JPH10313125A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPH10313125A
JPH10313125A JP9120410A JP12041097A JPH10313125A JP H10313125 A JPH10313125 A JP H10313125A JP 9120410 A JP9120410 A JP 9120410A JP 12041097 A JP12041097 A JP 12041097A JP H10313125 A JPH10313125 A JP H10313125A
Authority
JP
Japan
Prior art keywords
layer
thin film
crystalline
film
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9120410A
Other languages
Japanese (ja)
Inventor
Sae Takagi
小枝 高木
Hitoshi Sannomiya
仁 三宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP9120410A priority Critical patent/JPH10313125A/en
Publication of JPH10313125A publication Critical patent/JPH10313125A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a thin film, which is high in quality and is good in crystallizability, aiming at the enhancement of the conversion efficiency of a thin-film solar cell. SOLUTION: Pulse discharge is performed, while VHF band high-frequency power is applied to a substrate, using a plasma CVD method to form a crystalline Si thin film on the substrate. By setting a power frequency in a frequency of 27.12 to 81.36 MHz, the dark conductivity of a thin-film solar cell is increased more than that in the case where an RF(radio frequency) band power frequency is used, and the dark conductivity is increased more than that in the case where continuous discharge (duty (= on time/on time + off time) 100%) is performed by performing the pulse discharge (duty less than 100%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池等におけ
る結晶性薄膜の形成方法に関する。
The present invention relates to a method for forming a crystalline thin film in a solar cell or the like.

【0002】[0002]

【従来の技術】一般に薄膜太陽電池は、ガラス等の透光
性絶縁基板上にSnO2やITO等の透明導電膜が形成
され、その上に非晶質半導体のp層、i層、n層がこの
順に積層されて光電変換活性層が形成され、その上に金
属薄膜の裏面電極が積層されてなる構造と、金属基板電
極の上に非晶質半導体のn層、i層、p層がこの順に積
層されて光電変換活性層が形成され、その上に透明導電
膜が積層されてなる構造とがある。これらのうち、前者
のp−i−n層の順に積層する方法は、透光性絶縁基板
が太陽電池の表面カバーガラスを兼ねることができる
点、またSnO2等の耐プラズマ性透明導電膜が開発さ
れて、この上に非晶質半導体の光電変換活性層をプラズ
マCVD法で積層することが可能になった点、等から多
用されるようになり、現在の主流となっている。
2. Description of the Related Art In general, a thin-film solar cell has a transparent conductive film such as SnO 2 or ITO formed on a light-transmitting insulating substrate such as glass, and a p-layer, an i-layer and an n-layer of an amorphous semiconductor are formed thereon. Are laminated in this order to form a photoelectric conversion active layer, on which a back electrode of a metal thin film is laminated, and an n-, i-, and p-layer of an amorphous semiconductor on a metal substrate electrode. There is a structure in which a photoelectric conversion active layer is formed by stacking in this order, and a transparent conductive film is stacked thereon. Among these, the former method of laminating in the order of the pin layers is characterized in that the light-transmitting insulating substrate can also serve as the surface cover glass of the solar cell, and that a plasma-resistant transparent conductive film such as SnO 2 is used. It has been widely used because it has been developed and an amorphous semiconductor photoelectric conversion active layer can be stacked thereon by a plasma CVD method.

【0003】上記透光性絶縁基板(ガラス)/透明導電
膜/p−i−n半導体/裏面電極構造を持つアモルファ
ス太陽電池では、これまでの精力的な研究・開発にも拘
わらず、変換効率が10cm角の素子で10〜12%と
いうレベルに留まっている。これまで太陽電池には主に
非晶質材料が用いられてきたが、これ以上の変換効率向
上を図るための方法の1つとして、結晶性Si薄膜を適
用することがあげられる。例えば特開昭57−1879
71号公報には、非晶質太陽電池のp層あるいはn層を
結晶Siから構成することが記載されている。
[0003] In the above-mentioned amorphous solar cell having the translucent insulating substrate (glass) / transparent conductive film / pin semiconductor / backside electrode structure, the conversion efficiency is high despite the vigorous research and development. Is 10 to 12% for a 10 cm square element. Until now, amorphous materials have been mainly used for solar cells, but one of the methods for further improving the conversion efficiency is to apply a crystalline Si thin film. For example, JP-A-57-1879
No. 71 describes that a p-layer or an n-layer of an amorphous solar cell is made of crystalline Si.

【0004】なお、これらに用いられる非晶質半導体の
薄膜形成は、原料ガスのグロー放電分解によるプラズマ
CVD法や、光CVD法による気相成長により形成さ
れ、これらの方法は大面積の薄膜形成が可能という利点
を有する。
A thin film of an amorphous semiconductor used in these methods is formed by a plasma CVD method by glow discharge decomposition of a source gas or a vapor phase growth by a photo CVD method. Is possible.

【0005】さらに、非晶質材料を形成するプラズマC
VDプロセスにおいて、パウダー(Siの重合した粉状
のもの)の生成を減少させるために、パルス放電が近年
用いられるようになってきた。このような技術に関して
は特公平7−47823号(特開平5−156451
号)公報に記載されている。
Further, a plasma C for forming an amorphous material
In the VD process, pulse discharge has recently been used to reduce the production of powder (polymerized powder of Si). Such a technique is disclosed in Japanese Patent Publication No. Hei 7-47823 (JP-A-5-156451).
No.) publication.

