JPH10310862A - Production of deposited coating and production of photovolatic element - Google Patents

Production of deposited coating and production of photovolatic element

Info

Publication number
JPH10310862A
JPH10310862A JP9122184A JP12218497A JPH10310862A JP H10310862 A JPH10310862 A JP H10310862A JP 9122184 A JP9122184 A JP 9122184A JP 12218497 A JP12218497 A JP 12218497A JP H10310862 A JPH10310862 A JP H10310862A
Authority
JP
Japan
Prior art keywords
film
chamber
layer
substrate
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9122184A
Other languages
Japanese (ja)
Other versions
JP3787410B2 (en
Inventor
Atsushi Shiozaki
篤志 塩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12218497A priority Critical patent/JP3787410B2/en
Priority to US09/076,237 priority patent/US5998730A/en
Publication of JPH10310862A publication Critical patent/JPH10310862A/en
Application granted granted Critical
Publication of JP3787410B2 publication Critical patent/JP3787410B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To stably obtain an inexpensive reflecting layer and a transparent electrically conductive layer with desired texture structures high in reflectance and reliability by evacuating a coating forming chamber, heating it to a prescribed coating forming temp. or above, thereafter executing cooling or air-cooling, setting to the coating forming temp., forming the metallic reflecting layer on a substrate, bringing the surface into contact with active oxygen and forming the transparent electroconductive layer. SOLUTION: A coating forming chamber is set to a prescribed coating forming temp., thereafter, a substrate 204 is carried, and coating formation is started. Sputtering by an electrode 214 contg. Al is executed in a reflection layer producing chamber 205 to produce a reflecting layer. Next, the substrate 204 is passed through active oxygen treating chambers 206 and 207 generating glow discharge by d.c. power sources 206 and 221 in an oxygen-contg. atmosphere, and the surface of the reflecting layer is brought into contact with active oxygen in a state of ions, radicals or being excited. Then, it is carried to transparent electrocoductive layer producing chambers 208 and 209 and are sputtered by targets 217 and 218 of zinc oxide to produce a transparent electroconductive layer, which is coiled in a coiling chamber 210.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光電変換素子の反射
層及びその上に積層される透明導電層の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a reflective layer of a photoelectric conversion element and a transparent conductive layer laminated thereon.

【0002】[0002]

【従来の技術】従来より、半導体層通過した光を反射層
により反射させて再び半導体層で吸収させる構成の光電
変換素子が知られている。更に半導体層と反射層との間
に金属酸化物などからなる透明導電層を介在させること
が知られている。また、反射層及び/又は透明導電層の
表面を凹凸構造(テキスチャー構造)にすることによ
り、反射光の光路長を伸ばすことが知られている。
2. Description of the Related Art Conventionally, there has been known a photoelectric conversion element having a configuration in which light that has passed through a semiconductor layer is reflected by a reflection layer and is absorbed again by the semiconductor layer. Further, it is known that a transparent conductive layer made of a metal oxide or the like is interposed between the semiconductor layer and the reflection layer. It is also known that the surface of the reflective layer and / or the transparent conductive layer is made to have an uneven structure (texture structure) to extend the optical path length of the reflected light.

【0003】たとえば米国特許4,419,533では
反射層が光電気変換部へ拡散しないように酸化亜鉛等の
バリア層を設ける技術とが開示されている。また、米国
特許4,532,372には反射層の上に透明導電層を
形成し半導体層の欠陥による短絡を防止する技術が開示
されている。
For example, US Pat. No. 4,419,533 discloses a technique in which a barrier layer such as zinc oxide is provided so that a reflection layer does not diffuse into a photoelectric conversion unit. U.S. Pat. No. 4,532,372 discloses a technique for forming a transparent conductive layer on a reflective layer to prevent a short circuit due to a defect in a semiconductor layer.

【0004】反射層としてはアルミニウムを用いること
が知られている。特開昭62−211377では酸素ガ
スを供給し4重極質量分析計でその量を監視しつつ酸素
ガス流量を制御しながらスパッタリングをおこないアル
ミニウム膜を作製する方法が開示されており、アルミニ
ウムの粒径が制御できると示されている。
It is known that aluminum is used as a reflective layer. Japanese Patent Application Laid-Open No. 62-21377 discloses a method for producing an aluminum film by supplying oxygen gas and performing sputtering while controlling the oxygen gas flow rate while monitoring the amount by a quadrupole mass spectrometer. It is shown that the diameter can be controlled.

【0005】特開平02−297737では不活性ガス
を10mtorr以上の圧力に保ち腐食や変形欠陥を防
止したアルミニウム膜をスパッタリングする方法が開示
されている。特開平05−171434では真空容器内
に残留空気を残した状態でアルミニウム膜をスパッタリ
ングし突起のないアルミニウム膜を形成する方法が開示
されている。
Japanese Patent Application Laid-Open No. 02-297737 discloses a method of sputtering an aluminum film in which an inert gas is maintained at a pressure of 10 mtorr or more to prevent corrosion and deformation defects. Japanese Patent Application Laid-Open No. 05-171434 discloses a method in which an aluminum film is sputtered with residual air left in a vacuum vessel to form an aluminum film without protrusions.

【0006】特開平06−116723ではアルミニウ
ムをスパッタリングして作製する工程とこのアルミニウ
ム膜を窒素と酸素の混合ガスにさらす工程を繰り返すこ
とにより平滑なアルミニウム膜を得る方法が開示されて
いる。
Japanese Patent Application Laid-Open No. 06-116723 discloses a method of obtaining a smooth aluminum film by repeating a process of manufacturing by sputtering aluminum and a process of exposing the aluminum film to a mixed gas of nitrogen and oxygen.

【0007】特開平06−116722では長尺基板を
移動させつつ、その上に金属層と透明導電層を連続して
スパッタ法で形成することが記載されている(Roll to
Roll法)。
Japanese Patent Application Laid-Open No. 06-116722 describes that a metal layer and a transparent conductive layer are continuously formed thereon by a sputtering method while a long substrate is moved (Roll to
Roll method).

【0008】[0008]

【発明が解決しようとする課題】反射層としてアルミニ
ウムを用い、その上に透明導電層を積層した光電変換素
子には以下の問題点があることが明らかになった。
It has been found that a photoelectric conversion element in which aluminum is used as a reflection layer and a transparent conductive layer is laminated thereon has the following problems.

【0009】アルミニウムの作製温度を高くすることは
密着性を高めたり、結晶性を高め凸凹を形成することに
なるが、アルミニウムの粒界が光を吸収し反射率が低下
してしまい半導体層での電気に変換できる光の量を低下
させていることが判明した。また、Roll to Roll方式の
装置で反射層と透明導電層を連続して作製する場合に反
射率が低下することが判明した。
Increasing the manufacturing temperature of aluminum increases the adhesion, increases the crystallinity, and forms irregularities. However, the grain boundaries of aluminum absorb light and reduce the reflectivity. It has been found that the amount of light that can be converted into electricity is reduced. In addition, it has been found that the reflectivity decreases when a reflective layer and a transparent conductive layer are successively formed using a roll-to-roll system.

【0010】また、真空装置内の膜が付着する構造物や
材料であるターゲットは定期的なメンテナンスが必要で
あり装置内部を大気状態にする必要がある。大気開放後
の膜作製では光電変換素子の変換効率が安定しないこと
があった。特に、Roll to Roll法では複数の成膜室が連
結しており、該成膜室を長尺基板が搬送されながら成膜
が行われる為、成膜時間が長時間に渡る。この場合、上
述の変換効率の不安定さが顕著に現れた。例えば、成膜
前に成膜時の温度条件で12時間にわたる予備加熱を行
った後、成膜を開始し、10時間経過後の装置で金属層
を作製した場合、該金属層を有する光起電力素子の変換
効率は最高の効率を有するものと比べて4%ほど低い変
換効率が得られる場合があった。
[0010] Further, a target which is a structure or a material to which a film adheres in a vacuum apparatus needs regular maintenance, and the inside of the apparatus needs to be in an atmospheric state. In the production of the film after opening to the atmosphere, the conversion efficiency of the photoelectric conversion element was sometimes not stable. In particular, in the roll-to-roll method, a plurality of film formation chambers are connected, and film formation is performed while a long substrate is transported in the film formation chamber, so that the film formation time is long. In this case, the above-mentioned instability of the conversion efficiency was remarkable. For example, after performing preheating for 12 hours under the temperature conditions at the time of film formation before film formation, film formation is started, and when a metal layer is manufactured by an apparatus after 10 hours, a photovoltaic device having the metal layer is formed. In some cases, the conversion efficiency of the power element is about 4% lower than that of the power element having the highest efficiency.

【0011】また真空排気を基板の幅方向に行う場合は
変換効率が幅方向に大きな分布を持つ場合もある。この
原因は明らかではないが成膜中の残留不純物ガス等の影
響で透明導電層の伝導状態が変動し半導体接合へ影響を
及ぼしている可能性もあると考えている。
When the vacuum evacuation is performed in the width direction of the substrate, the conversion efficiency may have a large distribution in the width direction. Although the cause is not clear, it is considered that the conduction state of the transparent conductive layer may fluctuate due to the influence of the residual impurity gas during the film formation, which may affect the semiconductor junction.

【0012】以上のように従来知られた方法だけでは所
望のテクスチャー構造で、反射率が高く、安価で、信頼
性の高い反射層と透明導電層を安定して得ることは容易
ではなかった。
As described above, it has not been easy to obtain a reliable reflective layer and a transparent conductive layer with a desired texture structure, high reflectivity, low cost, and high reliability by using only the conventionally known method.

