
して、燃料電池セル7の温度制御を行うことができる。
As described above, when the temperature of the fuel cell 7 rises and reaches a certain temperature, for example, in the case of the polymer electrolyte fuel cell 1 of the present invention, cooling is started when the temperature reaches about 80 ° C. The temperature of the fuel cell 7 can be controlled by adjusting the gas pressure of the container such as the bellows 12.

【0023】本発明に用いるヒートパイプ9は、燃料電
池の発熱量によって異なるが、例えば本発明の固体高分
子型燃料電池1の場合、500W相当の発熱量の燃料電
池セルの温度制御を行うとすると、直径5mmの円管形
のヒートパイプ9を5本導電性を有する金属プレート中
に配置し、放熱用フィンは長さ150mmの範囲で高さ
10mmのものを3mm間隔で配置して用いればよい。
The heat pipe 9 used in the present invention varies depending on the calorific value of the fuel cell. For example, in the case of the polymer electrolyte fuel cell 1 of the present invention, when the temperature of the fuel cell having a calorific value of 500 W is controlled. Then, five circular heat pipes 9 each having a diameter of 5 mm are arranged in a metal plate having conductivity, and the radiating fins having a length of 150 mm and a height of 10 mm are arranged at 3 mm intervals. Good.

【0024】次に、本発明における燃料電池セルの運転
方法について説明する。水素を主燃料とする燃料ガスと
空気あるいは酸素等の酸化剤ガスをそれぞれ供給するこ
とにより燃料電池を発電させ、燃料電池起動時はセル温
度が環境温度と同一温度にありヒートパイプ9の機能で
ある冷却作用は停止している。この時、作動液10は電
気化学的に反応する際に発熱する反応熱により、高温高
圧の蒸気となりヒートパイプ9の内部で循環し、その蒸
気圧力はベローズ12等の容器のガス圧力よりも低いた
め、放熱用フィン11に熱を放出する空間がなく熱を蓄
積し、燃料電池セル7を速やかに加熱して温度を上昇さ
せる。燃料電池セル7の温度が室温以上に達すると、電
極中の触媒の活性化が増し、電池反応速度が増加する。
この電池反応速度の増加により、反応に伴う発熱量も増
加することから、燃料電池セル7の温度も急激に上昇す
る。
Next, a method of operating the fuel cell unit according to the present invention will be described. The fuel cell generates electricity by supplying a fuel gas containing hydrogen as a main fuel and an oxidizing gas such as air or oxygen. When the fuel cell is started, the cell temperature is the same as the environmental temperature, and the function of the heat pipe 9 is used. Some cooling has stopped. At this time, the working fluid 10 becomes high-temperature and high-pressure steam due to reaction heat generated when electrochemically reacting, and circulates inside the heat pipe 9, and the steam pressure is lower than the gas pressure of a container such as the bellows 12. Therefore, there is no space in the heat dissipating fins 11 to release the heat, heat is accumulated, and the fuel cell 7 is quickly heated to increase the temperature. When the temperature of the fuel cell 7 reaches room temperature or higher, the activation of the catalyst in the electrode increases, and the cell reaction rate increases.
The increase in the reaction rate of the battery also increases the amount of heat generated by the reaction, so that the temperature of the fuel cell 7 also rises rapidly.