【0006】ここで、薄膜形成に利用されるグロー放電
プラズマの周波数は13.56MHzのRF(無線周波
数)が主流であり、ついで2.45GHzのマイクロ波
プラズマが研究されている。工業用に割当てられている
高周波がRFとマイクロ波だけであることから、RFと
マイクロ波以外の高周波帯における周波数効果について
はほとんど研究が行われなかった。しかし近年、RFと
マイクロ波との間に位置する高高周波を用いたアモルフ
ァス膜および結晶性薄膜の適用が検討されている。例え
ば太陽電池素子のi層での結晶性薄膜(70MHzで成
膜)の適用については「INTRINSIC MICR
OCRYSTALLINE SILICON(μc−S
i:H)−APROMISING NEW THIN
FILMSOLAR CELL MATERIAL」
(A.Shah他 FirstWCPEC;Des.5
−9,1994;Hawaii)に記載されている。
Here, the frequency of glow discharge plasma used for forming a thin film is mainly 13.56 MHz RF (radio frequency), and microwave plasma of 2.45 GHz has been studied. Few studies have been conducted on the frequency effects in high-frequency bands other than RF and microwave, since only RF and microwaves are allocated for industrial use. However, in recent years, application of an amorphous film and a crystalline thin film using high frequency located between RF and microwave has been studied. For example, regarding the application of a crystalline thin film (formed at 70 MHz) in the i-layer of a solar cell element, see “INTRINSIC MICR”.
OCRYSTALLINE SILICON (μc-S
i: H) -APROMISING NEW THIN
FILMSOLAR CELL MATERIAL "
(A. Shah et al. First WCPEC; Des. 5
-9, 1994; Hawaii).

【0007】[0007]

【発明が解決しようとする課題】ところで、p層あるい
はn層に結晶性薄膜を形成すれば開放電圧は向上するこ
とが考えられるが、p層およびn層では光の吸収損失を
抑制するための薄膜化を行うと、充分な結晶性が得られ
ないという問題がある。これは、薄膜太陽電池に適用す
るためp型あるいはn型の結晶性薄膜を10〜20nm
の薄膜にすると、厚膜状態(200nm以上)では1S
/cm程度の導電率のものが10-6S/cmまで低下す
る。すなわち薄膜化により結晶性が低下することになる
からである。
The open-circuit voltage can be improved by forming a crystalline thin film on the p-layer or the n-layer. However, the p-layer and the n-layer are required to suppress light absorption loss. When the thickness is reduced, there is a problem that sufficient crystallinity cannot be obtained. This means that a p-type or n-type crystalline thin film is applied to a thin-film solar cell by 10 to 20 nm.
Thin film, 1S in thick film state (200 nm or more)
/ Cm of conductivity is reduced to 10 -6 S / cm. That is, crystallinity is reduced by thinning.

【0008】また、結晶性薄膜を形成する場合に、結晶
性の改善を図るために単に高高周波のプラズマCVDを
適用してだけでは、結晶粒径の拡大および薄膜中の欠陥
準位の低減を図ることができず、結晶性の向上には不十
分である。
Further, when a crystalline thin film is formed, simply applying high-frequency plasma CVD to improve the crystallinity can increase the crystal grain size and reduce the defect level in the thin film. It cannot be achieved, and is insufficient for improving the crystallinity.

【0009】このように、結晶性薄膜の形成において、
高高周波を用いただけでは結晶性の向上には結びつか
ず、p層およびn層での薄膜結晶性の向上、i層での結
晶粒径拡大といった結晶性の良好な薄膜形成が困難であ
った。
Thus, in forming a crystalline thin film,
The use of high frequency alone did not lead to an improvement in crystallinity, and it was difficult to form a thin film with good crystallinity such as an improvement in crystallinity of the thin film in the p-layer and the n-layer and an increase in the crystal grain size in the i-layer.

【0010】また、パルス放電による薄膜形成は非晶質
薄膜には適用されているが、結晶性薄膜には適用されて
いないのが現状である。
Further, thin film formation by pulse discharge has been applied to amorphous thin films, but has not been applied to crystalline thin films at present.

【0011】そこで、本発明は、上記に鑑み、RFとマ
イクロ波との間に位置するVHF帯の高高周波およびパ
ルス放電を併用することにより、太陽電池等における変
換効率の向上を目指して高品質かつ結晶性の良好な薄膜
を形成することを目的とする。
[0011] In view of the above, the present invention aims at improving the conversion efficiency in a solar cell or the like by using both high frequency and pulse discharge in the VHF band located between RF and microwave. Another object is to form a thin film having good crystallinity.

【0012】[0012]

【課題を解決するための手段】本発明による課題解決手
段は、プラズマCVD法を用い、VHF帯の高高周波電
力を印加しながらパルス放電を行って基板上に結晶性薄
膜を形成するものであり、薄膜の結晶性を改善する。特
に、プラズマCVD装置で使用する高高周波のパルス変
調電源の電源周波数を27.12MHz〜81.36M
Hzとすることにより、RF帯の電源周波数を使用する
よりも暗導電率が増加し、また連続放電よりもパルス放
電することによっても、暗導電率が増加する。
The object of the present invention is to form a crystalline thin film on a substrate by performing a pulse discharge while applying a high frequency power in a VHF band by using a plasma CVD method. Improve the crystallinity of the thin film. In particular, the power supply frequency of the high-frequency pulse modulation power supply used in the plasma CVD apparatus is 27.12 MHz to 81.36 M
When the frequency is set to Hz, the dark conductivity is increased as compared with the case of using the power supply frequency in the RF band, and the dark conductivity is increased by performing pulse discharge rather than continuous discharge.

【0013】これにより、従来の薄膜形成方法では困難
であった結晶性Si薄膜のp層およびn層での光の吸収
損失の低減を図れて薄膜結晶性の向上となり、またi層
での結晶粒径拡大といった結晶性の良好な薄膜形成が可
能となる。
As a result, the absorption loss of light in the p-layer and the n-layer of the crystalline Si thin film, which has been difficult with the conventional thin film forming method, can be reduced, and the crystallinity of the thin film can be improved. It is possible to form a thin film having good crystallinity such as an increase in particle size.