【0013】[0013]

【課題を解決するための手段】成膜室を大気開放した後
に、該成膜室を減圧し、該成膜室を所定の成膜温度以上
に加熱した後、冷却または放冷し、該成膜室を所定の成
膜温度に設定し、基板上に金属反射層を形成する工程
と、該金属反射層表面に活性酸素を接触させる工程と、
透明導電層を形成する工程とを有することを特徴とする
堆積膜製造方法、及び該方法を用いて金属層、及び透明
導電層を形成した後、半導体層を形成する光起電力素子
の製造方法とする。
After the film forming chamber is opened to the atmosphere, the pressure in the film forming chamber is reduced, and the film forming chamber is heated to a predetermined film forming temperature or higher, and then cooled or cooled. Setting the film chamber to a predetermined film formation temperature, forming a metal reflective layer on the substrate, and contacting active oxygen to the metal reflective layer surface,
Forming a transparent conductive layer, and a method for manufacturing a photovoltaic element in which a metal layer and a transparent conductive layer are formed using the method, and then a semiconductor layer is formed. And

【0014】[0014]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

〔光電変換素子の製造方法〕図1は本発明による光電変
換素子の断面の一例で、基板101上に反射層102、透明導
電層103、半導体層104、透明電極108、及び集電電極109
が順に積層されている。
[Method of Manufacturing Photoelectric Conversion Element] FIG. 1 is an example of a cross section of a photoelectric conversion element according to the present invention. A reflection layer 102, a transparent conductive layer 103, a semiconductor layer 104, a transparent electrode 108, and a current collecting electrode 109 are formed on a substrate 101.
Are sequentially stacked.

【0015】図2は図1に示す光電変換素子を長尺基板
上に作製するための製造装置の一例である。この装置に
より以下の手順で成膜がなされる。
FIG. 2 shows an example of a manufacturing apparatus for manufacturing the photoelectric conversion element shown in FIG. 1 on a long substrate. Film formation is performed by this apparatus in the following procedure.

【0016】(1)ロール状基板202を送り出し室2
01から巻き取り室210に渡し、真空ポンプ239、
240で真空排気する。
(1) The roll-shaped substrate 202 is delivered to the delivery chamber 2
01 to the winding chamber 210, and the vacuum pump 239,
Evacuate at 240.

【0017】(2)所定の圧力まで真空排気した後、ガ
ス供給管230、233、234からアルゴンガス等の
不活性ガスを供給し、231、232のガス供給管から
は酸素ガスを供給し不図示の排気バルブの開度を調整し
所定の圧力に調整する。各室に備えたヒータユニット2
36、237、238、224、225の複数本の赤外
線ランプを点灯し、装置内壁や仕切り板227、22
8、229や基板204を加熱する。温度は基板近傍に
温度センサーを設けておき成膜時の温度以上に制御す
る。この時各処理室に電力を供給して放電を発生させる
ことが望ましい。
(2) After evacuating to a predetermined pressure, an inert gas such as an argon gas is supplied from the gas supply pipes 230, 233, and 234, and an oxygen gas is supplied from the gas supply pipes 231 and 232 to supply the inert gas. The opening degree of the illustrated exhaust valve is adjusted to a predetermined pressure. Heater unit 2 provided in each room
36, 237, 238, 224, and 225, a plurality of infrared lamps are turned on, and the inner wall of the device and the partition plates 227 and 22
8, 229 and the substrate 204 are heated. The temperature is controlled to be higher than the temperature at the time of film formation by providing a temperature sensor near the substrate. At this time, it is desirable to supply electric power to each processing chamber to generate discharge.

【0018】また成膜時温度以上に温度が到達してから
加熱用のランプを消し加熱時間程度冷却したのち再度加
熱しても良い。この温度サイクルプロセスは装置を構成
する材料を収縮させ、その結果、ガス溜りを解消する効
果がある。この事は特に装置の構成要素が複雑な場合に
効果があり、たとえば基板を所定の位置に保つために使
用される磁石を内部に備えたマグネットローラー235
等を使用する場合は効果が高い。
Alternatively, the heating lamp may be turned off after the temperature reaches a temperature higher than the film forming temperature, cooled for about the heating time, and then heated again. This temperature cycling process has the effect of shrinking the material making up the device and, as a result, eliminating gas pools. This is particularly effective when the components of the device are complex, for example, a magnet roller 235 with magnets used to keep the substrate in place.
The effect is high when using etc.

【0019】(3)所定の時間加熱した後、冷却または
放冷し、所定の成膜温度にする。この後サーボモータで
巻き取りロール211を回転させ基板101、204を
一定速度で搬送させてから成膜を開始する。
(3) After heating for a predetermined time, it is cooled or left to cool to a predetermined film forming temperature. Thereafter, the take-up roll 211 is rotated by the servomotor to transport the substrates 101 and 204 at a constant speed, and then the film formation is started.

【0020】(4)まず反射層作製室205でアルミニ
ウムまたはその含有物のターゲット214をカソード電
極とし直流電源219にてスパッタリングして反射層1
02を作製する。マグネトロンスパッタリングを用いて
もよい。
(4) First, in the reflective layer production chamber 205, the reflective layer 1 is sputtered by a DC power supply 219 using aluminum or its target 214 as a cathode electrode.
02 is manufactured. Magnetron sputtering may be used.

【0021】(5)次に反射層を作製した基板204を
搬送し、酸素ガスを含む雰囲気で直流電源220、22
1によりグロー放電を発生させる活性酸素処理室20
6、207を通過させ反射層の表面100をイオンやラ
ジカルや励起状態等の活性酸素に接触させる。なお活性
酸素処理室と反射層の作製室の間には隙間を狭くしアル
ゴン等の不活性ガスを流すガスゲート又はピンチバルブ
226を設けて、活性酸素処理室の酸素ガスが反射層作
製室に混入する量を制限している。
(5) Next, the substrate 204 on which the reflection layer has been formed is transported, and DC power supplies 220 and 22 are placed in an atmosphere containing oxygen gas.
1. An active oxygen processing chamber 20 for generating glow discharge
6 and 207, the surface 100 of the reflective layer is brought into contact with active oxygen such as ions, radicals, and excited states. A gas gate or pinch valve 226 for narrowing the gap and flowing an inert gas such as argon is provided between the active oxygen processing chamber and the chamber for forming the reflective layer, and oxygen gas in the active oxygen processing chamber is mixed into the reflective layer manufacturing chamber. The amount to do is limited.

【0022】(6)次に活性酸素処理室206、207
を通過した基板204を透明導電層作製室208、20
9に搬送し酸化亜鉛を主成分とするターゲット217、
218に直流電源222、223にてスパッタリングし
て透明導電層103を作製して巻き取り室に巻き取る。
この時作製温度と直流電力を適当に選ぶことにより透明
導電層103の表面に数100nmの大きさの凹凸を作
製することができ光の散乱の効果を利用できる。第1図
ではこの凹凸を摸式的に強調して記している。
(6) Next, the active oxygen processing chambers 206 and 207
The transparent conductive layer forming chambers 208 and 20
9, a target 217 containing zinc oxide as a main component,
The transparent conductive layer 103 is formed by sputtering the DC power supply 218 with DC power supplies 222 and 223, and wound into a winding chamber.
At this time, by appropriately selecting the production temperature and the DC power, irregularities having a size of several 100 nm can be produced on the surface of the transparent conductive layer 103, and the effect of light scattering can be utilized. In FIG. 1, the irregularities are schematically emphasized.

【0023】以上のようにして基板上に反射層と透明電
極が連続して作製できる。なお、活性酸素処理室と透明
導電層作製室は透明導電層が酸化膜である場合は厳密に
空間を分離する必要はなく、膜の回り込みを低減する程
度の簡単な仕切り程度でも良い。
As described above, the reflection layer and the transparent electrode can be continuously formed on the substrate. When the transparent conductive layer is an oxide film, it is not necessary to strictly separate the space between the active oxygen treatment chamber and the transparent conductive layer forming chamber, and a simple partition may be used to reduce the wraparound of the film.

【0024】活性酸素処理室206、及び207にはア
ルゴンが混入し、透明導電層作製室208、及び209
には酸素ガスが混入する場合があるが、堆積する材料に
よってはガスゲート、ピンチバルブ等を設けてこれらの
処理室間を分離してもよい。
Argon is mixed into the active oxygen processing chambers 206 and 207, and the transparent conductive layer forming chambers 208 and 209 are mixed.
May be mixed with oxygen gas, but depending on the material to be deposited, a gas gate, a pinch valve or the like may be provided to separate these processing chambers.

【0025】透明導電層は図2に示すように複数の作製
室で堆積することが望ましく、特に作製室208での作
製温度を作製室209での作製温度より低くして堆積し
た透明導電層を有する光起電力素子は優れた特性を有す
ることがわかった。
The transparent conductive layer is preferably deposited in a plurality of manufacturing chambers as shown in FIG. 2. In particular, the transparent conductive layer deposited at a lower manufacturing temperature in the manufacturing chamber 208 than in the manufacturing chamber 209 is used. It has been found that the photovoltaic element has excellent characteristics.

【0026】更に別の堆積装置を用いて半導体層、透明
電極を作製し、集電電極が形成される。更に保護樹脂を
設けてもよい。
A semiconductor layer and a transparent electrode are formed by using another deposition apparatus, and a current collecting electrode is formed. Further, a protective resin may be provided.

【0027】この様な手順によって作製した反射層と透
明導電層は反射率が良好であり、反射した光が半導体層
で効果的に吸収され光電気変換効率が向上する。また長
時間にわたり特性に変化がなく信頼性も良い。
The reflective layer and the transparent conductive layer produced by such a procedure have good reflectivity, and the reflected light is effectively absorbed by the semiconductor layer to improve the photoelectric conversion efficiency. In addition, there is no change in characteristics for a long time, and the reliability is good.