【0025】このように、燃料電池セル7の温度が上昇
し、ある温度に到達した時点、例えば本発明の固体高分
子型燃料電池1の場合、約80℃に到達した時点でヒー
トパイプ9の機能である冷却作用が作動する。すなわ
ち、ヒートパイプ9の熱輸送媒体である作動液10の蒸
発圧力が、約80℃に到達した時点でベローズ12等の
容器圧力よりも高くなり、ベローズ12等の容器を押し
上げ放熱部にあたる容積が広くなり、この空間に蒸気と
なった作動液が移動し放熱フィン11に熱を伝達するこ
とにより冷却された作動液10が凝縮され液体となり、
ヒートパイプ9の内壁にそって下部の加熱領域に戻る。
この作動液10の循環現象により冷却効果を発現させる
ことによって、燃料電池セル7の温度制御を行う。この
ように、ヒートパイプ9の冷却作用の作動、停止を繰り
返すことによって発電中の燃料電池セル7の温度を一定
に保つことができる。
As described above, when the temperature of the fuel cell 7 rises and reaches a certain temperature, for example, in the case of the polymer electrolyte fuel cell 1 of the present invention, when the temperature reaches about 80 ° C., the heat pipe 9 The function of cooling is activated. That is, when the evaporating pressure of the working fluid 10 as the heat transport medium of the heat pipe 9 reaches about 80 ° C., it becomes higher than the pressure of the container such as the bellows 12, and the volume of the container such as the bellows 12 is pushed up to hit the radiator. The working fluid, which has been vaporized, moves into this space and transfers the heat to the radiation fins 11, whereby the cooled working fluid 10 is condensed into a liquid,
It returns to the lower heating area along the inner wall of the heat pipe 9.
By exerting a cooling effect by the circulation phenomenon of the working fluid 10, the temperature of the fuel cell 7 is controlled. As described above, the temperature of the fuel cell 7 during power generation can be kept constant by repeatedly activating and stopping the cooling operation of the heat pipe 9.

【0026】本実施例では、放熱用フィン11を形成し
た円管形のヒートパイプ9を用いた例を示しているが、
本発明はこれに限定されず、導電性を有する金属プレー
ト中に、熱輸送特性に優れたヒートパイプ9の機能があ
ればよい。
In the present embodiment, an example is shown in which a cylindrical heat pipe 9 on which heat radiation fins 11 are formed is used.
The present invention is not limited to this, and the conductive metal plate may have the function of the heat pipe 9 having excellent heat transport characteristics.

【0027】このように、本発明である燃料ガス流路及
び酸化剤ガス流路が配されてなる燃料ガス用、酸化剤ガ
ス用のセパレータ5、6にヒートパイプ9を用いること
により、図5に示したように、燃料電池セル7を冷却す
るためのポンプ17、冷却循環水配管18、専用の冷却
装置19または冷却手段等の設備が不要で、冷却媒体を
循環させるためのポンプ動力、さらに冷却媒体である水
の管理等を必要とせず、装置の小型・軽量化と低コスト
化を達成し、発電中の効率を向上させ、保守管理が容易
で、安価に得られる燃料電池を提供することができる。
As described above, by using the heat pipe 9 for the fuel gas and oxidizing gas separators 5 and 6 in which the fuel gas channel and the oxidizing gas channel according to the present invention are arranged, FIG. As shown in the figure, a pump 17 for cooling the fuel cell 7, a cooling circulating water pipe 18, a dedicated cooling device 19 or a cooling means or the like is unnecessary, and a pump power for circulating a cooling medium is provided. To provide a fuel cell that does not require the management of water as a cooling medium, achieves a compact, lightweight and low-cost device, improves efficiency during power generation, is easy to maintain and manage, and is inexpensive. be able to.

【0028】[0028]

【発明の効果】本発明によれば、従来の燃料電池に比
べ、装置の小型化、低コスト化を達成し、発電中の効率
を向上させ、冷却循環水の保守管理等の必要もなく、起
動に要する時間の短縮化を図る燃料電池を提供すること
ができる。
According to the present invention, as compared with the conventional fuel cell, the size and cost of the device can be reduced, the efficiency during power generation can be improved, and there is no need for maintenance and management of cooling circulating water. A fuel cell capable of shortening the time required for starting can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による燃料電池セルの構造を
示す構成図である。
FIG. 1 is a configuration diagram showing a structure of a fuel cell unit according to one embodiment of the present invention.

【図2】本発明に用いられるヒートパイプ構造の詳細及
び、加熱、冷却方法を示す説明図である。
FIG. 2 is an explanatory view showing details of a heat pipe structure used in the present invention and a method of heating and cooling.