【0014】そこで、これを薄膜太陽電池の製造に適用
すると、高品質かつ結晶性の良好な薄膜が得られ、太陽
電池の短絡電流値が増大し、長波長光の吸収が増加し
て、高効率な太陽電池の実現が可能となる。
Therefore, when this is applied to the production of a thin-film solar cell, a thin film of high quality and good crystallinity is obtained, the short-circuit current value of the solar cell is increased, and the absorption of long wavelength light is increased. An efficient solar cell can be realized.

【0015】[0015]

【発明の実施の形態】本発明の実施形態に係る結晶性S
i薄膜のp層またはn層の形成方法を説明する。本発明
では、プラズマCVD法を用い、VHF帯の高高周波電
力を印加しながらパルス放電を行って基板上に結晶性薄
膜を形成する。まず、周知のプラズマCVD装置には高
高周波(VHF帯)のパルス変調電源を接続する。高高
周波として、RF帯より高い13.56MHzから30
0MHzの電源周波数を使用する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Crystalline S according to an embodiment of the present invention
A method for forming the p layer or the n layer of the i thin film will be described. In the present invention, a crystalline thin film is formed on a substrate by performing pulse discharge while applying high-frequency power in a VHF band by using a plasma CVD method. First, a high-frequency (VHF band) pulse modulation power supply is connected to a known plasma CVD apparatus. As high frequency, from 13.56 MHz higher than RF band to 30
Use a power supply frequency of 0 MHz.

【0016】まず、結晶性p層を形成する場合、基板温
度200度、シラン/水素=1/100(あるいはSi
4とCH4との混合ガス)、B26ガス=0.5%、圧
力0.3Torr,電源周波数81.36MHz、パワ
ー30W、パルス放電のパルス幅(duty=ON時間
/(ON時間+OFF時間))38%とする。これによ
って形成した結晶性p層の暗導電率としては5S/cm
が得られた。
First, when a crystalline p-layer is formed, the substrate temperature is 200 ° C., and silane / hydrogen = 1/100 (or Si
Mixed gas of H 4 and CH 4), B 2 H 6 gas is 0.5% pressure 0.3 Torr, power supply frequency 81.36MHz, power 30 W, pulse discharge pulse width (duty = ON time / (ON time + OFF time)) 38%. The dark conductivity of the crystalline p-layer thus formed is 5 S / cm.
was gotten.

【0017】ここで、パルス放電のパルス幅に対する薄
膜特性の一連の検討として、基板温度、ガス流量、圧
力、電源周波数、パワーを一定にしたままパルス幅(d
uty)を変化させた。表1にパルス幅を変化させた
A,B,C,Dの薄膜形成条件を示し、そして薄膜特性
としてp層の暗導電率を測定した結果を図1に示す。図
1より、連続放電(duty=100%)を行ったDよ
りパルス放電を行ったA,B,Cでは、暗導電率が向上
することがわかる。特に、duty=40〜80%にお
いて、その効果は顕著である。
Here, as a series of studies on the characteristics of the thin film with respect to the pulse width of the pulse discharge, the pulse width (d) is kept constant while the substrate temperature, gas flow rate, pressure, power supply frequency and power are kept constant.
uty) was changed. Table 1 shows the conditions for forming the thin films of A, B, C, and D with the pulse width changed, and FIG. 1 shows the results of measuring the dark conductivity of the p-layer as a thin film characteristic. From FIG. 1, it is understood that dark conductivity is improved in A, B, and C in which pulse discharge is performed than D in which continuous discharge (duty = 100%) is performed. In particular, when the duty is 40 to 80%, the effect is remarkable.

【0018】[0018]

【表1】 [Table 1]

【0019】次に、表2に示すパルス幅(duty=1
00%)を一定にして電源周波数を変化させたE,F,
Gに対して、p層の暗導電率を測定した結果を図2に示
す。図2より、電源周波数はRF帯(13.56MH
z)のGよりはVHF帯のD,E,Fにおいて特性が向
上することがわかる。なお、Dは表1のものと同じであ
る。特に、27.12〜81.36MHzの範囲、その
中でも電源周波数が高いほど暗導電率が高くなる。した
がって、高高周波電力を印加しながらパルス放電を行う
ことにより、薄膜結晶性が向上し、特に電源周波数を高
く、パルス幅が短いほど結晶性の向上が顕著となる。
Next, the pulse width (duty = 1) shown in Table 2 is used.
00%) and changing the power supply frequency, E, F,
FIG. 2 shows the results of measuring the dark conductivity of the p layer with respect to G. From FIG. 2, the power supply frequency is in the RF band (13.56 MHz).
It can be seen that the characteristics are improved in D, E, and F in the VHF band rather than G in z). D is the same as that in Table 1. In particular, the dark conductivity increases as the power supply frequency increases in the range of 27.12 to 81.36 MHz. Therefore, by performing pulse discharge while applying high-frequency power, the crystallinity of the thin film is improved. In particular, the higher the power supply frequency and the shorter the pulse width, the more remarkable the crystallinity.

【0020】[0020]

【表2】 [Table 2]

【0021】また、結晶性n層を形成する場合は、上記
結晶性p層の形成条件においてB26ガスの代わりにP
3ガスを原料ガスの0.5%程度導入する。他の条件
は同じである。薄膜特性はp層の場合と同様、電源周波
数が高くパルス幅が短い程薄膜下での結晶性が向上す
る。
[0021] In the case of forming a crystalline n-layer, P instead of B 2 H 6 gas in the formation conditions of the crystallinity p layer
H 3 gas is introduced at about 0.5% of the source gas. Other conditions are the same. As in the case of the p-layer, the higher the power supply frequency and the shorter the pulse width, the better the crystallinity under the thin film.