【0028】前述の工程(2)における事前加熱と、光
起電力素子の変換効率が関係することを本発明者は見出
した。具体的には、工程(6)で形成する透明導電層103
表面の凹凸形状が事前加熱の時間によって変化する。本
発明者の実験で、事前加熱時間を0分から720分まで変化
させ、また加熱温度を250℃から600℃まで変化させ、変
換効率との関係を調べた。その結果を表に示す。表の横
軸は事前加熱温度、縦軸は加熱時間で、250℃・事前加熱
0分の場合を1とした時の変換効率を、1.0〜1.05を△、
1.05〜1.15を○、1.15より優れたものを◎で示した。
The present inventor has found that the preheating in the above step (2) is related to the conversion efficiency of the photovoltaic element. Specifically, the transparent conductive layer 103 formed in step (6)
The surface irregularities change depending on the preheating time. In the experiment of the inventor, the relationship between the preheating time was changed from 0 minutes to 720 minutes and the heating temperature was changed from 250 ° C to 600 ° C, and the conversion efficiency was examined. The results are shown in the table. The horizontal axis in the table is the preheating temperature, and the vertical axis is the heating time, 250 ° C, preheating.
The conversion efficiency when the case of 0 minutes is 1 is 1.0 to 1.05,
1.05 to 1.15 were indicated by ○, and those superior to 1.15 were indicated by ◎.

【0029】[0029]

【表1】 [Table 1]

【0030】事前加熱により光電変換効率は改善される
が、加熱時間が長すぎると変換効率が低下することがわ
かった。この原因は明らかではないが、加熱時間が長す
ぎると透明導電層103表面の形状が光起電力素子に適し
た形状とならない、あるいはアルミニウム膜の結晶化が
進行し、粒界が発達し、この粒界が光を吸収して反射率
が低下する、等の理由が考えられる。したがって、事前
加熱は400℃から500℃の範囲で、かつ15分から120分の
範囲で実施する事が好適である。
It has been found that the photoelectric conversion efficiency is improved by preheating, but the conversion efficiency is reduced if the heating time is too long. Although the cause is not clear, if the heating time is too long, the shape of the surface of the transparent conductive layer 103 does not become a shape suitable for the photovoltaic element, or crystallization of the aluminum film proceeds, and grain boundaries develop, It is considered that the grain boundary absorbs light and the reflectance is reduced. Therefore, it is preferable that the preheating is performed in the range of 400 ° C. to 500 ° C. and in the range of 15 minutes to 120 minutes.

【0031】なおここでは例としてRoll to Roll方式を
示したが、本発明はこの方式に限らず、長尺基板を間欠
的に搬送する方式や、枚葉式のインライン方式にも適用
できる。
Although the Roll to Roll method has been described as an example here, the present invention is not limited to this method, and can be applied to a method of intermittently transporting a long substrate or a single-wafer type in-line method.

【0032】〔光電変換素子の構成要素〕 (基板101)基板101は金属や合金あるいはその積
層品、カーボンシート、ポリイミドなどの樹脂フィルム
などが使用可能である。これらはロール状で利用できる
ため連続作製に好適である。その表面が導電性を有する
場合には光起電力素子の一方の電極も兼ねる事ができ
る。
[Components of Photoelectric Conversion Element] (Substrate 101) As the substrate 101, a metal or alloy or a laminate thereof, a carbon sheet, a resin film such as polyimide, or the like can be used. Since these can be used in the form of a roll, they are suitable for continuous production. When the surface has conductivity, it can also serve as one electrode of the photovoltaic element.

【0033】また用途によってはシリコン等の結晶基
板、ガラスやセラミックスの板を用いる事もできる。基
板の表面は研磨や洗浄をしても良いが、そのまま用いて
も良い。また表面に凹凸を有したものも使用可能であ
る。また、SUS430のような磁性体を用いると磁石
を内蔵したローラで位置を正確に制御しつつ搬送するこ
とも可能である。
Depending on the application, a crystal substrate of silicon or the like, or a glass or ceramic plate may be used. The surface of the substrate may be polished or cleaned, but may be used as it is. Further, those having irregularities on the surface can also be used. When a magnetic material such as SUS430 is used, it is possible to convey while controlling the position accurately with a roller having a built-in magnet.

【0034】(反射層102)反射層102はAl、A
g、Cu等が用いられる。Alはマイグレーションの問
題が生じないためとくに好適に用いられる。その表面は
平滑であっても、凹凸を有していてもよい。スパッタリ
ング法や真空蒸着法や化学的気相成長法やイオンプレー
ティング法やイオンビーム法などで作製できる。
(Reflective Layer 102) The reflective layer 102 is made of Al, A
g, Cu, etc. are used. Al is particularly preferably used because no migration problem occurs. The surface may be smooth or may have irregularities. It can be manufactured by a sputtering method, a vacuum evaporation method, a chemical vapor deposition method, an ion plating method, an ion beam method, or the like.

【0035】図2を用いて反射層102の形成方法の一
例である直流マグネトロンスパッタリング法について述
べる。205は作製室であり、排気ポンプ240で真空
排気できる。この作製室に、不図示のガスボンベに接続
されたガス導入管230より、アルゴン等の不活性ガス
をマスフローコントローラを用いて所定流量導入させ、
排気弁の開度を調整し作製室205内を所定の圧力とす
る。214はターゲットで、その内部に不図示の磁石を
備えたカソード電極がある。カソード電極には直流電源
219が接続され電力を供給してスパッタリングを行
う。
A DC magnetron sputtering method, which is an example of a method for forming the reflection layer 102, will be described with reference to FIG. Reference numeral 205 denotes a production chamber, which can be evacuated by an exhaust pump 240. Into this production chamber, an inert gas such as argon is introduced at a predetermined flow rate using a mass flow controller from a gas introduction pipe 230 connected to a gas cylinder (not shown),
The opening degree of the exhaust valve is adjusted to make the inside of the manufacturing chamber 205 a predetermined pressure. A target 214 has a cathode electrode provided with a magnet (not shown) therein. A DC power supply 219 is connected to the cathode electrode to supply power and perform sputtering.

【0036】(活性酸素処理とガスゲート)作製した反
射層を接触させる活性酸素の発生方法としては、アノー
ド電極とカソード電極を用いる直流法、交流法、高周波
法やホロカソードタイプなどのイオンビーム法やマイク
ロウェーブ法が利用できる。酸素ガスを供給し放電を発
生させた空間たとえば第2図の206、207に反射層
の形成された基板204を通過させれば良い。
(Active Oxygen Treatment and Gas Gate) As a method for generating active oxygen for bringing the produced reflective layer into contact, an ion beam method such as a direct current method using an anode electrode and a cathode electrode, an alternating current method, a high frequency method, a hollow cathode type, and the like. A microwave method can be used. The substrate 204 having the reflective layer may be passed through a space where oxygen gas is supplied to generate a discharge, for example, 206 and 207 in FIG.

【0037】この時、活性酸素処理室から反射層の作製
室への酸素の混入は反射率を低下させる別の要因となる
ため一定量以下に制限する必要がある。この方法として
は一般的に知られているような隙間を狭くかつ長くして
コンダクタンスを小さくしたゲート226などが効果的
である。さらにこのゲート226に不活性ガス等を基板
上下面に供給することにより雰囲気ガスの分離性能を上
げることも可能である。また、ピンチバルブを用い、成
膜処理又は活性酸素処理時にロール状基板の移動を停止
し、バルブを閉じてもよい。
At this time, the incorporation of oxygen from the active oxygen processing chamber into the chamber for forming the reflection layer is another factor that lowers the reflectance, so it is necessary to limit the mixing to a certain amount or less. As this method, it is effective to use a generally known gate 226 having a narrow and long gap to reduce conductance. Further, by supplying an inert gas or the like to the gate 226 to the upper and lower surfaces of the substrate, it is possible to improve the separation performance of the atmospheric gas. Alternatively, a pinch valve may be used to stop the movement of the roll-shaped substrate during the film forming process or the active oxygen process, and then close the valve.

【0038】(透明導電層103)透明導電層103も
スパッタリング法や真空蒸着法や化学的気相成長法やイ
オンプレーティング法やイオンビーム法などで作製でき
る。反射層まで光を透過させるため透明度が高いことが
望ましい。また、半導体層の欠陥を通じて流れる電流を
抑制するため適度の抵抗を持つことが望ましい。具体的
には導電率が10-8(1/Ωcm)以上、10-1(1/
Ωcm)以下であることが望ましい。
(Transparent Conductive Layer 103) The transparent conductive layer 103 can also be formed by a sputtering method, a vacuum evaporation method, a chemical vapor deposition method, an ion plating method, an ion beam method, or the like. It is desirable that the transparency be high in order to transmit light to the reflective layer. Further, it is desirable to have an appropriate resistance in order to suppress a current flowing through a defect in the semiconductor layer. Specifically, the conductivity is 10 -8 (1 / Ωcm) or more and 10 -1 (1 / Ωcm).
Ωcm) or less.

【0039】材料としては酸化亜鉛や酸化チタンや酸化
インジウムや酸化錫またはその含有物などが利用でき
る。酸化物を利用する場合には活性酸素処理室と同じ真
空装置内で連続して作製することも可能である。また作
製条件を適当に選ぶことにより表面に数100nmの大
きさの凹凸を作製することができ光の散乱の効果を利用
できる。例えば第1の透明導電層を比較的低い成膜温度
で形成し、その上に第2の透明導電層を第1の透明導電
層成膜温度より高い温度で形成することにより、下地と
の密着性を確保しつつ好適な凹凸形状を形成することが
できる。
As the material, zinc oxide, titanium oxide, indium oxide, tin oxide or a substance containing the same can be used. When an oxide is used, it can be manufactured continuously in the same vacuum apparatus as the active oxygen processing chamber. Also, by appropriately selecting the manufacturing conditions, unevenness having a size of several 100 nm can be formed on the surface, and the effect of light scattering can be utilized. For example, the first transparent conductive layer is formed at a relatively low deposition temperature, and the second transparent conductive layer is formed thereon at a temperature higher than the first transparent conductive layer deposition temperature, so that the first transparent conductive layer can be adhered to the base. It is possible to form a suitable uneven shape while ensuring the property.