【図3】本発明を用いた燃料電池システムを示す構成図
である。
FIG. 3 is a configuration diagram showing a fuel cell system using the present invention.

【図4】従来の燃料電池セルの構造を示す構成図であ
る。
FIG. 4 is a configuration diagram showing a structure of a conventional fuel cell.

【図5】従来の燃料電池システムの構成を示す構成図で
ある。
FIG. 5 is a configuration diagram showing a configuration of a conventional fuel cell system.

【符号の説明】[Explanation of symbols]

1 固体高分子型燃料電池 2 固体高分子電解質膜 3 燃料電極膜 4 酸化剤電極膜 5 燃料ガス用セパレータ 6 酸化剤ガス用セパレータ 7 燃料電池セル 8 冷却板 9 ヒートパイプ 10 作動液 11 放熱用フィン 12 ベローズ 13 不活性ガス 14 燃料電池システム 15 冷却ファン 16 ダクト 17 ポンプ 18 冷却装置 19 冷却循環水配管 20 タンク 21 燃料部 REFERENCE SIGNS LIST 1 solid polymer fuel cell 2 solid polymer electrolyte membrane 3 fuel electrode membrane 4 oxidant electrode membrane 5 separator for fuel gas 6 separator for oxidant gas 7 fuel cell 8 cooling plate 9 heat pipe 10 working fluid 11 radiating fin 12 Bellows 13 Inert gas 14 Fuel cell system 15 Cooling fan 16 Duct 17 Pump 18 Cooling device 19 Cooling circulating water pipe 20 Tank 21 Fuel section

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/24 H01M 8/24 Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 8/24 H01M 8/24 Z

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子電解質膜(2)と、この固体
高分子電解質膜(2)の両面に配置された導電性と通気
性とを兼ね備えた燃料電極膜(3)及び酸化剤電極膜
(4)と、この燃料電極膜(3)、酸化剤電極膜(4)
にガスを供給し、あるいは電極膜(3)、(4)からガ
スを排出するための燃料ガス流路を有する燃料ガス用セ
パレータ(5)及び酸化剤ガス流路を有する酸化剤ガス
用セパレータ(6)から構成される燃料電池セル(7)
を複数枚積層して積層体を構成する固体高分子型の燃料
電池(1)において、前記燃料ガス用セパレータ(5)
及び酸化剤ガス用セパレータ(6)がヒートパイプ
(9)を有し、このヒートパイプ(9)に放熱用フィン
(11)が設けられた構造であることを特徴とする燃料
電池。
1. A solid polymer electrolyte membrane (2), a fuel electrode membrane (3) having both conductivity and air permeability and an oxidant electrode membrane disposed on both sides of the solid polymer electrolyte membrane (2) (4), the fuel electrode membrane (3) and the oxidant electrode membrane (4)
A fuel gas separator (5) having a fuel gas flow path for supplying gas to or discharging a gas from the electrode membranes (3) and (4), and an oxidizing gas separator having an oxidizing gas flow path ( Fuel cell (7) composed of 6)
A fuel cell separator (5) in a polymer electrolyte fuel cell (1) in which a plurality of are laminated to form a laminate.
And a fuel cell having a structure in which the oxidant gas separator (6) has a heat pipe (9) and the heat pipe (9) is provided with a heat radiating fin (11).
【請求項2】 前記ヒートパイプ(9)を有する燃料ガ
ス用セパレータ(5)及び酸化剤ガス用セパレータ
(6)は、導電性を有する金属プレート中に円管状のパ
イプを配置し、このパイプ中に熱輸送媒体である作動液
(10)が封入された構造であることを特徴とする請求
項1記載の燃料電池。
2. The fuel gas separator (5) and the oxidant gas separator (6) having the heat pipe (9) are each formed by arranging a circular pipe in a conductive metal plate. 2. The fuel cell according to claim 1, wherein the fuel cell has a structure in which a working fluid serving as a heat transport medium is sealed.
【請求項3】 前記ヒートパイプ(9)は、内部に空
気、窒素ガス等の不活性ガスをベローズ(12)等の容
器に封入することにより、一定温度以上に達すると冷却
効果が発現する構造であることを特徴とする請求項1記
載の燃料電池。
3. The heat pipe (9) has a structure in which an inert gas such as air or nitrogen gas is sealed in a container such as a bellows (12) so that a cooling effect is exhibited when the temperature reaches a certain temperature or higher. The fuel cell according to claim 1, wherein
【請求項4】 燃料ガス、酸化剤ガスを供給することに
より燃料電池(1)を発電させ、燃料電池(1)の起動
時にはヒートパイプ(9)の断熱効果により燃料電池セ
ル(7)自身の発熱により、迅速に温度上昇させるとと
もに、燃料電池セル(7)がある温度以上になった時、
ヒートパイプ(9)の冷却機能が作動し電池反応ととも
に発生する反応熱をヒートパイプ(9)を介して大気中
に放出することを特徴とする請求項1〜3記載の燃料電
池の運転方法。
4. The fuel cell (1) is generated by supplying a fuel gas and an oxidizing gas, and when the fuel cell (1) is started, the fuel cell (7) itself is heated by the heat insulating effect of the heat pipe (9). Due to the heat generation, the temperature rises quickly, and when the fuel cell (7) rises above a certain temperature,
The method according to any of claims 1 to 3, wherein the cooling function of the heat pipe (9) is activated to release reaction heat generated along with the cell reaction to the atmosphere through the heat pipe (9).
JP11162152A 1999-06-09 1999-06-09 Fuel cell and its operating method Pending JP2000353536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11162152A JP2000353536A (en) 1999-06-09 1999-06-09 Fuel cell and its operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11162152A JP2000353536A (en) 1999-06-09 1999-06-09 Fuel cell and its operating method