【0022】ところで一般的に、高高周波技術は非晶質
薄膜の成膜速度の向上に効果があり、またパルス放電は
非晶質薄膜の形成時に発生するパウダーを抑制する効果
がある。しかしながら、結晶性Si薄膜の形成技術はこ
れらの非晶質薄膜の形成技術とは異なる技術が必要であ
る。すなわち、結晶性Si薄膜の形成にはプラズマ密度
と電子温度の両方を高くすることが重要であることを本
発明者は見いだした。プラズマ密度を向上するためには
高高周波の適用が効果的であり、他研究機関から結晶性
の改善の報告もあるが、高高周波だけではプラズマ密度
は上がるが電子温度は低下する。そこで、結晶性をさら
に改善するために、本発明者は電子温度に着目して、パ
ルス放電を併用することにより大幅な結晶性の改善を図
ることに成功した。パルス放電においては図3に示すよ
うに、放電開始数十マイクロ秒(μs)は過渡的に電子
温度が高い状態にあり、この特性を利用することにより
電子温度を上昇させることができ、結晶性の改善を図る
ことが可能となった。
In general, high-frequency technology has an effect on improving the film forming rate of an amorphous thin film, and pulse discharge has an effect on suppressing powder generated at the time of forming an amorphous thin film. However, a technique for forming a crystalline Si thin film requires a technique different from those for forming these amorphous thin films. That is, the present inventor has found that it is important to increase both the plasma density and the electron temperature in forming a crystalline Si thin film. In order to improve the plasma density, it is effective to use a high frequency, and there are reports from other research institutes on the improvement of the crystallinity. However, the high frequency alone increases the plasma density but decreases the electron temperature. Then, in order to further improve the crystallinity, the present inventor succeeded in remarkably improving the crystallinity by using pulse discharge together with focusing on the electron temperature. In the pulse discharge, as shown in FIG. 3, the electron temperature is transiently high for several tens of microseconds (μs), and the electron temperature can be increased by using this characteristic, and the crystallinity can be increased. It became possible to improve.

【0023】また、パルス放電の効果として、上記のよ
うに電子温度を上昇させる効果とともに堆積速度を自由
に制御でき、これによっても結晶性の改善に効果を与え
ている。電子温度の上昇のためプラズマに投入するパワ
ーを増大させることが大きなポイントとなるが、これは
成膜速度を大きくする影響を与える。しかし、成膜速度
が大きくなると、一般に結晶性は低下する。そのため、
成膜速度が大きくなりすぎないように、パルスのON時
間を長くしすぎたり、パルス幅を大きくしすぎないとい
ったパルスの間隔の制御を行うことが重要である。成膜
速度の目安としては約1Å/秒となる。以上のような2
点の効果に基づいて、パルス放電を行うことによって従
来の連続放電よりも結晶性の良好な薄膜を得ることが可
能となる。しかも、パルス放電を行うことにより、パウ
ダーの発生も当然抑制できるので、高品質な薄膜を形成
できる。
As an effect of the pulse discharge, the deposition rate can be freely controlled together with the effect of increasing the electron temperature as described above, and this also has an effect on improving the crystallinity. An important point is to increase the power supplied to the plasma to increase the electron temperature, but this has the effect of increasing the deposition rate. However, as the deposition rate increases, the crystallinity generally decreases. for that reason,
It is important to control the pulse interval such that the ON time of the pulse is not too long or the pulse width is not too large so that the film formation rate does not become too high. The standard of the film forming speed is about 1 / sec. 2 as above
By performing the pulse discharge based on the effect of the point, it becomes possible to obtain a thin film having better crystallinity than the conventional continuous discharge. In addition, by performing pulse discharge, generation of powder can be naturally suppressed, so that a high-quality thin film can be formed.

【0024】次に、結晶性Si薄膜のi層の形成方法を
説明する。まず、プラズマCVD装置には高高周波(V
HF帯)のパルス変調電源を接続する。結晶性i層を形
成する場合、表3のHに示すように、基板温度230
度、シラン/水素=1/100、圧力0.2Torr、
パワー100W、電源周波数81.36MHz、パルス
幅(duty)9%で成膜を行う。なお、表3中、Iは
RF電源を用い、連続放電によって結晶性i層を形成す
る場合の薄膜形成条件である。
Next, a method for forming the i-layer of the crystalline Si thin film will be described. First, a high frequency (V
(HF band) pulse modulation power supply is connected. When the crystalline i-layer is formed, as shown in Table 3H, the substrate temperature 230
Degree, silane / hydrogen = 1/100, pressure 0.2 Torr,
Film formation is performed at a power of 100 W, a power supply frequency of 81.36 MHz, and a pulse width (duty) of 9%. In Table 3, I is a thin film forming condition when a crystalline i-layer is formed by continuous discharge using an RF power source.

【0025】そして、Iの場合、i層は非常に微小な微
結晶粒(直径約300Å)の集合体であったが、本発明
のHの場合、粒径500Å(X線測定)、厚さ4μmの
柱状構造の結晶性Si薄膜を得た。このように、i層の
結晶粒径の拡大が図れることにより、長波長光の吸収が
増加することになり、長波長感度の向上を達成できる。
In the case of I, the i-layer was an aggregate of very fine crystal grains (about 300 ° in diameter). In the case of H of the present invention, the particle size was 500 ° (measured by X-ray) and the thickness was A crystalline Si thin film having a columnar structure of 4 μm was obtained. As described above, by increasing the crystal grain size of the i-layer, the absorption of long-wavelength light increases, and the long-wavelength sensitivity can be improved.