【0040】(半導体層104)半導体層104は非単
結晶半導体が好適に用いられ、その作成には高周波電力
やマイクロウェーブ電力を利用するCVD装置などが利
用できる。半導体層104は反射層102及び透明導電
層103の成膜装置と単一の真空室を構成するように連
結した成膜装置で形成してもよいし、別の装置で形成し
てもよい。
(Semiconductor Layer 104) As the semiconductor layer 104, a non-single-crystal semiconductor is preferably used, and a CVD device using high-frequency power or microwave power can be used for the formation thereof. The semiconductor layer 104 may be formed by a film formation apparatus connected to a film formation apparatus of the reflective layer 102 and the transparent conductive layer 103 so as to form a single vacuum chamber, or may be formed by another apparatus.

【0041】真空室内に材料ガスとして SiH4 、S
iF4 、PH3 、H2などを供給し、電力を投入して、
これによりn型 a−Si層105が透明導電層103
上に形成できる。さらにSiH4 、SiF4 、H2など
を用い、これによりi型 a−Si層106がn型 a−
Si層105上に形成でき、今度はSiH4 、BF3、
H2などを用い、p型μc−Si層107が i型a−S
i層106上に形成でき、nipの半導体接合が形成で
きる。この半導体層はアモルファスやマイクロクリスタ
ルに制限されず、nipの構成もpinでも可能であ
り、半導体接合も複数層も受けても良い。
SiH 4, S as material gases in a vacuum chamber
Supply iF4, PH3, H2, etc., turn on the power,
As a result, the n-type a-Si layer 105 becomes transparent conductive layer 103
Can be formed on. Further, SiH4, SiF4, H2, or the like is used, so that the i-type a-Si layer 106 becomes an n-type a-
Can be formed on the Si layer 105, this time SiH4, BF3,
The p-type μc-Si layer 107 is made of i-type a-S
A nip semiconductor junction can be formed on the i-layer 106. This semiconductor layer is not limited to amorphous or microcrystal, and the configuration of the nip may be a pin, and a semiconductor junction or a plurality of layers may be used.

【0042】(透明電極108)透明電極108は半導
体層を介した基板とは反対側の電極を兼ね、低抵抗であ
ることが望ましい。酸化インジウムや酸化錫や酸化チタ
ンや酸化亜鉛やその混合物などを原材料にし、抵抗加熱
や電子ビームによる真空蒸着法やスパッタリング法、C
VD法、スプレー法、浸積法等で作製できる。良好な反
射防止効果を得るために透明電極の膜厚は、主に反射を
防止したい光の波長に比べ、反射防止膜の屈折率の4倍
分の1程度が良い。また屈折率の異なる材料を積層する
構成でも良い。
(Transparent Electrode 108) The transparent electrode 108 also serves as an electrode on the side opposite to the substrate via the semiconductor layer, and preferably has a low resistance. Using indium oxide, tin oxide, titanium oxide, zinc oxide or a mixture thereof as a raw material, resistance heating, vacuum evaporation method using electron beam, sputtering method, C
It can be produced by a VD method, a spray method, an immersion method, or the like. In order to obtain a good anti-reflection effect, the thickness of the transparent electrode is preferably about one-fourth of the refractive index of the anti-reflection film as compared with the wavelength of the light whose reflection is mainly desired to be prevented. Alternatively, a structure in which materials having different refractive indexes are stacked may be used.

【0043】(集電電極109)透明電極の上には電流
を効率よく集電するために、格子状の集電電極109を
設けてもよい。集電電極の形成方法としては、マスクパ
ターンを用いたスパッタリング、抵抗加熱、CVD法
や、全面に金属膜を蒸着した後で不必要な部分をエッチ
ングで取り除きパターニングする方法、光CVDにより
直接グリッド電極パターンを形成する方法、グリッド電
極パターンのネガパターンのマスクを形成した後にメッ
キする方法、導電性ペーストを印刷する方法、金属線を
導電性ペーストで固着する方法などがある。
(Current Collecting Electrode 109) A grid-like current collecting electrode 109 may be provided on the transparent electrode in order to efficiently collect current. As a method of forming the current collecting electrode, sputtering using a mask pattern, resistance heating, CVD method, a method of removing unnecessary portions by etching after depositing a metal film on the entire surface and patterning, a grid electrode directly by optical CVD There are a method of forming a pattern, a method of plating after forming a mask of a negative pattern of a grid electrode pattern, a method of printing a conductive paste, and a method of fixing a metal wire with a conductive paste.

【0044】なおこの後、必要に応じて起電力を取り出
すために出力端子110を基板と集電電極に取り付けて
もよい。さらに必要に応じて樹脂フィルムを接着するな
どして保護樹脂111を設けてもよい。同時に鋼板等の
補強材を併用してもよい。
After that, the output terminal 110 may be attached to the substrate and the current collecting electrode to take out the electromotive force if necessary. Further, if necessary, the protective resin 111 may be provided by bonding a resin film or the like. At the same time, a reinforcing material such as a steel plate may be used in combination.

【0045】[0045]

【実施例】【Example】

(実施例1)本実施例においては、図1の断面模式図に
示す構成の光電変換素子を図2の装置で作成した。
(Example 1) In this example, a photoelectric conversion element having the structure shown in the schematic sectional view of FIG. 1 was produced by the apparatus shown in FIG.

【0046】図2の装置をメンテナンス等の為に大気開
放した後、ロール状基板202を基板送り出し室201
にセットし、反射層作製室205、活性酸素処理室20
6、207、透明導電層作製室208、209それぞれ
に基板204を貫通させ、基板巻き取り室210のロー
ル211に固定する。基板204には幅120mm、厚
さ 0.15mm、長さ150m の表面に凹凸をダル仕
上げで残したSUS430を使用した。
After the apparatus of FIG. 2 is opened to the atmosphere for maintenance or the like, the roll-shaped substrate 202 is transferred to the substrate delivery chamber 201.
And the reflective layer production chamber 205 and the active oxygen treatment chamber 20
6, 207 and the transparent conductive layer forming chambers 208 and 209, respectively, are passed through the substrate 204, and are fixed to the roll 211 of the substrate winding chamber 210. For the substrate 204, SUS430 having a width of 120 mm, a thickness of 0.15 mm, and a length of 150 m, which had irregularities left by dull finishing on its surface, was used.

【0047】続いて圧力が10-4torr以下になるま
で排気した。この後反射層作製室205と透明導電層作
製室208、209にガス供給管230、233、23
4から不活性ガスとしてアルゴンガスを各々30scc
m供給し、活性酸素処理室206、207へは酸素ガス
をガス供給管231、232から各々10sccm供給
した。またゲート226へもアルゴンガスを30scc
m供給した。この状態で排気バルブの開度を調整して真
空室内の圧力を3mTorrに保った。
Subsequently, the air was evacuated until the pressure became 10 -4 torr or less. Thereafter, the gas supply pipes 230, 233, and 23 are inserted into the reflection layer production chamber 205 and the transparent conductive layer production chambers 208, 209.
4 to 30 scc each of argon gas as an inert gas
m, and oxygen gas was supplied to the active oxygen processing chambers 206 and 207 from the gas supply pipes 231 and 232, respectively, at 10 sccm. Argon gas is also supplied to the gate 226 at 30 scc.
m. In this state, the opening degree of the exhaust valve was adjusted to maintain the pressure in the vacuum chamber at 3 mTorr.

【0048】反射層作製室205、活性酸素処理室20
6、207、透明導電層作製室208、209それぞれ
に100wの赤外線ランプ6本セットにしたヒータユニ
ット236、237、238、224、225をステン
レス製の反射板と共に設けておき基板の成膜面の反対の
表面に熱電対を接触させて400℃になるよう温度を制
御して加熱した。設定温度に約15分で到達した後2時
間この状態を保った後、反射層作製室205、活性酸素
処理室206、207のヒータを消し、透明導電層作製
室208の設定温度を150℃に下げ、透明導電層作製
室209の設定温度を250℃に下げた。約30分で透
明導電層作製室の温度が設定温度まで下がった。
The reflection layer forming chamber 205 and the active oxygen processing chamber 20
6, 207, and heater units 236, 237, 238, 224, and 225, each of which is a set of six 100-watt infrared lamps, are provided in each of the transparent conductive layer forming chambers 208 and 209 together with a stainless steel reflecting plate. A thermocouple was brought into contact with the opposite surface and the temperature was controlled so as to be 400 ° C. and heating was performed. After reaching the set temperature in about 15 minutes and maintaining this state for 2 hours, the heaters in the reflective layer forming chamber 205 and the active oxygen processing chambers 206 and 207 are turned off, and the set temperature in the transparent conductive layer forming chamber 208 is set to 150 ° C. The temperature of the transparent conductive layer preparation chamber 209 was lowered to 250 ° C. In about 30 minutes, the temperature of the transparent conductive layer production chamber dropped to the set temperature.

【0049】続いてサーボモータを動作し巻き取りロー
ル211を回転させ毎分170mmで基板204の搬送
を開始した。
Subsequently, the take-up roll 211 was rotated by operating the servo motor, and the transfer of the substrate 204 was started at 170 mm / min.

【0050】反射層作製用のターゲット214には純度
99.99重量%のアルミニウムを使用し、25cm×
25cmの大きさで、400Wの直流電力を印加した。
基板204がターゲット214上を通過する約90秒の
間に約200nmの厚みのアルミニウム反射層101を
作製した。
As the target 214 for forming the reflective layer, aluminum having a purity of 99.99% by weight was used.
A DC power of 400 W was applied with a size of 25 cm.
The aluminum reflective layer 101 having a thickness of about 200 nm was formed in about 90 seconds when the substrate 204 passed over the target 214.