Publications (1)

Publication Number Publication Date
JP2000353536A true JP2000353536A (en) 2000-12-19

Family

ID=15749035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11162152A Pending JP2000353536A (en) 1999-06-09 1999-06-09 Fuel cell and its operating method

Country Status (1)

Country Link
JP (1) JP2000353536A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2827427A1 (en) * 2001-07-12 2003-01-17 Commissariat Energie Atomique Solid electrolyte fuel cell with temperature regulation has thermally conducting supports of varying conductivity removing and dissipating excess heat
WO2006006589A1 (en) * 2004-07-13 2006-01-19 Nissan Motor Co., Ltd. Fuel cell stack
JP2007299565A (en) * 2006-04-28 2007-11-15 Equos Research Co Ltd Fuel cell
JP2007317674A (en) * 2007-08-03 2007-12-06 Sony Corp Fuel cell and electronic equipment mounted therewith
JP2007324136A (en) * 2006-06-02 2007-12-13 Samsung Sdi Co Ltd Heat exchanger for fuel cell
JP2008147026A (en) * 2006-12-11 2008-06-26 Hitachi Ltd Solid oxide fuel cell
US8020613B2 (en) 2006-10-27 2011-09-20 Canon Kabushiki Kaisha Heat transfer controlling mechanism and fuel cell system having the heat transfer controlling mechanism
US8101311B2 (en) 2002-12-12 2012-01-24 Sony Corporation Fuel cell and electronic apparatus with the same mounted thereon
WO2012132428A1 (en) * 2011-03-30 2012-10-04 三洋電機株式会社 Fuel cell module
JP2012526366A (en) * 2009-05-11 2012-10-25 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Compact fuel cell
CN103715441A (en) * 2013-12-18 2014-04-09 孙世梅 Heat management method for proton exchange membrane fuel cell based on array heat pipe phase change heat transfer
EP2867945A4 (en) * 2012-06-28 2016-03-02 Intelligent Energy Ltd Controlling temperature in a fuel cell system
CN109066007A (en) * 2018-07-26 2018-12-21 东南大学 A kind of extensive battery modules integral box cooling system based on heat pipe