【0026】[0026]

【表3】 [Table 3]

【0027】次に、本発明の薄膜形成方法を適用した薄
膜太陽電池を図4に示す。この薄膜太陽電池は、透光性
絶縁基板1の上に順に積層された透明導電膜2、結晶性
p層3、非晶質i層4、非晶質n層5および裏面電極6
からなる。
Next, a thin-film solar cell to which the thin-film forming method of the present invention is applied is shown in FIG. This thin-film solar cell includes a transparent conductive film 2, a crystalline p-layer 3, an amorphous i-layer 4, an amorphous n-layer 5, and a back electrode 6, which are sequentially laminated on a translucent insulating substrate 1.
Consists of

【0028】ここで、本実施形態の薄膜太陽電池の特徴
は、図5に示す従来構造の太陽電池の非晶質p層7のa
−SiCの代わりに結晶性の良好な結晶性p層3を用い
るところにある。以下、この太陽電池の製造方法を説明
する。まず、透光性絶縁基板1として厚さ1mm程度の
ガラス基板を用いる。ここではガラスを用いているが、
透光性絶縁基板1であれば、高分子フィルムであっても
かまわない。この上にCVD法等により透明導電膜2を
約1μmの膜厚で形成する。この透明導電膜2は凹凸状
の形状であることが望ましく、またその材料としてはZ
nO、またはZnOを表面に少なくとも数10nmコー
トしたSnO2およびITOが望ましい。これは結晶性
p層3を形成するときにTCO(透明導電性酸化物膜)
に与えるプラズマダメージを避けるためである。
Here, the feature of the thin-film solar cell of the present embodiment is that the amorphous p-layer 7 of the conventional solar cell shown in FIG.
-The point is that a crystalline p-layer 3 having good crystallinity is used instead of -SiC. Hereinafter, a method for manufacturing this solar cell will be described. First, a glass substrate having a thickness of about 1 mm is used as the translucent insulating substrate 1. Here, glass is used,
As long as it is a translucent insulating substrate 1, it may be a polymer film. A transparent conductive film 2 is formed thereon with a thickness of about 1 μm by a CVD method or the like. The transparent conductive film 2 is desirably in an uneven shape.
It is desirable to use SnO 2 or ITO whose surface is coated with nO or ZnO at least several tens nm. This is because when forming the crystalline p-layer 3, TCO (transparent conductive oxide film)
This is to avoid plasma damage to the device.

【0029】透明導電膜2の上にプラズマCVD法等の
方法で高高周波パルス放電を用いて結晶性p層3が形成
される。形成条件は表1中のAと同じ、基板温度200
度、シラン/水素=1/100、B26ガス=0.5
%、圧力0.3Torr、パワー30W、電源周波数8
1.36MHz、パルス幅38%で成膜を行う。結晶性
p層3の膜厚は10nmから30nm程度が望ましい。
これは厚すぎると光の吸収損失が大きくなるためであ
る。なお、結晶性p層3はカーボンを含んでいてもよ
く、p層側から光照射が行われる場合にp層3内での光
吸収をより少なくすることができ、i層4への到達光が
増加するので、変換効率が増大する。
A crystalline p layer 3 is formed on the transparent conductive film 2 by using a high frequency pulse discharge by a method such as a plasma CVD method. The formation conditions were the same as A in Table 1;
Degree, silane / hydrogen = 1/100, B 2 H 6 gas = 0.5
%, Pressure 0.3 Torr, power 30 W, power frequency 8
Film formation is performed at 1.36 MHz and a pulse width of 38%. The thickness of the crystalline p-layer 3 is preferably about 10 nm to 30 nm.
This is because light absorption loss increases when the thickness is too large. The crystalline p-layer 3 may contain carbon, and when light is irradiated from the p-layer side, light absorption in the p-layer 3 can be further reduced, and light reaching the i-layer 4 can be reduced. , The conversion efficiency increases.

【0030】結晶性p層3の上には、CVD法等により
a−Si:Hのi層4、a−Si:Hのn層5が順次積
層される。なお、i層4にはa−SiGe:Hのi層や
a−SiC:Hのi層のような合金層でもよい。i層4
の膜厚は100nmから600nm程度が望ましい。ま
た、a−Si:Hのn層5は結晶性n層でもよい。n層
5の膜厚は数10nmである。
On the crystalline p layer 3, an i-layer 4 of a-Si: H and an n-layer 5 of a-Si: H are sequentially laminated by a CVD method or the like. The i-layer 4 may be an alloy layer such as an i-layer of a-SiGe: H or an i-layer of a-SiC: H. i layer 4
Is desirably about 100 nm to 600 nm. Further, the a-Si: H n layer 5 may be a crystalline n layer. The thickness of the n-layer 5 is several tens nm.

【0031】次に裏面電極6は、反射率の比較的高い金
属であるAlやAgを用いて、真空蒸着法等により形成
する。膜厚としては数100nmから1μm程度であ
る。簡素化して裏面電極6を金属電極のみとしている
が、裏面での反射光を有効に利用するために、透明導電
膜をa−Si:Hのn層5と裏面電極6の間に形成して
もよい。
Next, the back electrode 6 is formed by using a metal having a relatively high reflectivity, such as Al or Ag, by a vacuum deposition method or the like. The thickness is about several hundred nm to about 1 μm. For simplicity, only the metal electrode is used as the back electrode 6, but a transparent conductive film is formed between the n-layer 5 of a-Si: H and the back electrode 6 in order to effectively use the light reflected on the back surface. Is also good.