【0051】活性酸素処理室206、207のカソード
電極215、216には各々40Wの直流電力を印加し
た。反射層を作成された基板204は続き搬送され活性
酸素処理室を通過する約180秒の間、酸素ガスを含む
プラズマに接触する。なお本実施例ではカソード電極2
15にはアルミニウムのターゲットを使用し、カソード
216では酸化亜鉛のターゲットを使用した。どちらも
純度99.99重量%、25cm×25cmの大きさで
あった。
A DC power of 40 W was applied to the cathode electrodes 215 and 216 of the active oxygen processing chambers 206 and 207, respectively. The substrate 204 on which the reflective layer is formed is subsequently brought into contact with a plasma containing oxygen gas for about 180 seconds while passing through the active oxygen processing chamber. In this embodiment, the cathode electrode 2
An aluminum target was used for 15 and a zinc oxide target was used for the cathode 216. Both had a purity of 99.99% by weight and a size of 25 cm × 25 cm.

【0052】透明導電層作製室208、209に基板2
04を引き続き搬送した。純度99.99重量%、25
cm×25cmの大きさの酸化亜鉛ターゲット217、
218を用いて各々2800Wの直流電力を印加した。
空間を通過する約180秒の間に酸化亜鉛の透明導電層
103が約1000nm作製できた。なおこの時透明導
電層の表面に高低差が数100nmの大きさの凹凸が発
達した。
The substrate 2 was placed in the transparent conductive layer forming chambers 208 and 209.
04 was subsequently transported. Purity 99.99% by weight, 25
a zinc oxide target 217 having a size of cm × 25 cm,
218 were used to apply a DC power of 2800 W each.
A transparent conductive layer 103 of zinc oxide having a thickness of about 1000 nm was formed in about 180 seconds after passing through the space. At this time, irregularities having a height difference of several 100 nm developed on the surface of the transparent conductive layer.

【0053】透明導電層まで作製した基板204は巻き
取り室210で巻き取った。なお透明導電層の表面を傷
つけないようにポリエステルフィルムの合紙213を巻
き取り時基板と基板の間にはさみ込んだ。
The substrate 204 formed up to the transparent conductive layer was wound in a winding chamber 210. Note that the interleaving paper 213 made of a polyester film was sandwiched between the substrates during winding so as not to damage the surface of the transparent conductive layer.

【0054】このような状態を約10時間保ち、毎分1
70mmの搬送速度で約100mにわたり反射層と透明
導電層を作製した。
This state is maintained for about 10 hours, and 1 minute per minute.
The reflection layer and the transparent conductive layer were formed over a distance of about 100 m at a conveyance speed of 70 mm.

【0055】この反射層と透明導電層の形成された基板
の一部を取りだし分光光度計で反射率を測定したところ
800nmの波長で、比較例1の反射率を100%とし
て比べた時、120%の高い反射率であった。
A part of the substrate on which the reflective layer and the transparent conductive layer were formed was taken out, and the reflectance was measured by a spectrophotometer. When the reflectance of Comparative Example 1 was set to 100% at a wavelength of 800 nm, 120 %.

【0056】さらに反射層と透明導電層の形成された基
板を5cm×5cmの大きさに切断し、市販の容量結合
型高周波CVD装置にセットした。排気ポンプにて、反
応容器の排気管を介して、荒引き、高真空引き操作を行
った。この時、基板の表面温度は250℃となるよう、
温度制御機構により制御した。十分に排気が行われた時
点で、ガス導入管より、Si261sccm、PH3 /
H2(1%H2希釈)0.5sccm、H240sccmを
導入し、スロットルバルブの開度を調整して、反応容器
の内圧を1torrに保持し、圧力が安定したところ
で、直ちに高周波電源より3Wの電力を投入した。プラ
ズマは180秒間持続させた。これにより、n型 a−
Si層105が透明層103上に形成された。再び排気
をした後に、今度はガス導入管よりSi2640scc
m、H240sccmを導入し、スロットルバルブの開
度を調整して、反応容器の内圧を1torrに保持し、
圧力が安定したところで、直ちに高周波電源より2Wの
電力を投入し、プラズマは600秒間持続させた。これに
よりi型a-Si層106がn型 a−Si層105上に
形成された。再び排気をした後に、今度はガス導入管よ
りSiH4 /H2(10%H2希釈)0.5sccm、
BF3/H2(1%H2希釈)1sccm、H250scc
mを導入し、スロットルバルブの開度を調整して、反応
容器の内圧を1torrに保持し、圧力が安定したとこ
ろで、直ちに高周波電源より200Wの電力を投入し
た。プラズマは120秒間持続させた。これによりp型μ
c−Si層107がi型 a−Si層106上に形成さ
れた。
Further, the substrate on which the reflective layer and the transparent conductive layer were formed was cut into a size of 5 cm × 5 cm, and set in a commercially available capacitively coupled high-frequency CVD apparatus. Rough evacuation and high vacuum evacuation operations were performed by an evacuation pump through the evacuation pipe of the reaction vessel. At this time, the surface temperature of the substrate becomes 250 ° C.
Controlled by a temperature control mechanism. When the gas was sufficiently exhausted, 1 sccm of Si 2 H 6 and PH 3 /
0.5 sccm of H2 (1% H2 dilution) and 40 sccm of H2 were introduced, the opening degree of the throttle valve was adjusted, the internal pressure of the reaction vessel was maintained at 1 torr. I put it in. The plasma was maintained for 180 seconds. Thereby, the n-type a-
An Si layer 105 was formed on the transparent layer 103. After exhausting again, this time, 40 scc of Si 2 H 6 was
m, 40 sccm of H 2 were introduced, the opening of the throttle valve was adjusted, and the internal pressure of the reaction vessel was maintained at 1 torr.
Immediately after the pressure was stabilized, 2 W of power was supplied from the high frequency power supply, and the plasma was maintained for 600 seconds. Thus, an i-type a-Si layer 106 was formed on the n-type a-Si layer 105. After evacuating again, this time, 0.5 sccm of SiH 4 / H 2 (10% H 2 dilution) was introduced from the gas inlet tube.
BF 3 / H 2 (1% H 2 dilution) 1 sccm, H 2 50 scc
m, the opening of the throttle valve was adjusted, the internal pressure of the reaction vessel was maintained at 1 torr, and when the pressure was stabilized, 200 W of electric power was immediately supplied from the high frequency power supply. The plasma was maintained for 120 seconds. This gives the p-type μ
The c-Si layer 107 was formed on the i-type a-Si layer 106.

【0057】次に試料を高周波CVD装置より取り出
し、DCマグネトロンスパッタ装置のアノードの表面に
取り付け、ステンレススティールのマスクで試料の周囲
を遮蔽して、中央部4.5cm×4.5cmの領域に1
0重量%の酸化錫と90重量%の酸化インジウムからな
るターゲットを用いてスパッタリングした。堆積条件は
基板温度200℃、不活性ガスとしてアルゴンの流量5
0sccm 、酸素ガス0.5sccm、堆積室内の圧
力3mTorr、ターゲットの単位面積当たりの投入電
力量 0.2W/cm2にて約100秒で厚さが60nm
となるように堆積した。膜の厚みは前もって同じ条件で
堆積時間との関係を検量して堆積することにより所定の
厚みとした。
Next, the sample was taken out of the high-frequency CVD apparatus, attached to the surface of the anode of the DC magnetron sputtering apparatus, and the periphery of the sample was shielded with a stainless steel mask.
Sputtering was performed using a target composed of 0% by weight of tin oxide and 90% by weight of indium oxide. The deposition conditions were a substrate temperature of 200 ° C. and a flow rate of argon as an inert gas of 5
0 sccm, oxygen gas 0.5 sccm, pressure in the deposition chamber 3 mTorr, input electric power per unit area of target 0.2 W / cm 2, thickness is 60 nm in about 100 seconds.
It deposited so that it might become. The thickness of the film was adjusted to a predetermined thickness by previously calibrating the relationship with the deposition time under the same conditions.

【0058】以上のようにして作製した試料に銀ペース
トをスクリーン印刷して集電電極109を面積の2%の
領域に形成し出力端子110を付け、保護樹脂111を
接着した。AM1.5(100mW/cm2)の光照射下
にて特性評価を行ったところ、光電変換効率で比較例1
の変換効率を100%として比べた時、120%の優れ
た変換効率が得られた。
A silver paste was screen-printed on the sample prepared as described above to form a collecting electrode 109 in a region of 2% of the area, an output terminal 110 was attached, and a protective resin 111 was adhered. The characteristics were evaluated under irradiation of light of AM 1.5 (100 mW / cm 2).
When the conversion efficiency was compared with 100%, an excellent conversion efficiency of 120% was obtained.

【0059】さらにこのサンプルを温度85℃、湿度8
5%の環境試験箱による1000時間の環境試験を行っ
た。変換効率の変化は0.02%低下しただけで全く問
題なかった。
Further, this sample was subjected to a temperature of 85 ° C. and a humidity of 8
An environmental test was conducted for 1000 hours using a 5% environmental test box. The change in conversion efficiency was only 0.02%, and was no problem at all.

【0060】(実施例2)真空排気およびガス供給後、
ヒータユニット236、237、238、224、22
5を500℃になるよう温度を制御して2時間加熱した
以外は実施例1と同じ条件で作製した。
Example 2 After evacuation and gas supply,
Heater units 236, 237, 238, 224, 22
5 was manufactured under the same conditions as in Example 1 except that the temperature was controlled to 500 ° C. and heated for 2 hours.