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7255951B2 (en) 2001-07-12 2007-08-14 Commissariat A L'energie Atomique Optimized thermal management fuel cell
FR2827427A1 (en) * 2001-07-12 2003-01-17 Commissariat Energie Atomique Solid electrolyte fuel cell with temperature regulation has thermally conducting supports of varying conductivity removing and dissipating excess heat
US8101311B2 (en) 2002-12-12 2012-01-24 Sony Corporation Fuel cell and electronic apparatus with the same mounted thereon
WO2006006589A1 (en) * 2004-07-13 2006-01-19 Nissan Motor Co., Ltd. Fuel cell stack
JP2007299565A (en) * 2006-04-28 2007-11-15 Equos Research Co Ltd Fuel cell
JP2007324136A (en) * 2006-06-02 2007-12-13 Samsung Sdi Co Ltd Heat exchanger for fuel cell
US8020613B2 (en) 2006-10-27 2011-09-20 Canon Kabushiki Kaisha Heat transfer controlling mechanism and fuel cell system having the heat transfer controlling mechanism
JP2008147026A (en) * 2006-12-11 2008-06-26 Hitachi Ltd Solid oxide fuel cell
JP2007317674A (en) * 2007-08-03 2007-12-06 Sony Corp Fuel cell and electronic equipment mounted therewith
JP2012526366A (en) * 2009-05-11 2012-10-25 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Compact fuel cell
US8679693B2 (en) 2009-05-11 2014-03-25 Commissariat à l′énergie atomique et aux énergies alternatives Compact fuel cell
WO2012132428A1 (en) * 2011-03-30 2012-10-04 三洋電機株式会社 Fuel cell module
EP2867945A4 (en) * 2012-06-28 2016-03-02 Intelligent Energy Ltd Controlling temperature in a fuel cell system
CN103715441A (en) * 2013-12-18 2014-04-09 孙世梅 Heat management method for proton exchange membrane fuel cell based on array heat pipe phase change heat transfer
CN109066007A (en) * 2018-07-26 2018-12-21 东南大学 A kind of extensive battery modules integral box cooling system based on heat pipe

Similar Documents

Publication Publication Date Title
JP4099171B2 (en) Cooling system for fuel cell stack
US6828054B2 (en) Electronically conducting fuel cell component with directly bonded layers and method for making the same
CA2405488C (en) Method and apparatus for thermal management of fuel cell systems
JP4954411B2 (en) Polymerized membrane fuel cell assembly
US20010033956A1 (en) Fuel cell with monolithic flow field-bipolar plate assembly and method for making and cooling a fuel cell stack
JP6371413B2 (en) Electrolysis system
JP2000353536A (en) Fuel cell and its operating method
US6368737B1 (en) Subambient pressure coolant loop for a fuel cell power plant
US6649299B2 (en) Gas diffusion electrode with nanosized pores and method for making same
JP2004342584A (en) Battery having miniaturized sofc fuel cell
CN114784322A (en) Proton exchange membrane fuel cell thermal management system and working method
KR20060095630A (en) Cooling system using fuel of fuel cell as refrigerant
JP2004171823A (en) Fuel cell stack and its warm-up method
JP2008108610A (en) Fuel cell
JP2007005134A (en) Steam generator and fuel cell
JP2004281072A (en) Fuel cell power generation device
JP2005353561A (en) Fuel cell
JP2008262752A (en) Fuel cell stack and its warming up method
US9444117B2 (en) Proton exchange membrane fuel cell with open pore cellular foam
TW201011965A (en) Solid oxide fuel cell systems with heat exchangers
JP4945963B2 (en) Fuel cell
WO2001059862A2 (en) Electroconductive fuel cell component with directly bonded layers and method for making same
JP2010238440A (en) Fuel battery module
JPH11214017A (en) Fuel cell and its operating method
KR101107081B1 (en) Stack for fuel cell and fuel cell system with the same