【0032】本発明の薄膜形成方法により作製した単層
の薄膜太陽電池の特性は、AM1.5(100mW/c
2)においてIsc:19.1mA/cm2、Voc:
0.92V、F.F.:0.73、Pmax:12.8
mW/cm2である。
The characteristics of the single-layer thin-film solar cell manufactured by the thin-film forming method of the present invention are as follows: AM1.5 (100 mW / c
m 2 ), Isc: 19.1 mA / cm 2 , Voc:
0.92V, F.I. F. : 0.73, Pmax: 12.8
mW / cm 2 .

【0033】なお、本実施形態の太陽電池は光電変換層
が単層であるが、a−SiGe:Hのi層やa−Si
C:Hのi層のような合金層を用いて、タンデム構造あ
るいはトリプル構造のように積層されたものでもよい。
Although the solar cell of this embodiment has a single photoelectric conversion layer, the i-layer of a-SiGe: H or the a-Si
It may be stacked like a tandem structure or a triple structure using an alloy layer such as an i layer of C: H.

【0034】他の実施形態の薄膜太陽電池を図6に示
す。この薄膜太陽電池は、透光性絶縁基板1の上に順に
積層された透明導電膜2、結晶性p層3、結晶性i層
8、結晶性n層9および裏面電極6からなる。
FIG. 6 shows a thin-film solar cell according to another embodiment. This thin-film solar cell includes a transparent conductive film 2, a crystalline p-layer 3, a crystalline i-layer 8, a crystalline n-layer 9, and a back electrode 6, which are sequentially laminated on a translucent insulating substrate 1.

【0035】以下、この太陽電池の製造方法を説明する
が、上記実施形態の太陽電池のものとi層およびn層を
除いて同じである。まず、透光性絶縁基板1として厚さ
1mm程度のガラス基板を用いる。この上に透明導電膜
2を約1μmの膜厚で形成する。透明導電膜2の上にプ
ラズマCVD法等の方法で高高周波パルス放電により、
表1中のAと同じ形成条件で結晶性p層3を形成する。
結晶性p層3の膜厚は10nmから30nm程度が望ま
しい。結晶性p層3の上には結晶性i層8、結晶性n層
9が順次積層される。i層8の膜厚は4μm程度が望ま
しい。i層8の形成条件としては表3中のHと同じ、基
板温度230度、シラン/水素=1/100、圧力0.
2Torr、パワー100W、電源周波数81.36M
Hz、パルス幅9%で成膜を行う。n層9の形成条件と
しては、基板温度200度、シラン/水素=1/10
0、PH3ガス=0.5%、圧力0.2Torr、パワ
ー25W、電源周波数81.36MHz、パルス幅38
%(ON時間30μs、OFF時間50μs)で成膜を
行う。n層9の膜厚は数10nmである。次に裏面電極
6を形成する。裏面電極6は反射率の比較的高い金属で
あるAlやAgを用いている。膜厚としては数100n
mから1μm程度である。なお、各層3,8,9の高高
周波パルス放電に関する形成条件を表4にまとめて示し
ている。
Hereinafter, a method for manufacturing this solar cell will be described, which is the same as that of the solar cell of the above embodiment except for the i-layer and the n-layer. First, a glass substrate having a thickness of about 1 mm is used as the translucent insulating substrate 1. A transparent conductive film 2 is formed thereon with a thickness of about 1 μm. On the transparent conductive film 2, a high-frequency pulse discharge is performed by a method such as a plasma CVD method.
The crystalline p-layer 3 is formed under the same forming conditions as A in Table 1.
The thickness of the crystalline p-layer 3 is preferably about 10 nm to 30 nm. A crystalline i-layer 8 and a crystalline n-layer 9 are sequentially stacked on the crystalline p-layer 3. The thickness of the i-layer 8 is preferably about 4 μm. The conditions for forming the i-layer 8 were the same as those of H in Table 3, that is, the substrate temperature was 230 ° C., silane / hydrogen = 1/100, and the pressure was 0.
2 Torr, power 100W, power frequency 81.36M
The film is formed at a frequency of 9 Hz and a pulse width of 9%. The conditions for forming the n-layer 9 include a substrate temperature of 200 ° C. and silane / hydrogen = 1/10.
0, PH 3 gas = 0.5%, pressure 0.2 Torr, power 25 W, power supply frequency 81.36 MHz, pulse width 38
% (ON time 30 μs, OFF time 50 μs). The thickness of the n-layer 9 is several tens nm. Next, the back electrode 6 is formed. The back electrode 6 is made of a metal having a relatively high reflectance, such as Al or Ag. Several hundred n in film thickness
m to about 1 μm. Table 4 summarizes the conditions for forming the high-frequency pulse discharge of each of the layers 3, 8, and 9.

【0036】[0036]

【表4】 [Table 4]

【0037】上記の薄膜形成方法により作製した単層の
薄膜太陽電池の特性は、AM1.5(100mW/cm
2)において、Isc:28.1mA/cm2、Voc:
0.57V、F.F.:0.64、Pmax:10.3
mW/cm2である。
The characteristics of the single-layer thin-film solar cell manufactured by the above-mentioned thin-film forming method are AM1.5 (100 mW / cm).
2 ) In Isc: 28.1 mA / cm 2 , Voc:
0.57 V, F.I. F. : 0.64, Pmax: 10.3
mW / cm 2 .

【0038】なお、この太陽電池では光電変換層が単層
であるが、a−Siあるいはa−SiGeセルを上部セ
ルとして用い、この結晶性薄膜Siセルを下部セルとし
て用いることにより、さらに高い効率が期待される。ま
た、a−Si/a−SiGe/結晶性薄膜Siの3層構
造としても効果的である。
Although the photoelectric conversion layer is a single layer in this solar cell, higher efficiency can be obtained by using an a-Si or a-SiGe cell as an upper cell and using this crystalline thin film Si cell as a lower cell. There is expected. It is also effective as a three-layer structure of a-Si / a-SiGe / crystalline thin film Si.