【0061】途中反射層と透明導電層の形成された基板
を分光光度計で反射率を測定したところ800nmの波
長で比較例1の反射率を100%として比べた時、12
0%の高い反射率であった。また完成後AM1.5(1
00mW/cm2)の光照射下にて特性評価を行ったと
ころ、光電変換効率で比較例1の変換効率を100%と
して比べた時、120%の優れた変換効率が得られた。
The reflectance of the substrate on which the reflective layer and the transparent conductive layer were formed was measured with a spectrophotometer. When the reflectance of Comparative Example 1 was set to 100% at a wavelength of 800 nm, 12
The reflectance was as high as 0%. After completion of AM 1.5 (1
When the characteristics were evaluated under light irradiation of (00 mW / cm2), an excellent conversion efficiency of 120% was obtained when the conversion efficiency of Comparative Example 1 was set to 100% in terms of photoelectric conversion efficiency.

【0062】さらにこのサンプルを温度85℃、湿度8
5%の環境試験箱による1000時間の環境試験を行っ
た。変換効率の変化は0.03%低下しただけで全く問
題なかった。
Further, this sample was subjected to a temperature of 85 ° C. and a humidity of 8
An environmental test was conducted for 1000 hours using a 5% environmental test box. The change in the conversion efficiency was reduced by only 0.03% without any problem.

【0063】(実施例3)真空排気およびガス供給後、
ヒータユニット236、237、238、224、22
5を400℃になるよう温度を制御して加熱した。設定
温度に約15分で設定温度に到達した後約15分この状
態を保った後ヒータを消し約15分放置した。この後再
度400℃になるよう制御して加熱し約10分後設定温
度に到達した後約15分この状態を保った以外は実施例
1と同じ条件で作製した。
Example 3 After evacuation and gas supply,
Heater units 236, 237, 238, 224, 22
5 was heated to 400 ° C. while controlling the temperature. After reaching the set temperature in about 15 minutes, this state was maintained for about 15 minutes, then the heater was turned off and left for about 15 minutes. Thereafter, heating was performed again by controlling the temperature to 400 ° C., and after reaching the set temperature after about 10 minutes, this state was maintained for about 15 minutes.

【0064】途中反射層と透明導電層の形成された基板
を分光光度計で反射率を測定したところ800nmの波
長で比較例1の反射率を100%として比べた時、12
0%の高い反射率であった。また完成後AM1.5(1
00mW/cm2)の光照射下にて特性評価を行ったと
ころ、光電変換効率で比較例1の変換効率を100%と
して比べた時、120%の優れた変換効率が得られた。
The reflectance of the substrate on which the reflective layer and the transparent conductive layer were formed was measured with a spectrophotometer. When the reflectance of Comparative Example 1 was set to 100% at a wavelength of 800 nm, 12
The reflectance was as high as 0%. After completion of AM 1.5 (1
When the characteristics were evaluated under light irradiation of (00 mW / cm2), an excellent conversion efficiency of 120% was obtained when the conversion efficiency of Comparative Example 1 was set to 100% in terms of photoelectric conversion efficiency.

【0065】さらにこのサンプルを温度85℃、湿度8
5%の環境試験箱による1000時間の環境試験を行っ
た。変換効率の変化は0.03%低下しただけで全く問
題なかった。
Further, this sample was subjected to a temperature of 85 ° C. and a humidity of 8
An environmental test was conducted for 1000 hours using a 5% environmental test box. The change in the conversion efficiency was reduced by only 0.03% without any problem.

【0066】(実施例4)真空排気およびガス供給後、
ヒータユニット236、237、238、224、22
5を400℃になるよう温度を制御して1時間加熱した
以外は実施例1と同じ条件で作製した。
Example 4 After evacuation and gas supply,
Heater units 236, 237, 238, 224, 22
5 was heated under the same conditions as in Example 1 except that the temperature was controlled to 400 ° C. and heated for 1 hour.

【0067】途中反射層と透明導電層の形成された基板
を分光光度計で反射率を測定したところ800nmの波
長で比較例1の反射率を100%として比べた時、12
0%の高い反射率であった。また完成後AM1.5(1
00mW/cm2)の光照射下にて特性評価を行ったと
ころ、光電変換効率で比較例1の変換効率を100%と
して比べた時、117%の優れた変換効率が得られた。
The reflectance of the substrate on which the reflective layer and the transparent conductive layer were formed was measured with a spectrophotometer. When the reflectance of Comparative Example 1 was set to 100% at a wavelength of 800 nm, the reflectance was 12%.
The reflectance was as high as 0%. After completion of AM 1.5 (1
When the characteristics were evaluated under light irradiation of (00 mW / cm2), an excellent conversion efficiency of 117% was obtained when the conversion efficiency of Comparative Example 1 was set to 100% in terms of photoelectric conversion efficiency.

【0068】さらにこのサンプルを温度85℃、湿度8
5%の環境試験箱による1000時間の環境試験を行っ
た。変換効率の変化は0.04%低下しただけで全く問
題なかった。
Further, this sample was subjected to a temperature of 85 ° C. and a humidity of 8
An environmental test was conducted for 1000 hours using a 5% environmental test box. The change in the conversion efficiency was only 0.04% and was no problem at all.

【0069】(比較例1)真空排気およびガス供給後、
ヒータユニット224、225のみそれぞれ150℃、
250℃に加熱し、予備加熱を行わないで搬送を開始
し、活性酸素処理室206、207両方に、酸素ガスは
同量供給するが直流電力を供給せず、反射層の表面を活
性酸素にさらすことなく作製した以外は実施例1と同じ
条件で作製した。
(Comparative Example 1) After evacuation and gas supply,
Only 150 ° C. for heater units 224 and 225
Heating was performed to 250 ° C., and transport was started without preheating, and the same amount of oxygen gas was supplied to both the active oxygen processing chambers 206 and 207, but no DC power was supplied, and the surface of the reflective layer was converted to active oxygen. It was produced under the same conditions as in Example 1 except that it was not exposed.

【0070】途中反射層と透明導電層の形成された基板
を分光光度計で反射率を測定し800nmの波長を10
0%として反射率の比較対象とした。また完成後AM
1.5(100mW/cm2)の光照射下にて特性評価を
行い得られた 光電変換効率を100%として比較対象
とした。
The reflectance of the substrate on which the reflective layer and the transparent conductive layer were formed was measured with a spectrophotometer, and the wavelength of 800 nm
0% was used as a comparison object of the reflectance. AM after completion
The characteristics were evaluated under light irradiation of 1.5 (100 mW / cm 2), and the obtained photoelectric conversion efficiency was set to 100%, which was used as a comparison object.

【0071】(比較例2)真空排気およびガス供給後、
ヒータユニット224、225のみそれぞれ150℃、
250℃に加熱し、予備加熱を行わないで搬送を開始し
た以外は実施例1と同じ条件で作製した。
Comparative Example 2 After evacuation and gas supply,
Only 150 ° C. for heater units 224 and 225
It was manufactured under the same conditions as in Example 1 except that the heating was performed at 250 ° C. and the conveyance was started without performing the preliminary heating.

【0072】完成後AM1.5(100mW/cm2)の
光照射下にて特性評価を行ったところ、光電変換効率で
比較例1の変換効率を100%として比べた時、114
%の変換効率しか得られなかった。
After the completion, the characteristics were evaluated under light irradiation of AM 1.5 (100 mW / cm 2). When the conversion efficiency of the photoelectric conversion efficiency of Comparative Example 1 was set to 100%, 114% was obtained.
% Conversion efficiency.

【0073】(比較例3)真空排気およびガス供給後、
ヒータユニット224、225のみそれぞれ150℃、
250℃に加熱し12時間保った後搬送を開始した以外
は実施例1と同じ条件で作製した。
(Comparative Example 3) After evacuation and gas supply,
Only 150 ° C. for heater units 224 and 225
It was manufactured under the same conditions as in Example 1 except that the conveyance was started after heating to 250 ° C. and holding for 12 hours.

【0074】完成後AM1.5(100mW/cm2)の
光照射下にて特性評価を行ったところ、光電変換効率で
比較例1の変換効率を100%として比べた時、114
%の変換効率しか得られなかった。
After completion, the characteristics were evaluated under light irradiation of AM 1.5 (100 mW / cm 2). As a result, when the conversion efficiency of Comparative Example 1 was set to 100%, the photoelectric conversion efficiency was 114%.
% Conversion efficiency.

【0075】(比較例4)活性酸素発生室206の直流
電力を400Wとした以外は比較例1と同じ条件で作製
した。完成後AM1.5(100mW/cm2)の光照射
下にて特性評価を行ったところ、光電変換効率で比較例
1の変換効率を100%として比べた時、88%の変換
効率しか得られなかった。
(Comparative Example 4) A device was produced under the same conditions as in Comparative Example 1 except that the DC power in the active oxygen generating chamber 206 was changed to 400 W. When the characteristics were evaluated under light irradiation of AM 1.5 (100 mW / cm 2) after completion, only 88% conversion efficiency was obtained when the conversion efficiency of Comparative Example 1 was set to 100% in terms of photoelectric conversion efficiency. Was.

【0076】(比較例5)ガスゲート226へのアルゴ
ンガスの供給を停止し、反射層作製室205へのアルゴ
ンガスの供給量を5sccmに低減した以外は実施例1
と同じ条件で作製した。完成後AM1.5(100mW
/cm2)の光照射下にて特性評価を行ったところ、光
電変換効率で比較例1の変換効率を100%として比べ
た時、80%の変換効率しか得られなかった。
Comparative Example 5 Example 1 was repeated except that the supply of the argon gas to the gas gate 226 was stopped and the supply amount of the argon gas to the reflective layer production chamber 205 was reduced to 5 sccm.
It was produced under the same conditions as described above. After completion AM1.5 (100mW
/ Cm 2), the characteristics were evaluated. As a result, only 80% conversion efficiency was obtained when the conversion efficiency of Comparative Example 1 was set to 100% in terms of photoelectric conversion efficiency.