【0039】なお、本発明は、上記実施形態に限定され
るものではなく、本発明の範囲内で上記実施形態に多く
の修正および変更を加え得ることは勿論である。例え
ば、上記実施形態の太陽電池とは逆に、透光性絶縁基板
の上にn層、i層、p層の順に積層して光電変換活性層
を形成した構造の薄膜太陽電池としてもよい。この場
合、結晶性n層はカーボンを含んでいてもよい。
It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that many modifications and changes can be made to the above-described embodiment within the scope of the present invention. For example, contrary to the solar cell of the above embodiment, a thin-film solar cell having a structure in which a photoelectric conversion active layer is formed by stacking an n-layer, an i-layer, and a p-layer in this order on a light-transmitting insulating substrate may be used. In this case, the crystalline n-layer may contain carbon.

【0040】[0040]

【発明の効果】以上の説明から明らかな通り、本発明に
よると、VHF帯の高高周波にパルス放電を加えること
により、パウダーの発生が抑制されて欠陥の少ない高品
質で、かつ導電率の低下しない結晶性の良好な薄膜を形
成することができる。
As is apparent from the above description, according to the present invention, by applying a pulse discharge to a high frequency in the VHF band, powder generation is suppressed, high quality with few defects, and a decrease in conductivity. A thin film with good crystallinity can be formed.

【0041】このように、Si薄膜の結晶性の向上を達
成できることにより、p層およびn層での光の吸収損失
が少なくなるので、i層への到達光の増加により短絡電
流値が向上し、しかも高い開放電圧が得られる。また、
i層での結晶粒径の大型化を図れ、長波長光の吸収を増
加させることができる。したがって、長波長感度の向上
および変換効率の向上となり、高効率な薄膜太陽電池の
実現が可能となる。
As described above, since the crystallinity of the Si thin film can be improved, the absorption loss of light in the p-layer and the n-layer is reduced, and the short-circuit current value is improved by increasing the light reaching the i-layer. In addition, a high open-circuit voltage can be obtained. Also,
The crystal grain size in the i-layer can be increased, and absorption of long-wavelength light can be increased. Therefore, the long-wavelength sensitivity and the conversion efficiency are improved, and a highly efficient thin-film solar cell can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】暗導電率に対する高高周波下でのパルス放電の
効果を示す図
FIG. 1 shows the effect of pulse discharge under high frequency on dark conductivity.

【図2】暗導電率に対する電源周波数の影響を示す図FIG. 2 is a diagram showing an influence of a power supply frequency on dark conductivity.

【図3】パルス放電における高周波入力後の電子温度の
時間的変化を示す図
FIG. 3 is a diagram showing a temporal change of an electron temperature after a high frequency input in a pulse discharge.

【図4】本発明の実施形態の太陽電池の構成を示す断面
FIG. 4 is a cross-sectional view illustrating a configuration of a solar cell according to an embodiment of the present invention.

【図5】従来の太陽電池の構成を示す断面図FIG. 5 is a cross-sectional view showing a configuration of a conventional solar cell.

【図6】他の実施形態の太陽電池の構成を示す断面図FIG. 6 is a cross-sectional view illustrating a configuration of a solar cell according to another embodiment.

【符号の説明】[Explanation of symbols]

1 透光性絶縁基板 2 透明導電膜 3 結晶性p層 4 非晶質i層 5 非晶質n層 6 裏面電極 7 非晶質p層 8 結晶性i層 9 結晶性n層 REFERENCE SIGNS LIST 1 translucent insulating substrate 2 transparent conductive film 3 crystalline p-layer 4 amorphous i-layer 5 amorphous n-layer 6 back electrode 7 amorphous p-layer 8 crystalline i-layer 9 crystalline n-layer

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 プラズマCVD法を用いた薄膜の形成方
法であって、VHF帯の高高周波電力を印加しながらパ
ルス放電を行って基板上に結晶性薄膜を形成することを
特徴とする薄膜形成方法。
1. A method for forming a thin film using a plasma CVD method, comprising forming a crystalline thin film on a substrate by performing pulse discharge while applying high-frequency power in a VHF band. Method.
【請求項2】 薄膜が結晶性Siからなるp層であるこ
とを特徴とする請求項1記載の薄膜形成方法。
2. The method according to claim 1, wherein the thin film is a p-layer made of crystalline Si.
【請求項3】 薄膜が結晶性Siからなるn層であるこ
とを特徴とする請求項1記載の薄膜形成方法。
3. The method according to claim 1, wherein the thin film is an n-layer made of crystalline Si.
【請求項4】 結晶性Siの薄膜はカーボンを含んでい
ることを特徴とする請求項2または3記載の薄膜形成方
法。
4. The method according to claim 2, wherein the crystalline Si thin film contains carbon.
【請求項5】 薄膜が結晶性Siからなるi層であるこ
とを特徴とする請求項1記載の薄膜形成方法。
5. The method according to claim 1, wherein the thin film is an i-layer made of crystalline Si.
【請求項6】 電源周波数が27.12MHz〜81.
36MHzとされたことを特徴とする請求項1ないし5
のいずれかに記載の薄膜形成方法。
6. A power supply frequency between 27.12 MHz and 81.12 MHz.
The frequency is set to 36 MHz.
The thin film forming method according to any one of the above.
【請求項7】 p層、i層、n層が積層されてなる非晶
質Si太陽電池において、各層のうち少なくとも1層に
請求項1記載の薄膜形成方法によって結晶性薄膜を形成
することを特徴とする太陽電池の製造方法。
7. An amorphous Si solar cell comprising a p-layer, an i-layer and an n-layer laminated, wherein a crystalline thin film is formed on at least one of the layers by the thin-film forming method according to claim 1. A method for manufacturing a solar cell.
【請求項8】 p層、i層、n層が積層されてなる薄膜
結晶Si太陽電池において、各層のうち少なくとも1層
に請求項1記載の薄膜形成方法によって結晶性薄膜を形
成することを特徴とする太陽電池の製造方法。
8. A thin-film crystalline Si solar cell in which a p-layer, an i-layer, and an n-layer are stacked, wherein a crystalline thin film is formed on at least one of the layers by the thin-film forming method according to claim 1. Solar cell manufacturing method.
JP9120410A 1997-05-12 1997-05-12 Formation of thin film Pending JPH10313125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9120410A JPH10313125A (en) 1997-05-12 1997-05-12 Formation of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9120410A JPH10313125A (en) 1997-05-12 1997-05-12 Formation of thin film

Publications (1)

Publication Number Publication Date
JPH10313125A true JPH10313125A (en) 1998-11-24

Family

ID=14785539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9120410A Pending JPH10313125A (en) 1997-05-12 1997-05-12 Formation of thin film

Country Status (1)

Country Link
JP (1) JPH10313125A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151719A (en) * 2000-11-13 2002-05-24 Sharp Corp Thin-film solar cell and manufacturing method thereof
EP1505174A1 (en) * 2003-07-30 2005-02-09 Sharp Kabushiki Kaisha Manufacturing method of silicon thin film solar cell
JP2005183620A (en) * 2003-12-18 2005-07-07 Sharp Corp Method for manufacturing silicon thin film solar battery
US7041342B2 (en) * 1999-07-26 2006-05-09 Schott Glas Thin-film solar cells and method of making
JP2008004813A (en) * 2006-06-23 2008-01-10 Sharp Corp Silicon-based thin film photoelectric conversion element and manufacturing method and manufacturing apparatus therefor
WO2009037815A1 (en) * 2007-09-21 2009-03-26 Nissin Electric Co., Ltd. Photovoltaic device and method for manufacturing the same
WO2011116510A1 (en) * 2010-03-23 2011-09-29 福建钧石能源有限公司 Method for depositing thin film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7041342B2 (en) * 1999-07-26 2006-05-09 Schott Glas Thin-film solar cells and method of making
JP2002151719A (en) * 2000-11-13 2002-05-24 Sharp Corp Thin-film solar cell and manufacturing method thereof
JP4674956B2 (en) * 2000-11-13 2011-04-20 シャープ株式会社 Thin film solar cell and manufacturing method thereof
EP1505174A1 (en) * 2003-07-30 2005-02-09 Sharp Kabushiki Kaisha Manufacturing method of silicon thin film solar cell
JP2005050905A (en) * 2003-07-30 2005-02-24 Sharp Corp Method for manufacturing silicon thin film solar cell
JP2005183620A (en) * 2003-12-18 2005-07-07 Sharp Corp Method for manufacturing silicon thin film solar battery
JP4497914B2 (en) * 2003-12-18 2010-07-07 シャープ株式会社 Method for producing silicon thin film solar cell
JP2008004813A (en) * 2006-06-23 2008-01-10 Sharp Corp Silicon-based thin film photoelectric conversion element and manufacturing method and manufacturing apparatus therefor
WO2009037815A1 (en) * 2007-09-21 2009-03-26 Nissin Electric Co., Ltd. Photovoltaic device and method for manufacturing the same
WO2011116510A1 (en) * 2010-03-23 2011-09-29 福建钧石能源有限公司 Method for depositing thin film

Similar Documents

Publication Publication Date Title
EP0895291B1 (en) Photovoltaic element and method of producing the same
US6100466A (en) Method of forming microcrystalline silicon film, photovoltaic element, and method of producing same
US6043427A (en) Photovoltaic device, photoelectric transducer and method of manufacturing same
US20070023081A1 (en) Compositionally-graded photovoltaic device and fabrication method, and related articles
US6488995B1 (en) Method of forming microcrystalline silicon film, method of fabricating photovoltaic cell using said method, and photovoltaic device fabricated thereby
JP2004165394A (en) Stacked photovoltaic element
JPH11243219A (en) Laminated photovoltaic element
JP2005050905A (en) Method for manufacturing silicon thin film solar cell
JP2002134772A (en) Silicon based thin film and photovoltaic element
JPH11251612A (en) Manufacture of photovoltaic element
JP2003282458A (en) Semiconductor device and method of manufacturing the same
US4799968A (en) Photovoltaic device
JPH10313125A (en) Formation of thin film
JPH08298333A (en) Semiconductor coating film forming equipment, and thin film solar cell and forming method of thin film solar cell
JPH0992860A (en) Photovoltaic element
JP2002076390A (en) Photovoltaic device and manufacturing method therefor
JP4497914B2 (en) Method for producing silicon thin film solar cell
JP3027670B2 (en) Photovoltaic element
JP2010262976A (en) Method for forming semiconductor film, and method for manufacturing photoelectric conversion device
JPH11233443A (en) Forming method of microcrystal silicon film, photovoltaic element and forming equipment of semiconductor film
JP3029169B2 (en) Photovoltaic element
JP3027671B2 (en) Photovoltaic element
JP2000312014A (en) Thin-film photoelectric conversion device
Das et al. Deposition of microcrystalline silicon solar cells via the pulsed PECVD technique
JP3547716B2 (en) Method for manufacturing semiconductor thin film and method for manufacturing photovoltaic device