【0077】どの程度の酸素混入で影響が出るかを調べ
るため反射層作製室へのアルゴンガスに酸素ガスを意図
的に混合して透明導電層まで作製し反射率を作製した。
合計流量を35sccmとし酸素ガス量を2sccm、
4sccm、8sccmと変化させた結果、それぞれの
反射率は800nmの波長で比較例を100%としたと
きに120%、115%、85%となった。4sccm
以上、つまりは約10%以上の酸素混入で著しく反射率
が低下した。
In order to examine how much oxygen would affect the mixing, an oxygen gas was intentionally mixed with an argon gas to the reflecting layer forming chamber to form a transparent conductive layer, and the reflectance was formed.
The total flow rate is 35 sccm, the oxygen gas amount is 2 sccm,
As a result of changing to 4 sccm and 8 sccm, the respective reflectances were 120%, 115%, and 85% when the comparative example was 100% at a wavelength of 800 nm. 4sccm
Above, that is, the reflectivity was remarkably reduced by oxygen mixing of about 10% or more.

【0078】[0078]

【発明の効果】本発明によって作製される反射層及び透
明導電層を用いる事により、入射する光を有効に利用で
きるため半導体への光の吸収が増加し高い変換効率が得
られ、より小面積での光電変換素子の利用が可能とな
る。また長時間にわたり連続した光電変換素子の作製が
可能で、安価でかつ信頼性の高い光電変換素子の系統電
力用としての本格的な普及に寄与する。
By using the reflective layer and the transparent conductive layer produced according to the present invention, the incident light can be used effectively, so that the absorption of light into the semiconductor increases and a high conversion efficiency can be obtained. The use of the photoelectric conversion element is possible. In addition, it is possible to manufacture a photoelectric conversion element continuously for a long time, which contributes to full-scale spread of a low-cost and highly reliable photoelectric conversion element for system power use.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光電変換素子の一例FIG. 1 shows an example of the photoelectric conversion element of the present invention.

【図2】本発明の光電変換素子の反射層及び透明導電層
を作製するに好適なスパッタリング装置の一例
FIG. 2 shows an example of a sputtering apparatus suitable for producing a reflective layer and a transparent conductive layer of the photoelectric conversion element of the present invention.

【符号の説明】[Explanation of symbols]

100 活性酸素処理される領域 101 基板 102 反射層 103 透明導電層 104 半導体接合層 105 n型a−Si 106 i型a−Si 107 p型μc−SI 108 反射防止膜 109 集電電極 110 出力端子 111 保護樹脂 201 送り出し室 202 ロール状基板 203 ガイドローラ 204 基板 205 反射層作製室 206、207 活性酸素処理室 208、209 透明電極層作製室 210 巻き取り室 211 巻き取りロール 212 ステアリングローラ 213 合紙ロール 214 反射層用ターゲット 215、216 グロー放電用カソード電極 217、218 透明導電層用ターゲット 219〜223 直流電源 224、225 基板加熱用ヒータ 226 ガスゲート 227、228、229 しきり板 230〜234 ガス導入管 235 マグネットローラ 236〜238 予備加熱用ヒータ 239 真空ポンプ 240 拡散ポンプ REFERENCE SIGNS LIST 100 Area to be treated with active oxygen 101 Substrate 102 Reflective layer 103 Transparent conductive layer 104 Semiconductor bonding layer 105 n-type a-Si 106 i-type a-Si 107 p-type μc-SI 108 Antireflection film 109 Current collecting electrode 110 Output terminal 111 Protective resin 201 Sending-out chamber 202 Roll-shaped substrate 203 Guide roller 204 Substrate 205 Reflective layer producing chamber 206, 207 Active oxygen processing chamber 208, 209 Transparent electrode layer producing chamber 210 Winding chamber 211 Winding roll 212 Steering roller 213 Interleaf roll 214 Reflective layer target 215, 216 Glow discharge cathode electrode 217, 218 Transparent conductive layer target 219-223 DC power supply 224, 225 Substrate heating heater 226 Gas gate 227, 228, 229 Stripping plate 230-234 Gas Immigration 235 magnet roller 236-238 preheating heater 239 vacuum pump 240 diffusion pump

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 31/04 H01L 31/04 V ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 31/04 H01L 31/04 V

Claims (22)

【特許請求の範囲】[Claims] 【請求項1】 成膜室を大気開放した後に、該成膜室を
減圧し、該成膜室を所定の成膜温度以上に加熱した後、
冷却または放冷し、該成膜室を所定の成膜温度に設定
し、基板上に金属反射層を形成する工程と、該金属反射
層表面に活性酸素を接触させる工程と、透明導電層を形
成する工程とを有することを特徴とする堆積膜製造方
法。
After the film forming chamber is opened to the atmosphere, the pressure in the film forming chamber is reduced, and the film forming chamber is heated to a predetermined film forming temperature or higher.
Cooling or cooling, setting the film forming chamber to a predetermined film forming temperature, forming a metal reflective layer on the substrate, contacting the surface of the metal reflective layer with active oxygen, Forming a deposited film.
【請求項2】 成膜室は複数の成膜室が単一の真空槽を
形成するように連結されていることを特徴とする請求項
1記載の堆積膜製造方法。
2. The method according to claim 1, wherein the plurality of film forming chambers are connected so as to form a single vacuum chamber.
【請求項3】 成膜室を大気開放した後に、長尺基板を
基板送り出し室から複数の成膜室を貫通して基板巻き取
り室で巻き取るようにセットし、該成膜室を減圧し、該
成膜室を所定の成膜温度以上に加熱した後、該成膜室を
所定の成膜温度に設定し、長尺基板上に金属反射層を形
成する工程と、該金属反射層表面に活性酸素を接触させ
る工程と、透明導電層を形成する工程とを有することを
特徴とする堆積膜製造方法。
3. After the film forming chamber is opened to the atmosphere, the long substrate is set so as to pass through the plurality of film forming chambers from the substrate unloading chamber and to be wound by the substrate winding chamber, and the film forming chamber is depressurized. Heating the film forming chamber to a predetermined film forming temperature or higher, setting the film forming chamber to a predetermined film forming temperature, and forming a metal reflective layer on a long substrate; A method of producing a deposited film, comprising: a step of bringing active oxygen into contact with a substrate; and a step of forming a transparent conductive layer.
【請求項4】 金属反射層を形成する前に成膜室を加熱
する温度は400℃から500℃の範囲で、且つ時間は15分か
ら120分の範囲であることを特徴とする請求項1又は3記
載の堆積膜製造方法。
4. The method according to claim 1, wherein a temperature for heating the film forming chamber before forming the metal reflection layer is in a range of 400 ° C. to 500 ° C., and a time is in a range of 15 minutes to 120 minutes. 3. The method for producing a deposited film according to 3.
【請求項5】 加熱及び、冷却または放冷を複数回行う
ことを特徴とする請求項1又は3記載の堆積膜製造方
法。
5. The method according to claim 1, wherein the heating and the cooling or the cooling are performed a plurality of times.
【請求項6】 成膜はスパッタリング法、真空蒸着法、
化学的気相成長法、イオンプレーティング法、及びイオ
ンビーム法のいずれかにより行われることを特徴とする
請求項1又は3記載の堆積膜製造方法。
6. The film is formed by a sputtering method, a vacuum evaporation method,
4. The method according to claim 1, wherein the method is performed by any one of a chemical vapor deposition method, an ion plating method, and an ion beam method.
【請求項7】 活性酸素に接触させる空間から、金属層
の成膜室へ混入する酸素ガスのガス分圧が10%以下で
あることを特徴とする請求項1又は3記載の堆積膜製造方
法。
7. The method for producing a deposited film according to claim 1, wherein the partial pressure of oxygen gas mixed into the film formation chamber for the metal layer from the space contacted with active oxygen is 10% or less. .
【請求項8】 活性酸素に接触させる空間と金属層の成
膜室との間にガスゲート又はピンチバルブを有すること
を特徴とする請求項1又は3記載の堆積膜製造方法。
8. The method for producing a deposited film according to claim 1, further comprising a gas gate or a pinch valve between a space contacting with active oxygen and a film forming chamber for forming the metal layer.
【請求項9】 長尺基板を連続的に搬送しながら成膜す
ることを特徴とする請求項3記載の堆積膜製造方法。
9. The method according to claim 3, wherein the long substrate is formed while being continuously transported.
【請求項10】 成膜中は長尺基板の搬送を停止し、成
膜終了後に長尺基板を搬送して、引き続く成膜室で成膜
を行うことを特徴とする請求項3記載の堆積膜製造方
法。
10. The deposition according to claim 3, wherein the transport of the long substrate is stopped during the film formation, and the long substrate is transported after the completion of the film formation, and the film is formed in a subsequent film formation chamber. Film manufacturing method.
【請求項11】 請求項3記載の方法で長尺基板上に金
属層及び透明導電層を成膜する工程と、半導体層を形成
する工程とを有することを特徴とする光起電力素子製造
方法。
11. A method for manufacturing a photovoltaic device, comprising: a step of forming a metal layer and a transparent conductive layer on a long substrate by the method according to claim 3; and a step of forming a semiconductor layer. .
【請求項12】 金属反射層を形成する前に成膜室を加
熱する温度は400℃から500℃の範囲で、且つ時間は15分
から120分の範囲であることを特徴とする請求項11記載
の光起電力素子製造方法。
12. The method according to claim 11, wherein the temperature for heating the film forming chamber before forming the metal reflection layer is in the range of 400 ° C. to 500 ° C., and the time is in the range of 15 minutes to 120 minutes. Photovoltaic element manufacturing method.
【請求項13】 加熱及び、冷却または放冷を複数回行
うことを特徴とする請求項11記載の光起電力素子製造方
法。
13. The method according to claim 11, wherein heating and cooling or cooling are performed a plurality of times.
【請求項14】 成膜はスパッタリング法、真空蒸着
法、化学的気相成長法、イオンプレーティング法、及び
イオンビーム法のいずれかにより行われることを特徴と
する請求項11記載の光起電力素子製造方法。
14. The photovoltaic device according to claim 11, wherein the film is formed by any one of a sputtering method, a vacuum evaporation method, a chemical vapor deposition method, an ion plating method, and an ion beam method. Element manufacturing method.
【請求項15】 活性酸素に接触させる空間から、金属
層の成膜室へ混入する酸素ガスのガス分圧が10%以下
であることを特徴とする請求項11記載の光起電力素子製
造方法。
15. The method for manufacturing a photovoltaic device according to claim 11, wherein the partial pressure of oxygen gas mixed into the film formation chamber for the metal layer from the space brought into contact with active oxygen is 10% or less. .
【請求項16】 活性酸素に接触させる空間と金属層の
成膜室との間にガスゲート又はピンチバルブを有するこ
とを特徴とする請求項11記載の光起電力素子製造方法。
16. The method according to claim 11, wherein a gas gate or a pinch valve is provided between the space to be brought into contact with active oxygen and the metal layer deposition chamber.
【請求項17】 長尺基板を連続的に搬送しながら成膜
することを特徴とする請求項11記載の光起電力素子製造
方法。
17. The method according to claim 11, wherein the film is formed while continuously transporting the long substrate.
【請求項18】 成膜中は長尺基板の搬送を停止し、成
膜終了後に長尺基板を搬送して、引き続く成膜室で成膜
を行うことを特徴とする請求項11記載の光起電力素子製
造方法。
18. The light according to claim 11, wherein the transport of the long substrate is stopped during the film formation, and the long substrate is transported after the completion of the film formation, and the film is formed in a subsequent film formation chamber. A method for manufacturing an electromotive element.
【請求項19】 金属反射層はAl、Ag、Cuから選
ばれる一種であることを特徴とする請求項11記載の光起
電力素子製造方法。
19. The method according to claim 11, wherein the metal reflection layer is one type selected from Al, Ag, and Cu.
【請求項20】 透明導電層はZn、Ti、In、Sn
から選ばれる少なくとも一種の酸化物であることを特徴
とする請求項11記載の光起電力素子製造方法。
20. The transparent conductive layer is made of Zn, Ti, In, Sn.
12. The method for producing a photovoltaic element according to claim 11, wherein the method is at least one oxide selected from the group consisting of:
【請求項21】 透明導電層は第1の透明導電層と、該
第1の透明導電層の成膜温度よりも高い温度で成膜する
第2の透明導電層からなることを特徴とする請求項11記
載の光起電力素子製造方法。
21. A transparent conductive layer comprising: a first transparent conductive layer; and a second transparent conductive layer formed at a temperature higher than a temperature at which the first transparent conductive layer is formed. Item 12. The method for producing a photovoltaic element according to Item 11.
【請求項22】 半導体層は非単結晶半導体であること
を特徴とする請求項11記載の光起電力素子製造方法。
22. The method according to claim 11, wherein the semiconductor layer is a non-single-crystal semiconductor.
JP12218497A 1997-05-13 1997-05-13 Deposited film manufacturing method and photovoltaic device manufacturing method Expired - Fee Related JP3787410B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12218497A JP3787410B2 (en) 1997-05-13 1997-05-13 Deposited film manufacturing method and photovoltaic device manufacturing method
US09/076,237 US5998730A (en) 1997-05-13 1998-05-12 Production method for deposited film, production method for photoelectric conversion element, production apparatus for deposited film, production apparatus for photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12218497A JP3787410B2 (en) 1997-05-13 1997-05-13 Deposited film manufacturing method and photovoltaic device manufacturing method

Publications (2)

Publication Number Publication Date
JPH10310862A true JPH10310862A (en) 1998-11-24
JP3787410B2 JP3787410B2 (en) 2006-06-21

Family

ID=14829665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12218497A Expired - Fee Related JP3787410B2 (en) 1997-05-13 1997-05-13 Deposited film manufacturing method and photovoltaic device manufacturing method

Country Status (1)

Country Link
JP (1) JP3787410B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001328198A (en) * 2000-05-18 2001-11-27 Bridgestone Corp Laminated film and method of forming laminated film
US6860974B2 (en) 2001-06-29 2005-03-01 Canon Kabushiki Kaisha Long-Term sputtering method
US6930025B2 (en) 2001-02-01 2005-08-16 Canon Kabushiki Kaisha Transparent conductive film formation process, photovoltaic device production process, transparent conductive film, and photovoltaic device
JP2006133554A (en) * 2004-11-08 2006-05-25 Seiko Epson Corp Method for manufacturing electro-optical device
JP4684372B1 (en) * 2010-04-27 2011-05-18 株式会社シンクロン Manufacturing method of semiconductor light emitting device substrate
JP2012057198A (en) * 2010-09-07 2012-03-22 Ulvac-Riko Inc Device and method for forming particulate
JP2012530378A (en) * 2009-06-16 2012-11-29 エルジー イノテック カンパニー リミテッド Solar cell and manufacturing method thereof
KR20150022767A (en) * 2012-05-31 2015-03-04 소니 주식회사 Film-forming apparatus and film-forming method
JP2017501587A (en) * 2013-12-31 2017-01-12 コリア アドバンスト インスティテュート オブ サイエンスアンド テクノロジーKorea Advanced Institute Of Science And Technology Integrated thin film solar cell manufacturing equipment
WO2017170125A1 (en) * 2016-03-29 2017-10-05 株式会社アルバック Method for manufacturing substrates with transparent conductive film, apparatus for manufacturing substrates with transparent conductive film, substrate with transparent conductive film, and solar cell

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001328198A (en) * 2000-05-18 2001-11-27 Bridgestone Corp Laminated film and method of forming laminated film
US6930025B2 (en) 2001-02-01 2005-08-16 Canon Kabushiki Kaisha Transparent conductive film formation process, photovoltaic device production process, transparent conductive film, and photovoltaic device
US6860974B2 (en) 2001-06-29 2005-03-01 Canon Kabushiki Kaisha Long-Term sputtering method
JP2006133554A (en) * 2004-11-08 2006-05-25 Seiko Epson Corp Method for manufacturing electro-optical device
JP4524611B2 (en) * 2004-11-08 2010-08-18 セイコーエプソン株式会社 Manufacturing method of electro-optical device
JP2012530378A (en) * 2009-06-16 2012-11-29 エルジー イノテック カンパニー リミテッド Solar cell and manufacturing method thereof
WO2011135667A1 (en) * 2010-04-27 2011-11-03 株式会社シンクロン Process for production of semiconductor light-emitting element substrate
JP4684372B1 (en) * 2010-04-27 2011-05-18 株式会社シンクロン Manufacturing method of semiconductor light emitting device substrate
JP2012057198A (en) * 2010-09-07 2012-03-22 Ulvac-Riko Inc Device and method for forming particulate
KR20150022767A (en) * 2012-05-31 2015-03-04 소니 주식회사 Film-forming apparatus and film-forming method
JP2017501587A (en) * 2013-12-31 2017-01-12 コリア アドバンスト インスティテュート オブ サイエンスアンド テクノロジーKorea Advanced Institute Of Science And Technology Integrated thin film solar cell manufacturing equipment
WO2017170125A1 (en) * 2016-03-29 2017-10-05 株式会社アルバック Method for manufacturing substrates with transparent conductive film, apparatus for manufacturing substrates with transparent conductive film, substrate with transparent conductive film, and solar cell
CN108603281A (en) * 2016-03-29 2018-09-28 株式会社爱发科 Manufacturing method with transparent conductive film substrate, the manufacturing device with transparent conductive film substrate, band transparent conductive film substrate and solar cell
US11674217B2 (en) 2016-03-29 2023-06-13 Ulvac, Inc. Method of manufacturing substrate with a transparent conductive film, manufacturing apparatus of substrate with transparent conductive film, substrate with transparent conductive film, and solar cell

Also Published As

Publication number Publication date
JP3787410B2 (en) 2006-06-21

Similar Documents

Publication Publication Date Title
US5977477A (en) Photovoltaic device
JP3792281B2 (en) Solar cell
US5998730A (en) Production method for deposited film, production method for photoelectric conversion element, production apparatus for deposited film, production apparatus for photoelectric conversion element
JP2004289034A (en) Treatment method for zinc oxide film and method for manufacturing photovoltaic element using same
JP2004311965A (en) Fabrication method of photovoltaic device
US6132569A (en) Method for producing photovoltaic element
JP2002134772A (en) Silicon based thin film and photovoltaic element
US6413794B1 (en) Method of forming photovoltaic element
JP3787410B2 (en) Deposited film manufacturing method and photovoltaic device manufacturing method
JP3025179B2 (en) Method for forming photoelectric conversion element
US20100311228A1 (en) Method for forming transparent conductive oxide
WO2010023947A1 (en) Photoelectric conversion device manufacturing method, photoelectric conversion device, and photoelectric conversion device manufacturing system
JPH11302843A (en) Method for depositing zinc oxide film, apparatus therefor and photovoltaic element
JP4497660B2 (en) Photovoltaic element manufacturing method
JPH06204536A (en) Manufacture of solar cell and sputtering apparatus therefor
JPH08298333A (en) Semiconductor coating film forming equipment, and thin film solar cell and forming method of thin film solar cell
JP2011061198A (en) Thin-film solar module and manufacturing method therefor
JP3006701B2 (en) Thin-film semiconductor solar cells
JPH0818084A (en) Method and apparatus for manufacturing solar cell
JPH11224952A (en) Deposited film and manufacture of photovoltaic element
JP2000004036A (en) Forming method of fine crystal semiconductor layer and photovoltaic element
JP2000260722A (en) Substrate-processing method and substrate-processing apparatus
JP3142682B2 (en) Solar cell manufacturing method and manufacturing apparatus
JPH0524976A (en) Method for doping semiconductor and apparatus therefor
JP3100668B2 (en) Method for manufacturing photovoltaic element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees