JPH10284078A - Hydride secondary battery and its manufacture - Google Patents

Hydride secondary battery and its manufacture

Info

Publication number
JPH10284078A
JPH10284078A JP9093273A JP9327397A JPH10284078A JP H10284078 A JPH10284078 A JP H10284078A JP 9093273 A JP9093273 A JP 9093273A JP 9327397 A JP9327397 A JP 9327397A JP H10284078 A JPH10284078 A JP H10284078A
Authority
JP
Japan
Prior art keywords
powder
nickel hydroxide
secondary battery
particle diameter
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9093273A
Other languages
Japanese (ja)
Inventor
Hiromi Tamakoshi
博美 玉腰
Hiroshi Fukunaga
浩 福永
Tatsu Nagai
龍 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP9093273A priority Critical patent/JPH10284078A/en
Publication of JPH10284078A publication Critical patent/JPH10284078A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydride secondary battery which enhance an utilization factor of a pasty nickel positive electrode, has excellent storage characteristics at a high temperature and has excellent cycle characteristics. SOLUTION: In a hydride secondary battery composed of a positive electrode with nickel hydroxide for active material, a negative electrode comprising hydrogen occluded alloy and electrolyte comprising alkali aqueous solution, the nickel hydroxide is powder a particle of which has a particle size of 2-40 μm and an average particle diameter of 8±2 μm, and in this powder, powder particles with not less than the average diameter are spherical and not less than 95% by weight of the particles with not more than the average diameter are also spherical, and furthermore, cobalt powder a particle of which has an average particle diameter of not more than 1 μm by the BET absorption method and a specific surface of 1-10 m<2> /g is contained in the positive electrode with the nickel hydroxide powder for the active material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、正極の活物質とし
てペ─スト式水酸化ニツケルを用いた水素化物二次電池
とその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydride secondary battery using a paste-type nickel hydroxide as an active material of a positive electrode and a method for producing the same.

【0002】[0002]

【従来の技術】水素吸蔵合金を用いた水素化物二次電池
は、多量の水素を吸蔵、放出する能力を有し、アルカリ
水溶液中でも電気化学的に水素の吸蔵、放出を行うこと
が可能であり、ニツケル極を正極に用いた場合、次式の
ように電池反応が起こる。負極の反応式中、MはLaN
5 系やTi−Ni系などの水素吸蔵合金である。
2. Description of the Related Art A hydride secondary battery using a hydrogen storage alloy has the ability to store and release a large amount of hydrogen, and is capable of electrochemically storing and releasing hydrogen even in an alkaline aqueous solution. When the nickel electrode is used as the positive electrode, a battery reaction occurs as in the following equation. In the reaction formula of the negative electrode, M is LaN
i 5 based or Ti-Ni-based hydrogen storage alloy and the like.

【0003】正極および負極の反応式において、充電で
は、反応は右に進み、アルカリ水溶液中の水を電気分解
して、水素を吸蔵し、水酸基を生じ、この水酸基と正極
であるNi(OH)2 とが反応して、NiOOHとな
り、水を生じる。また、放電の場合は、反応は左に進
み、上記と逆の反応となる。つまり、負極では充電で水
素の吸蔵が起こり、放電で水素の放出となる。
[0003] In the reaction formula of the positive electrode and the negative electrode, in charging, the reaction proceeds to the right, electrolyzes water in the alkaline aqueous solution, absorbs hydrogen, and generates a hydroxyl group. Reacts with 2 to form NiOOH, producing water. In the case of discharge, the reaction proceeds to the left, and the reaction is the reverse of the above. That is, in the negative electrode, hydrogen is absorbed by charging, and hydrogen is released by discharging.

【0004】ニツケル極としては、特開平1−2273
63号公報などに開示のように、高容量化や低価格化の
ために、空孔率が95%以上、孔径が数μm〜100μ
m程度の導電性多孔基材を用い、これに水酸化ニツケル
を主体とする活物質スラリ─を担持させる、いわゆるペ
─スト式が知られている。
A nickel pole is disclosed in Japanese Patent Laid-Open No. 1-2273.
As disclosed in, for example, Japanese Patent Application Laid-Open No. 63-63, the porosity is 95% or more and the pore diameter is several μm to 100 μm for high capacity and low cost.
A so-called paste type in which a conductive porous base material of about m is supported and an active material slurry mainly composed of nickel hydroxide is supported thereon.

【0005】[0005]

【発明が解決しようとする課題】しかし、ペ─スト式電
極は、焼結式電極に比べて孔径が大きいため、活物質の
集電体までの距離が長く、利用率や負荷特性に劣る。
「湯浅時報」No.65,第28頁(1988年)に
は、正極中にコバルト粉末やコバルト化合物粉末などの
導電助剤を加えて利用率を向上させることが提案されて
いるが、この種の電池のさらなる高容量化のためには、
活物質である水酸化ニツケル自体の利用率を向上させる
ことが必要であり、また導電助剤としてさらに適したも
のを用いて利用率のより一層の向上を図ることが望まれ
る。
However, since the paste type electrode has a larger hole diameter than the sintered type electrode, the distance between the active material and the current collector is long, and the utilization factor and load characteristics are inferior.
"Yuasa Higashi" No. 65, p. 28 (1988), it is proposed to improve the utilization factor by adding a conductive aid such as cobalt powder or cobalt compound powder to the positive electrode. In order to
It is necessary to improve the utilization rate of nickel hydroxide itself, which is an active material, and it is desired to further improve the utilization rate by using a more suitable conductive assistant.

【0006】本発明は、上記従来の事情にてらして、ペ
─スト式ニツケル正極の利用率を向上させ、また高温時
の貯蔵特性にすぐれ、サイクル特性にすぐれた水素化物
二次電池とその製造方法を提供することを目的としてい
る。
In view of the above-mentioned conventional circumstances, the present invention improves the utilization rate of a paste-type nickel positive electrode, has excellent storage characteristics at high temperatures, and has excellent cycle characteristics, and its production. It is intended to provide a way.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記の目
的に対して、鋭意検討したところ、ペ─スト式電極に用
いられる従来の水酸化ニツケル粉末は、一般に、硫酸ニ
ツケル水溶液に水酸化ナトリウムを加えて水酸化ニツケ
ルの沈殿物を得、これを水洗、乾燥してつくられている
が、このものは通常数μm〜数10μm程度の粒子径を
有して、粒度分布の幅が広く、しかも、粒子径の大きな
ものは球状であるが、小さなものはダンゴ状のいびつな
形状を有しており、そのために、水酸化ニツケルの理想
的な利用率は110%程度であるにもかかわらず、実際
には95〜100%程度までの利用率しか得られていな
いことが判明した。
Means for Solving the Problems The present inventors diligently studied the above object, and found that the conventional nickel hydroxide powder used for the paste type electrode is generally prepared by adding aqueous nickel sulfate solution to water. A precipitate of nickel hydroxide is obtained by adding sodium oxide, washed with water, and dried. This is usually made with a particle size of several μm to several tens μm, and the width of the particle size distribution is Large particles having a large particle diameter are spherical, while small particles have a distorted dango-like shape. Therefore, the ideal utilization rate of nickel hydroxide is about 110%. Regardless, it has been found that only a utilization rate of about 95 to 100% has actually been obtained.

【0008】本発明者らは、この知見をもとにさらに検
討を加えた結果、水酸化ニツケル粉末の上記製造に際し
て反応、水洗、乾燥、粉砕などの諸条件を適宜選択する
と、粒度分布が狭くてかつ粒子径の小さいものまで球状
を呈するような特定の水酸化ニツケル粉末が得られ、こ
のものを正極の活物質として用いることにより、またこ
の活物質を用いた正極中に導電助剤として特定粒径およ
び特定比表面積のコバルト粉末を含ませたときに、正極
の利用率が飛躍的に向上し、しかも高温時の貯蔵特性に
すぐれ、サイクル特性にすぐれた高容量の水素化物二次
電池が得られることを見い出し、本発明を完成するに至
つた。
The present inventors have further studied based on this finding, and as a result, when the conditions such as reaction, washing, drying and pulverization are appropriately selected in the above-mentioned production of the nickel hydroxide powder, the particle size distribution becomes narrow. A specific nickel hydroxide powder having a spherical shape up to a small particle diameter is obtained, and by using this powder as an active material of a positive electrode, and as a conductive auxiliary agent in a positive electrode using the active material. When a cobalt powder having a particle size and a specific specific surface area is included, the utilization rate of the positive electrode is dramatically improved, and a high-capacity hydride secondary battery having excellent storage characteristics at high temperatures and excellent cycle characteristics is provided. The inventors have found that the present invention has been completed, and have completed the present invention.

【0009】すなわち、本発明は、水酸化ニツケルを活
物質とする正極と水素吸蔵合金よりなる負極とアルカリ
水溶液よりなる電解液とセパレ─タを有する水素化物二
次電池において、上記の水酸化ニツケルは粒度が2〜4
0μm、平均粒径が8±2μmの粉末で、この粉末は平
均粒径以上の粒子が球状でかつ平均粒径以下の粒子の9
5重量%以上も球状であり、さらにこの水酸化ニツケル
粉末を活物質とする正極中に平均粒径1μm以下でBE
T吸着法による比表面積が1〜10m2/gのコバルト粉
末を含むことを特徴とする水素化物二次電池に係るもの
である。
That is, the present invention relates to a hydride secondary battery comprising a positive electrode containing nickel hydroxide as an active material, a negative electrode comprising a hydrogen storage alloy, an electrolytic solution comprising an alkaline aqueous solution, and a separator. Has a particle size of 2 to 4
0 μm and a powder having an average particle size of 8 ± 2 μm.
5% by weight or more is spherical, and furthermore, BE having an average particle size of 1 μm or less in a positive electrode using this nickel hydroxide powder as an active material.
The present invention relates to a hydride secondary battery including a cobalt powder having a specific surface area of 1 to 10 m 2 / g by a T adsorption method.

【0010】また、本発明は、水酸化ニツケルを活物質
とする正極と水素吸蔵合金よりなる負極とアルカリ水溶
液よりなる電解液とセパレ─タを有する水素化物二次電
池の製造方法において、上記の水酸化ニツケルとして、
粒度が2〜40μm、平均粒径が8±2μmであつて、
平均粒径以上の粒子が球状でかつ平均粒径以下の粒子の
95重量%以上も球状である粉末を使用し、この水酸化
ニツケル粉末とさらに平均粒径1μm以下でBET吸着
法による比表面積が1〜10m2/gのコバルト粉末を含
むペ─ストを導電性多孔基材に担持させ、これを乾燥
し、圧縮成形したのち、アルカリ水溶液中に浸漬処理す
ることにより、正極を作製することを特徴とする水素化
物二次電池の製造方法に係るものである。
The present invention also relates to a method for producing a hydride secondary battery having a positive electrode using nickel hydroxide as an active material, a negative electrode made of a hydrogen storage alloy, an electrolytic solution made of an alkaline aqueous solution, and a separator. As nickel hydroxide,
The particle size is 2 to 40 μm, the average particle size is 8 ± 2 μm,
Use a powder in which particles having an average particle size of at least 95% by weight of particles having a spherical shape and having a mean particle size of at most 95% by weight are used. A paste containing 1 to 10 m 2 / g of cobalt powder is supported on a conductive porous substrate, dried, compression molded, and then immersed in an alkaline aqueous solution to produce a positive electrode. The present invention relates to a method for producing a hydride secondary battery.

【0011】[0011]

【発明の実施の形態】本発明に用いられる水酸化ニツケ
ルは、マイクロトラツプ法により測定される粒度が2〜
40μm、平均粒径が8±2μmの粉末であつて、この
粉末はSEM(走査型電子顕微鏡)による観察で平均粒
径以上の粒子が球状でかつ平均粒径以下の粒子の95重
量%以上も球状である、つまり、従来のものに比べて、
粒度分布の幅が狭くて均一な粒子からなり、かつ粒径の
大きいものだけでなく粒径の小さい粒子までもが球状で
あることを特徴とする。本発明では、このような水酸化
ニツケル粉末を正極の活物質として用いることにより、
水酸化ニツケル自体の利用率が飛躍的に向上して、これ
と特定のコバルト粉末からなる導電助剤との相互作用に
より、高容量でかつ高温貯蔵特性、サイクル特性にすぐ
れた水素化物二次電池が得られることを見い出したもの
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Nickel hydroxide used in the present invention has a particle size of 2 to 2 as measured by a microtrap method.
40 μm, powder having an average particle size of 8 ± 2 μm, and this powder was observed by SEM (scanning electron microscope), where particles having an average particle size of more than 95% by weight were spherical and particles having an average particle size of not more than 95% by weight. It is spherical, that is, compared to the conventional one,
It is characterized in that it is composed of uniform particles having a narrow particle size distribution, and that not only particles having a large particle size but also particles having a small particle size are spherical. In the present invention, by using such nickel hydroxide powder as an active material of the positive electrode,
A hydride secondary battery with high capacity, high-temperature storage characteristics, and excellent cycle characteristics due to the drastic improvement in the use rate of nickel hydroxide itself and the interaction of this with a conductive additive made of a specific cobalt powder. Is obtained.

【0012】従来のように小さい粒子が均一な球状とな
らずダンゴ状となる水酸化ニツケル粉末では、結晶性が
低いため、電気化学的反応の効率が悪くなり、そのぶん
正極の利用率が低くなる。これに対して、本発明の上記
水酸化ニツケル粉末は結晶性が高く、電気化学的反応の
効率が良くなり、正極の利用率が向上するとともに、粒
度分布が狭いため、上記反応が各粒子で均一に起こりや
すく、これも利用率の向上や長寿命化に寄与しているも
のと考えられる。
In the conventional nickel hydroxide powder in which small particles do not form a uniform spherical shape but become dango-like, the crystallinity is low, so that the efficiency of the electrochemical reaction is deteriorated, and the utilization rate of the positive electrode is reduced. Become. On the other hand, the nickel hydroxide powder of the present invention has high crystallinity, improves the efficiency of the electrochemical reaction, improves the utilization rate of the positive electrode, and has a narrow particle size distribution. It is likely to occur uniformly, which is also considered to have contributed to the improvement of the utilization rate and the extension of the service life.

【0013】本発明の水酸化ニツケル粉末は、ニツケル
を含む水溶液に通常コバルトや亜鉛を溶解させた硫酸溶
液を混合した液とアルカリ水溶液とアンモニウムイオン
供給体を同時にかつ連続的に供給して反応液とし、この
液中のニツケルイオンの濃度を40mg/リツトル以下と
し、これを5〜20℃に保持し、水酸化ナトリウムを加
えてpH9〜12に調整し、熟成は反応浴を撹拌しなが
ら12時間以上行い、その際のpHは9〜12の範囲に
調整して、水酸化ニツケルの沈澱物を得、この沈澱物を
吸引ろ過し、水洗後80〜120℃で乾燥することによ
り、調製することができる。この方法は、従来の調製方
法と比べると、大きくは低温(5〜20℃)で水酸化ニ
ツケルを調製している点で異なつている。
The nickel hydroxide powder according to the present invention is obtained by simultaneously and continuously supplying a solution obtained by mixing a sulfuric acid solution in which cobalt or zinc is dissolved in an aqueous solution containing nickel, an alkaline aqueous solution and an ammonium ion donor simultaneously and continuously. The concentration of nickel ions in this solution was adjusted to 40 mg / liter or less, and the solution was maintained at 5 to 20 ° C., adjusted to pH 9 to 12 by adding sodium hydroxide, and aged for 12 hours while stirring the reaction bath. The pH is adjusted in the range of 9 to 12 to obtain a precipitate of nickel hydroxide, and the precipitate is filtered by suction, washed with water, and dried at 80 to 120 ° C. Can be. This method differs from the conventional preparation method in that nickel hydroxide is prepared at a low temperature (5 to 20 ° C.).

【0014】このように調製される水酸化ニツケル粉末
は、BET吸着法により測定される細孔半径が従来の水
酸化ニツケル粉末と同じ7〜8Åにピ─クを有するとと
もに、5〜6Åの範囲にもピ─クを有するという特異な
性状を示し、通常、7〜8Åのピ―クの強度(la)と
上記の5〜6Åのピ―クの強度(lb)との比(la:
lb)が100:50以上となるものである。また、こ
の水酸化ニツケル粉末は、上記小さな細孔のために、粒
子表面に凹凸がなく、水酸化ニツケル自体がいびつでな
く、球状に近い形態をとるものである。
The nickel hydroxide powder thus prepared has a pore radius measured by the BET adsorption method of 7 to 8 ° which is the same as that of the conventional nickel hydroxide powder, and is in the range of 5 to 6 °. Also, it has a peculiar property that it has a peak, and usually, the ratio (la :) of the peak intensity (la) of 7 to 8 mm to the peak intensity (lb) of 5 to 6 mm described above.
lb) is 100: 50 or more. In addition, the nickel hydroxide powder has no irregularities on the particle surface due to the small pores, and the nickel hydroxide itself is not distorted but has a shape close to a sphere.

【0015】また、通常は、BET吸着法により測定さ
れる比表面積が5〜20m2/g、BET吸着法により測
定される細孔容積が0.015〜0.030cc/g、平
均細孔半径が25〜50Åの範囲に入つている。BET
吸着法により測定される比表面積とは、窒素吸着法(ユ
アサアイオニクス、オ─トソ─プ1)で1〜100Å、
試料1g、測定時間127分、吸着側での測定値であ
る。
Usually, the specific surface area measured by the BET adsorption method is 5 to 20 m 2 / g, the pore volume measured by the BET adsorption method is 0.015 to 0.030 cc / g, and the average pore radius is Is in the range of 25 to 50 °. BET
The specific surface area measured by the adsorption method is 1 to 100Å in the nitrogen adsorption method (Yuasa Ionics, Othosop 1),
These are the values measured on the adsorption side for 1 g of the sample, for a measurement time of 127 minutes.

【0016】本発明において導電助剤として用いられる
コバルト粉末は、平均粒径が1μm以下、好ましくは
0.5〜0.8μmで、かつBET吸着法による比表面
積が1〜10m2/g、好ましくは1〜5m2/gとなるも
のである。また、原子吸光分析により、コバルト含有量
が90〜99重量%の範囲にあるのが望ましい。なお、
BET吸着法の測定条件は、試料5g、脱気温度120
℃、脱気時間300分で、脱着側での測定値を示すもの
であり、原子吸光分析は、試料0.5gを塩酸に溶解さ
せて、波長240.7nmで測定したものである。
The cobalt powder used as a conductive additive in the present invention has an average particle size of 1 μm or less, preferably 0.5 to 0.8 μm, and a specific surface area by BET adsorption method of 1 to 10 m 2 / g, preferably Is 1 to 5 m 2 / g. According to atomic absorption analysis, the cobalt content is desirably in the range of 90 to 99% by weight. In addition,
The measurement conditions of the BET adsorption method were as follows: sample 5 g, degassing temperature 120
It shows a measured value on the desorption side at 300 ° C. and a deaeration time of 300 minutes. In the atomic absorption analysis, 0.5 g of a sample was dissolved in hydrochloric acid and measured at a wavelength of 240.7 nm.

【0017】このようなコバルト粉末を導電助剤に用い
ると、その粒度が小さいため、正極中において均一なコ
バルトの導電ネツトワ―クを形成し、とくに活物質とし
て用いる前記特定の水酸化ニツケル粉末が前記球状であ
るため、上記ネツトワ―クが上記活物質を極めて均一に
被覆することになり、導電助剤としての役割が最大限に
発揮されて、活物質の利用率を高め、また高温貯蔵時に
上記ネツトワ―クが破壊されて容量の低下を招くという
心配が回避され、高温貯蔵特性、サイクル特性にすぐれ
た水素化物二次電池を得ることができる。また、上記す
ぐれた導電機能により、導電助剤の使用量を少なくでき
ため、材料コストの低減に寄与でき、さらに導電助剤を
少なくできるぶん、水酸化ニツケル粉末からなる活物質
の量を多くでき、この点からも高容量化に寄与させるこ
とができる。
When such a cobalt powder is used as a conductive additive, the particle size is small, so that a uniform conductive network of cobalt is formed in the positive electrode. In particular, the specific nickel hydroxide powder used as an active material is Due to the spherical shape, the network coats the active material extremely uniformly, thereby maximizing its role as a conductive additive, increasing the utilization of the active material, and increasing the storage efficiency at high temperatures. The concern that the network is broken and the capacity is reduced is avoided, and a hydride secondary battery having excellent high-temperature storage characteristics and cycle characteristics can be obtained. In addition, due to the excellent conductive function, the amount of the conductive auxiliary agent can be reduced, which can contribute to a reduction in material cost. Further, the amount of the conductive auxiliary agent can be reduced, and the amount of the active material composed of nickel hydroxide powder can be increased. This also contributes to higher capacity.

【0018】これに対し、従来のように、平均粒径が1
μmを超えるような大きな粒径のコバルト粉末などを導
電助剤としたときには、水酸化ニツケル粉末からなる活
物質の表面に形成される導電ネツトワ―クが均一なもの
とならないため、活物質の利用率が低下し、また高温貯
蔵時に上記ネツトワ―クが破壊されやすいため、容量の
低下を招きやすい。また、そのために、導電助剤の量を
多くすると、そのぶん活物質の量が減少したり、生産性
やコスト面で不利となる。
On the other hand, as in the prior art, the average particle size is 1
When cobalt powder with a large particle size exceeding μm is used as the conductive additive, the conductive network formed on the surface of the active material composed of nickel hydroxide powder is not uniform, so that the active material is used. The rate is lowered, and the network is easily broken during high-temperature storage, so that the capacity is apt to be reduced. In addition, when the amount of the conductive auxiliary agent is increased, the amount of the active material is reduced, and the productivity and cost are disadvantageous.

【0019】本発明のコバルト粉末は、合成条件を選択
することにより容易に調製できる。代表的には、コバル
ト炭酸塩をアルゴン雰囲気中250〜350℃で焼成し
たのち、塩化水素ガスを含むアルゴン雰囲気中900〜
1,100℃で加熱し、さらに真空中600〜800℃
で加熱処理して、コバルト酸化物を生成し、その後、水
素ガス雰囲気中で還元することにより、調製することが
できる。この方法は、塩化コバルトと蓚酸から蓚酸コバ
ルトを合成しこれを熱分解してコバルト粉末を得るとい
う従来の方法とは、異なつている。
The cobalt powder of the present invention can be easily prepared by selecting synthesis conditions. Typically, after sintering cobalt carbonate at 250 to 350 ° C. in an argon atmosphere, 900 to 350 ° C. in an argon atmosphere containing hydrogen chloride gas.
Heat at 1,100 ° C, then 600-800 ° C in vacuum
To produce a cobalt oxide, and then reducing it in a hydrogen gas atmosphere to prepare it. This method is different from the conventional method of synthesizing cobalt oxalate from cobalt chloride and oxalic acid and thermally decomposing it to obtain cobalt powder.

【0020】本発明において、正極は、前記の水酸化ニ
ツケル粉末を活物質とし、導電助剤として上記のコバル
ト粉末と必要によりカルボニルニツケル粉末などを使用
し、これらの活物質および導電助剤とカルボキシメチル
セルロ―ス、ポリテトラフルオロエチレンなどのバイン
ダとを混練して、ペ―ストを調製し、このペ─ストをニ
ツケル発泡体などの導電性多孔基材に担持させ、これを
乾燥し、圧縮成形したのち、アルカリ水溶液中で浸漬処
理することにより、作製される。
In the present invention, the positive electrode uses the above-mentioned nickel hydroxide powder as an active material, uses the above-mentioned cobalt powder and, if necessary, carbonyl nickel powder or the like as a conductive aid, and uses these active materials and the conductive aid as a carboxylate. A paste is prepared by kneading a binder such as methylcellulose and polytetrafluoroethylene, and the paste is supported on a conductive porous base material such as a nickel foam, and dried and compressed. After being molded, it is produced by immersion treatment in an alkaline aqueous solution.

【0021】その際、導電助剤であるコバルト粉末は、
活物質である前記の水酸化ニツケル粉末に対して、2〜
15重量%の範囲で使用すればよく、従来の導電助剤の
添加量(6〜20重量%)に比べて相対的に少なくする
ことができる。これは、コバルト粉末の前記特性と活物
質である水酸化ニツケル粉末の前記特性に基づくもので
あり、このように少ない量に設定しても、正極中におい
て良好な導電ネツトワ―クを形成できる特徴を有してい
る。
At this time, the cobalt powder as the conductive auxiliary is
With respect to the nickel hydroxide powder as the active material,
It may be used in the range of 15% by weight, which can be relatively reduced as compared with the conventional additive amount of the conductive additive (6 to 20% by weight). This is based on the above-mentioned properties of the cobalt powder and the above-mentioned properties of the nickel hydroxide powder as the active material. Even when such a small amount is set, a good conductive network can be formed in the positive electrode. have.

【0022】このように作製される正極に対して、水素
吸蔵合金よりなる負極を使用し、この正負両極とさらに
これらを分離するナイロン不織布などのセパレ―タを電
池缶内に装填するとともに、電解液として水酸化ナトリ
ウムや水酸化カリウムなどの水溶液にLiOHなどの電
解質を溶解させたアルカリ水溶液を注入することによ
り、本発明の水素化物二次電池が得られる。
A negative electrode made of a hydrogen-absorbing alloy is used for the positive electrode produced in this manner, and the positive and negative electrodes and a separator such as a nylon nonwoven fabric for separating the positive and negative electrodes are loaded into a battery can. By injecting an alkaline aqueous solution in which an electrolyte such as LiOH is dissolved in an aqueous solution such as sodium hydroxide or potassium hydroxide as a liquid, the hydride secondary battery of the present invention can be obtained.

【0023】負極に用いる水素吸蔵合金としては、Mm
(La,Ce,Nd,Pr)−Ni系、Ti−Ni系、
Ti−NiZr(Ti2-x Zrx 4-y Niy 1-z
z系(x=0〜1.5、y=0.6〜3.5、z=
0.2以下)、Ti−Mn系、Zr−Mn系などの各種
合金が挙げられる。これらの水素吸蔵合金は、通常は、
カルボキシメチルロ─ス、ポリテトラフルオロエチレン
などのバインダと混練してペ─ストとされ、これをニツ
ケル発泡体基材などに担持させ、乾燥したのち、圧縮成
形することにより、シ―ト状に成形される。
The hydrogen storage alloy used for the negative electrode is Mm
(La, Ce, Nd, Pr) -Ni-based, Ti-Ni-based,
Ti-NiZr (Ti 2-x Zr x V 4-y Ni y) 1-z C
r z system (x = 0 to 1.5, y = 0.6 to 3.5, z =
0.2 or less), various alloys such as Ti-Mn-based and Zr-Mn-based alloys. These hydrogen storage alloys are usually
The paste is kneaded with a binder such as carboxymethyl rose or polytetrafluoroethylene to form a paste. The paste is supported on a nickel foam base material, dried, and then compression-molded to form a sheet. Molded.

【0024】[0024]

【実施例】つぎに、本発明の実施例を記載して、より具
体的に説明する。以下において、部とあるのは重量部を
意味する。また、実施例1,2で用いたタイプA,Bの
水酸化ニツケル粉末は、下記の合成例1,2により、タ
イプCのコバルト粉末は、下記の合成例3により、それ
ぞれ得たものである。
Next, an embodiment of the present invention will be described in more detail. In the following, “parts” means “parts by weight”. The nickel hydroxide powders of types A and B used in Examples 1 and 2 were obtained according to Synthesis Examples 1 and 2 below, and the cobalt powder of type C was obtained according to Synthesis Example 3 below. .

【0025】<合成例1>硫酸ニツケル50重量%の水
溶液10Kgと、コバルト2g、亜鉛4gをそれぞれ溶解
させた硫酸溶液5Kgと、25重量%の水酸化ナトリウム
水溶液と、7重量%のアンモニア水溶液とを、同時にか
つ連続的に供給し、反応液内のニツケルイオンの濃度を
40mg/リツトル以下に調整した。この混合溶液を10
〜15℃に保持し、pH9〜12になるように調整し
た。得られた水酸化ニツケルの沈澱物を吸引ろ過し、水
洗後、90〜95℃で乾燥して、コバルトと亜鉛が水酸
化ニツケルの内部に均一に固溶した水酸化ニツケル粉末
(タイプA)を得た。
<Synthesis Example 1> 10 kg of an aqueous solution containing 50% by weight of nickel sulfate, 5 kg of a sulfuric acid solution in which 2 g of cobalt and 4 g of zinc were respectively dissolved, an aqueous solution of 25% by weight of sodium hydroxide, and an aqueous solution of 7% by weight of ammonia Was supplied simultaneously and continuously, and the concentration of nickel ions in the reaction solution was adjusted to 40 mg / liter or less. This mixed solution is added to 10
It was kept at 〜15 ° C. and adjusted to pH 9-12. The obtained nickel hydroxide precipitate is filtered by suction, washed with water, and dried at 90 to 95 ° C. to obtain a nickel hydroxide powder (type A) in which cobalt and zinc are uniformly dissolved in the nickel hydroxide. Obtained.

【0026】このタイプAの水酸化ニツケル粉末は、I
CP法(発光分光分析法、日本ジヤ─レル・アツシユI
CP727、シングルモ─ド)による測定で、コバルト
含有量が1重量%、亜鉛含有量が2重量%であつた。こ
の水酸化ニツケル粉末について、SEM(倍率1,00
0倍)により観察した結果は、図1に示されるとおりで
あり、平均粒径以上の粒子が球状でかつ平均粒径以下の
粒子の95重量%以上も球状であつた。
This type A nickel hydroxide powder is
CP method (emission spectroscopy, Nippon Jarrell Atsushi I
CP727, single mode), the cobalt content was 1% by weight and the zinc content was 2% by weight. This nickel hydroxide powder was subjected to SEM (magnification: 1,000
The result of observation by (0 ×) is as shown in FIG. 1, where particles having an average particle size or more were spherical and 95% by weight or more of the particles having an average particle size or less were spherical.

【0027】また、マイクロトラツプ法により粒度分布
を調べた結果は、図4に示されるとおりであり、粒度が
2〜40μm、平均粒径が9.2μmであつた。さら
に、BET吸着法により細孔半径を測定した結果は、図
7の曲線−7aに示されるとおりであり、7〜8Åのピ
─クのほかに、5〜6Åにもピ─クを有し、7〜8Åの
ピ─クの強度(la)と5〜6Åのピ─クの強度(l
b)の比(la:lb)は100:83であつた。ま
た、BET吸着法による比表面積は5m2/g、細孔容積
は0.015cc/g、平均細孔半径は25Åであつた。
FIG. 4 shows the result of examining the particle size distribution by the micro trap method. The particle size was 2 to 40 μm, and the average particle size was 9.2 μm. Further, the result of the measurement of the pore radius by the BET adsorption method is as shown by a curve -7a in FIG. 7, and in addition to the peak at 7 to 8 °, the peak also exists at 5 to 6 °. , 7-8 peak intensity (la) and 5-6 peak intensity (l)
The ratio (la: lb) of b) was 100: 83. The specific surface area by the BET adsorption method was 5 m 2 / g, the pore volume was 0.015 cc / g, and the average pore radius was 25 °.

【0028】<合成例2>コバルトを2g、亜鉛を10
gとした以外は、合成例1と同様にして、水酸化ニツケ
ル粉末(タイプB)を得た。ICP法による測定で、コ
バルト含有量は1重量%、亜鉛含有量は5重量%であつ
た。このタイプBの水酸化ニツケル粉末について、SE
M(倍率1,000倍)により観察した結果は、図2に
示されるとおりであり、平均粒径以上の粒子が球状でか
つ平均粒径以下の粒子の95重量%以上も球状であつ
た。
<Synthesis Example 2> 2 g of cobalt and 10 g of zinc
A nickel hydroxide powder (type B) was obtained in the same manner as in Synthesis Example 1 except that g was used. The cobalt content was 1% by weight and the zinc content was 5% by weight as determined by ICP method. For this type B nickel hydroxide powder, SE
The result of observation by M (magnification: 1,000 times) is as shown in FIG. 2, where particles having an average particle size or more were spherical and 95% by weight or more of particles having an average particle size or less were spherical.

【0029】また、マイクロトラツプ法により粒度分布
を調べた結果は、図5に示されるとおりであり、粒度が
2〜40μm、平均粒径が7.2μmであつた。さら
に、BET吸着法により細孔半径を測定した結果は、図
7の曲線−7bに示されるとおりであり、7〜8Åのピ
─クのほかに、5〜6Åにもピ─クを有し、7〜8Åの
ピ─クの強度(la)と5〜6Åのピ─クの強度(l
b)の比(la:lb)は100:70であつた。ま
た、BET吸着法による比表面積は20m2/g、細孔容
積は0.030cc/g、平均細孔半径は50Åであつ
た。
The result of examining the particle size distribution by the micro trap method is shown in FIG. 5, where the particle size was 2 to 40 μm and the average particle size was 7.2 μm. Further, the result of measuring the pore radius by the BET adsorption method is as shown by a curve -7b in FIG. 7, and in addition to the peak at 7 to 8 °, the peak also exists at 5 to 6 °. , 7-8 peak intensity (la) and 5-6 peak intensity (l)
The ratio (la: lb) of b) was 100: 70. Further, the specific surface area by the BET adsorption method was 20 m 2 / g, the pore volume was 0.030 cc / g, and the average pore radius was 50 °.

【0030】<合成例3>コバルト炭酸塩(純度90重
量%)を、アルゴン雰囲気中300℃で2時間焼成した
のち、塩化水素ガスを含むアルゴン雰囲気中950℃で
10時間加熱し、さらに真空中700℃で2時間加熱処
理して、コバルト酸化物を生成した。その後、900〜
1,200℃の水素ガス雰囲気中でこのコバルト酸化物
を還元することにより、コバルト粉末(タイプC)を得
た。
<Synthesis Example 3> Cobalt carbonate (purity: 90% by weight) was calcined at 300 ° C. for 2 hours in an argon atmosphere, then heated at 950 ° C. for 10 hours in an argon atmosphere containing hydrogen chloride gas, and further vacuum. Heat treatment was performed at 700 ° C. for 2 hours to produce cobalt oxide. After that, 900 ~
This cobalt oxide was reduced in a hydrogen gas atmosphere at 1,200 ° C. to obtain a cobalt powder (type C).

【0031】このタイプCのコバルト粉末について、S
EM観察(倍率5,000倍)したところ、図8に示さ
れるように、非常に微粒子であることが確認され、平均
粒径は0.9μm、BET吸着法による比表面積は1.
4m2/g、原子吸光分析によるコバルト含有量は99重
量%であつた。
For this type C cobalt powder, S
As a result of EM observation (magnification: 5,000), as shown in FIG. 8, it was confirmed that the particles were very fine, the average particle diameter was 0.9 μm, and the specific surface area by BET adsorption was 1.
The content of cobalt was 4 m 2 / g and the content of cobalt by atomic absorption analysis was 99% by weight.

【0032】実施例1 市販のMm(La、Ce、Nd、Pr)、Ni、Co、
Mn、AlおよびMo(いずれも純度99.9重量%以
上)の各試料を、Mm(La:0.32原子%、Ce:
0.48原子%、Nd:0.15原子%、Pr:0.0
4原子%)、Ni:3.55原子%、Co:0.75原
子%、Mn:0.4原子%、Al:0.3原子%、M
o:0.04原子%の組成になるように、高周波溶解炉
によつて加熱溶解し、水素吸蔵合金を得た。この合金を
耐圧容器中で10-4Torrまで真空引きを行い、アル
ゴンガスで3回パ─ジを行つたのち、水素圧力14Kg/
cm2で24時間保持し、水素を排気し、さらに400℃
で加熱し、水素を完全に放出することにより、20〜1
00μmの粉末を得た。
Example 1 Commercially available Mm (La, Ce, Nd, Pr), Ni, Co,
Each sample of Mn, Al, and Mo (all with a purity of 99.9% by weight or more) was subjected to Mm (La: 0.32 atomic%, Ce:
0.48 atomic%, Nd: 0.15 atomic%, Pr: 0.0
4 atomic%), Ni: 3.55 atomic%, Co: 0.75 atomic%, Mn: 0.4 atomic%, Al: 0.3 atomic%, M
o: The composition was heated and melted in a high-frequency melting furnace so as to have a composition of 0.04 atomic% to obtain a hydrogen storage alloy. This alloy is evacuated to 10 −4 Torr in a pressure vessel, purged with argon gas three times, and then subjected to a hydrogen pressure of 14 kg / g.
cm 2 for 24 hours, evacuated hydrogen, and further heated to 400 ° C.
To release hydrogen completely, so that 20 to 1
A powder of 00 μm was obtained.

【0033】この合金粉末100部に、3重量%のカル
ボキシメチルセルロ─ス水溶液50部、60重量%のポ
リテトラフルオロエチレン(以下、PTFEという)分
散剤溶液5部、カルボニルニツケル粉末10部を混合
し、ペ─ストを調製した。このペ─ストをニツケル発泡
体基材に充填担持させ、乾燥後、圧縮成形した。その
後、所定サイズに裁断して、負極シ─トとした。
To 100 parts of this alloy powder, 50 parts of a 3% by weight aqueous solution of carboxymethyl cellulose, 5 parts of a 60% by weight polytetrafluoroethylene (hereinafter referred to as PTFE) dispersant solution, and 10 parts of carbonyl nickel powder are mixed. Then, a paste was prepared. The paste was filled and supported on a nickel foam base material, dried, and compression molded. Thereafter, the sheet was cut into a predetermined size to obtain a negative electrode sheet.

【0034】これとは別に、タイプAの水酸化ニツケル
粉末100部に、タイプCのコバルト粉末6部、ニツケ
ル粉末10部、2重量%のカルボキシメチルセルロ─ス
水溶液50部、60重量%のPTFE分散剤溶液5部を
混合し、ペ─ストとした。このペ─ストをニツケル発泡
体基材に充填担持させ、80℃で2時間乾燥後、1トン
/cm2 で圧縮成形して、シ─ト状とした。これを80℃
のアルカリ水溶液に2時間浸漬処理したのち、80℃の
空気中で乾燥した。ついで、80℃の温水で2時間水洗
し、さらに80℃で1時間乾燥したのち、圧縮成形し、
所定サイズに裁断して、正極シ─トを作製した。
Separately, 100 parts of nickel hydroxide powder of type A, 6 parts of cobalt powder of type C, 10 parts of nickel powder, 50 parts of a 2% by weight carboxymethyl cellulose aqueous solution, and 60 parts by weight of PTFE Five parts of the dispersant solution were mixed to give a paste. The paste was filled and supported on a nickel foam base material, dried at 80 ° C. for 2 hours, and compression-molded at 1 ton / cm 2 to form a sheet. 80 ℃
Was immersed in an aqueous alkaline solution for 2 hours, and then dried in air at 80 ° C. Then, it was washed with warm water of 80 ° C. for 2 hours, further dried at 80 ° C. for 1 hour, and compression-molded.
The sheet was cut into a predetermined size to produce a positive electrode sheet.

【0035】上記の負極シ―トと正極シ─トをナイロン
不織布製のセパレ─タを介して捲回し、単4サイズの電
極缶に入れ、これに電解液(30重量%水酸化カリウム
水溶液1リツトルにLiOHを17g溶解させたアルカ
リ水溶液)を注入した。樹脂製封口体に正極タブをスポ
ツト溶接し、負極の最外周部分は缶の側面に接触させた
のち、密封した。これを70℃で6時間保存し、0.1
C(120mA)で15時間充電し、0.2C(220
mA)で1.0Vまで放電した。このサイクルを放電容
量が一定になるまで繰り返し、水素化物二次電池を作製
した。
The above-mentioned negative electrode sheet and positive electrode sheet are wound through a separator made of a non-woven fabric of nylon, placed in a AAA-size electrode can, and an electrolytic solution (30% by weight aqueous solution of potassium hydroxide 1) is added thereto. An aqueous alkaline solution in which 17 g of LiOH was dissolved) was injected into the liter. The positive electrode tab was spot-welded to the resin sealing body, and the outermost peripheral portion of the negative electrode was brought into contact with the side surface of the can and then sealed. This was stored at 70 ° C. for 6 hours,
C (120 mA) for 15 hours, 0.2 C (220 mA
(mA) to 1.0 V. This cycle was repeated until the discharge capacity became constant, to produce a hydride secondary battery.

【0036】実施例2 正極の水酸化ニツケル粉末として、タイプAの水酸化ニ
ツケル粉末100部に代えて、タイプBの水酸化ニツケ
ル粉末100部を用いた以外は、実施例1と同様にし
て、水素化物二次電池を作製した。
Example 2 The procedure of Example 1 was repeated, except that 100 parts of type A nickel hydroxide powder was used instead of 100 parts of type A nickel hydroxide powder as the positive electrode nickel hydroxide powder. A hydride secondary battery was manufactured.

【0037】比較例1 正極の水酸化ニツケル粉末として、タイプAの水酸化ニ
ツケル粉末100部に代えて、市販の水酸化ニツケル粉
末100部を用い、かつ正極の導電助剤であるタイプC
のコバルト粉末6部に代えて、市販のコバルト粉末10
部を用いた以外は、実施例1と同様にして、水素化物二
次電池を作製した。
COMPARATIVE EXAMPLE 1 As the positive electrode nickel hydroxide powder, 100 parts of commercially available nickel hydroxide powder was used in place of 100 parts of type A nickel hydroxide powder, and type C, a positive electrode conductive additive, was used.
Commercial cobalt powder 10 instead of 6 parts of cobalt powder
A hydride secondary battery was produced in the same manner as in Example 1 except that the parts were used.

【0038】比較例2 正極の水酸化ニツケル粉末として、タイプAの水酸化ニ
ツケル粉末100部に代えて、市販の水酸化ニツケル粉
末100部を用いた以外は、実施例1と同様にして、水
素化物二次電池を作製した。
Comparative Example 2 The procedure of Example 1 was repeated except that 100 parts of commercially available nickel hydroxide powder was used instead of 100 parts of type A nickel hydroxide powder as the nickel hydroxide powder for the positive electrode. A nitride secondary battery was produced.

【0039】なお、比較例1,2で用いた市販の水酸化
ニツケル粉末について、SEM(倍率1,000倍)に
より観察した結果は、図3に示されるとおりであり、平
均粒径以上の粒子は球状であつたが、平均粒径以下の粒
子はダンゴ状でいびつな形状であつた。また、マイクロ
トラツプ法により粒度分布を調べた結果は、図6に示さ
れるとおりであり、粒度が0.4〜96μm、平均粒径
が12μmで、粒度分布幅の広いものであつた。さら
に、BET吸着法により細孔半径を測定した結果は、図
7の曲線−7cに示されるとおりであり、7〜8Åにピ
─クがみられたが、5〜6Åにピ─クはみられなかつ
た。また、BET吸着法による比表面積は20m2/g、
細孔容積は0.030cc/g、平均細孔半径は35Åで
あつた。
The results obtained by observing the commercially available nickel hydroxide powder used in Comparative Examples 1 and 2 by SEM (1,000 times magnification) are as shown in FIG. Was spherical, but particles smaller than the average particle size were in a dango-like and irregular shape. The result of examining the particle size distribution by the microtrap method is as shown in FIG. 6. The particle size was 0.4 to 96 μm, the average particle size was 12 μm, and the particle size distribution was wide. Further, the result of measuring the pore radius by the BET adsorption method is as shown by a curve -7c in FIG. 7, where a peak was observed at 7 to 8 °, but a peak was observed at 5 to 6 °. It wasn't. The specific surface area by the BET adsorption method is 20 m 2 / g,
The pore volume was 0.030 cc / g and the average pore radius was 35 °.

【0040】なおまた、比較例1で導電助剤として用い
た市販のコバルト粉末につき、SEM観察(倍率5,0
00倍)したところ、図9に示されるように、タイプC
のコバルト粉末に比べて大きな粒子径を有し、全体に不
均一であることが確認され、平均粒径は3μm、BET
吸着法による比表面積は8m2/g、原子吸光分析による
コバルト含有量は99重量%であつた。
The commercially available cobalt powder used as a conductive additive in Comparative Example 1 was observed by SEM (at a magnification of 5.0 or less).
00), as shown in FIG.
Has a larger particle size than that of the cobalt powder, and is confirmed to be non-uniform as a whole.
The specific surface area by the adsorption method was 8 m 2 / g, and the cobalt content by atomic absorption analysis was 99% by weight.

【0041】上記の実施例1,2および比較例1,2の
各水素化物二次電池について、正極の利用率、充電容量
および電池容量を調べた。これらの結果は、下記の表1
に示されるとおりであつた。また、高温貯蔵(60℃で
40日間放置)後、サイクル特性(1C×1.2時間充
電−1C放電を繰り返し、電池電圧が1.0Vに低下す
るまでのサイクル数)を調べ、その結果を図10に示し
た。なお、図10中、曲線−10aは実施例1の水素化
物二次電池、曲線−10bは実施例2の水素化物二次電
池、曲線−10cは比較例1の水素化物二次電池、曲線
−10dは比較例2の水素化物二次電池、である。
With respect to each of the hydride secondary batteries of Examples 1 and 2 and Comparative Examples 1 and 2, the utilization factor, charge capacity and battery capacity of the positive electrode were examined. These results are shown in Table 1 below.
The results were as shown in FIG. After high-temperature storage (leaving at 60 ° C. for 40 days), the cycle characteristics (the number of cycles until the battery voltage is reduced to 1.0 V by repeating the charging / discharging of 1 C × 1.2 hours-1 C) were examined. As shown in FIG. In FIG. 10, curve -10a is the hydride secondary battery of Example 1, curve -10b is the hydride secondary battery of Example 2, curve -10c is the hydride secondary battery of Comparative Example 1, and curve- 10d is a hydride secondary battery of Comparative Example 2.

【0042】 [0042]

【0043】上記結果から明らかなように、本発明の実
施例1,2の水素化物二次電池は、表1に示されるよう
に、正極利用率が、活物質および導電助剤としてそれぞ
れ従来のものを用いた比較例1の水素化物二次電池なら
びに活物質だけを従来のものとした比較例2の水素化物
二次電池に比べて、10%程度高く、電池容量が高くな
つており、しかも、図10に示されるように、高温貯蔵
後においてもすぐれたサイクル特性が得られているもの
であることがわかる。
As is clear from the above results, as shown in Table 1, the hydride secondary batteries of Examples 1 and 2 of the present invention have the positive electrode utilization ratios of the conventional materials as the active material and the conductive auxiliary, respectively. In comparison with the hydride secondary battery of Comparative Example 1 and the hydride secondary battery of Comparative Example 2 in which only the active material was used, the battery capacity was increased by about 10%, and the battery capacity was increased. 10, it can be seen that excellent cycle characteristics are obtained even after storage at high temperature.

【0044】[0044]

【発明の効果】以上のように、本発明は、水酸化ニツケ
ル粉末として特定性状のものを用い、かつ導電助剤とし
て特定のコバルト粉末を用いたことにより、ニツケル正
極の利用率が向上し、材料コストの低減を図れるととも
に、高温貯蔵特性にすぐれて、サイクル特性の改善され
た高容量の水素化物二次電池を提供できる。
As described above, according to the present invention, the nickel hydroxide powder has a specific property, and the specific cobalt powder is used as a conductive additive, so that the utilization rate of the nickel positive electrode is improved. It is possible to provide a high-capacity hydride secondary battery that can reduce material cost and has excellent high-temperature storage characteristics and improved cycle characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で用いたタイプAの水酸化ニツケル粉
末の粒子構造を示す走査型電子顕微鏡(倍率1,000
倍)写真である。
FIG. 1 is a scanning electron microscope (1,000 magnification) showing the particle structure of a nickel hydroxide powder of type A used in Example 1.
Photo).

【図2】実施例2で用いたタイプBの水酸化ニツケル粉
末の粒子構造を示す走査型電子顕微鏡(倍率1,000
倍)写真である。
FIG. 2 is a scanning electron microscope (1,000 magnification) showing a particle structure of a nickel hydroxide powder of type B used in Example 2.
Photo).

【図3】比較例1,2で用いた市販の水酸化ニツケル粉
末の粒子構造を示す走査型電子顕微鏡(倍率1,000
倍)写真である。
FIG. 3 is a scanning electron microscope (1,000 magnification) showing the particle structure of the commercially available nickel hydroxide powder used in Comparative Examples 1 and 2.
Photo).

【図4】実施例1で用いたタイプAの水酸化ニツケル粉
末の粒度分布図である。
FIG. 4 is a particle size distribution diagram of a nickel hydroxide powder of type A used in Example 1.

【図5】実施例2で用いたタイプBの水酸化ニツケル粉
末の粒度分布図である。
FIG. 5 is a particle size distribution diagram of type B nickel hydroxide powder used in Example 2.

【図6】比較例1,2で用いた市販の水酸化ニツケル粉
末の粒度分布図である。
FIG. 6 is a particle size distribution diagram of a commercially available nickel hydroxide powder used in Comparative Examples 1 and 2.

【図7】実施例1,2で使用したタイプA,Bの水酸化
ニツケル粉末と比較例1,2で使用した市販の水酸化ニ
ツケル粉末の細孔半径を示す特性図である。
FIG. 7 is a characteristic diagram showing the pore radii of the nickel hydroxide powders of types A and B used in Examples 1 and 2 and the commercially available nickel hydroxide powder used in Comparative Examples 1 and 2.

【図8】実施例1,2で用いたタイプCのコバルト粉末
の粒子構造を示す走査型電子顕微鏡(倍率5,000
倍)写真である。
FIG. 8 is a scanning electron microscope (5,000 magnification) showing the particle structure of type C cobalt powder used in Examples 1 and 2.
Photo).

【図9】比較例1で用いた市販のコバルト粉末の粒子構
造を示す走査型電子顕微鏡(倍率5,000倍)写真で
ある。
9 is a scanning electron microscope (5,000-fold magnification) photograph showing the particle structure of a commercially available cobalt powder used in Comparative Example 1. FIG.

【図10】実施例1,2の水素化物二次電池と比較例
1,2の水素化物二次電池についての高温貯蔵後のサイ
クル特性を示す特性図である。
FIG. 10 is a characteristic diagram showing cycle characteristics of the hydride secondary batteries of Examples 1 and 2 and the hydride secondary batteries of Comparative Examples 1 and 2, after storage at a high temperature.

【符号の説明】[Explanation of symbols]

7a 実施例1で用いたタイプAの水酸化ニツケル粉末 7b 実施例2で用いたタイプBの水酸化ニツケル粉末 7c 比較例1,2で用いた市販の水酸化ニツケル粉末 10a 実施例1の水素化物二次電池 10b 実施例2の水素化物二次電池 10c 比較例1の水素化物二次電池 10d 比較例2の水素化物二次電池 7a Nickel hydroxide powder of type A used in Example 1 7b Nickel hydroxide powder of type B used in Example 2 7c Commercially available nickel hydroxide powder used in Comparative Examples 1 and 10 10a Hydride of Example 1 Secondary battery 10b Hydride secondary battery of Example 2 10c Hydride secondary battery of Comparative Example 1 10d Hydride secondary battery of Comparative Example 2

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ニツケルを活物質とする正極と水
素吸蔵合金よりなる負極とアルカリ水溶液よりなる電解
液とセパレ─タを有する水素化物二次電池において、上
記の水酸化ニツケルは粒度が2〜40μm、平均粒径が
8±2μmの粉末で、この粉末は平均粒径以上の粒子が
球状でかつ平均粒径以下の粒子の95重量%以上も球状
であり、さらにこの水酸化ニツケル粉末を活物質とする
正極中に平均粒径1μm以下でBET吸着法による比表
面積が1〜10m2/gのコバルト粉末を含むことを特徴
とする水素化物二次電池。
1. A hydride secondary battery comprising a positive electrode containing nickel hydroxide as an active material, a negative electrode comprising a hydrogen storage alloy, an electrolytic solution comprising an alkaline aqueous solution and a separator, wherein said nickel hydroxide has a particle size of 2 μm. 4040 μm, powder having an average particle diameter of 8 ± 2 μm. The powder is spherical in which particles having an average particle diameter of not less than 95% by weight of particles having a particle diameter of not more than the average particle diameter. A hydride secondary battery comprising, in a positive electrode serving as an active material, cobalt powder having an average particle size of 1 μm or less and a specific surface area of 1 to 10 m 2 / g by a BET adsorption method.
【請求項2】 水酸化ニツケル粉末は、細孔半径が少な
くとも7〜8Åのピ―クと5〜6Åのピ─クを有すると
ともに、7〜8Åのピ―クの強度(la)と5〜6Åの
ピ―クの強度(lb)との比(la:lb)が100:
50以上である請求項1に記載の水素化物二次電池。
2. The nickel hydroxide powder has a peak having a pore radius of at least 7 to 8 ° and a peak of 5 to 6 °, and has a peak intensity (la) of 7 to 8 ° and 5 to 5 °. The ratio (la: lb) to the peak intensity (lb) of 6 ° is 100:
The hydride secondary battery according to claim 1, which is 50 or more.
【請求項3】 水酸化ニツケルを活物質とする正極と水
素吸蔵合金よりなる負極とアルカリ水溶液よりなる電解
液とセパレ─タを有する水素化物二次電池の製造方法に
おいて、上記の水酸化ニツケルとして、粒度が2〜40
μm、平均粒径が8±2μmであつて、平均粒径以上の
粒子が球状でかつ平均粒径以下の粒子の95重量%以上
も球状である粉末を使用し、この水酸化ニツケル粉末と
さらに平均粒径1μm以下でBET吸着法による比表面
積が1〜10m2/gのコバルト粉末を含むペ─ストを導
電性多孔基材に担持させ、これを乾燥し、圧縮成形した
のち、アルカリ水溶液中に浸漬処理することにより、正
極を作製することを特徴とする水素化物二次電池の製造
方法。
3. A method for producing a hydride secondary battery having a positive electrode using nickel hydroxide as an active material, a negative electrode made of a hydrogen storage alloy, an electrolytic solution made of an alkaline aqueous solution, and a separator, wherein said nickel hydroxide is used as said nickel hydroxide. , Particle size 2-40
a powder having an average particle diameter of 8 ± 2 μm, wherein particles having a particle diameter equal to or larger than the average particle diameter are spherical and at least 95% by weight of particles having a particle diameter equal to or smaller than the average particle diameter are used. A paste containing cobalt powder having an average particle diameter of 1 μm or less and a specific surface area by a BET adsorption method of 1 to 10 m 2 / g is supported on a conductive porous substrate, dried, compression-molded, and then dried in an alkaline aqueous solution. A method for producing a hydride secondary battery, characterized in that a positive electrode is produced by immersion treatment.
JP9093273A 1997-04-11 1997-04-11 Hydride secondary battery and its manufacture Withdrawn JPH10284078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9093273A JPH10284078A (en) 1997-04-11 1997-04-11 Hydride secondary battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9093273A JPH10284078A (en) 1997-04-11 1997-04-11 Hydride secondary battery and its manufacture

Publications (1)

Publication Number Publication Date
JPH10284078A true JPH10284078A (en) 1998-10-23

Family

ID=14077847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9093273A Withdrawn JPH10284078A (en) 1997-04-11 1997-04-11 Hydride secondary battery and its manufacture

Country Status (1)

Country Link
JP (1) JPH10284078A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087723A (en) * 2005-09-21 2007-04-05 Sanyo Electric Co Ltd Alkaline storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087723A (en) * 2005-09-21 2007-04-05 Sanyo Electric Co Ltd Alkaline storage battery

Similar Documents

Publication Publication Date Title
JP3558590B2 (en) Method for producing positive electrode active material for alkaline storage battery
WO2019189014A1 (en) Method for producing catalyst for air secondary batteries, method for producing air secondary battery, catalyst for air secondary batteries, and air secondary battery
JPWO2005104272A1 (en) Alkaline primary battery and method for producing positive electrode material thereof
JP4736372B2 (en) Positive electrode active material for alkaline storage battery, positive electrode for alkaline storage battery, and alkaline storage battery
JP4321997B2 (en) Positive electrode active material for alkaline storage battery, and positive electrode and alkaline storage battery using the same
JPH10172558A (en) Hydride secondary battery
EP4137460A1 (en) Method for solid-state synthesis of ni-rich lithium composite transition metal oxide cathode active material single particle, ni-rich lithium composite transition metal oxide cathode active material single particle synthesized thereby, and cathode and lithium secondary battery, each containing same
JP2001332257A (en) Non-baking type positive electrode for alkaline battery, its manufacturing method and the alkaline battery using the non-baking type positive electrode
US6368748B1 (en) Nickel-metal hydride storage cell having a high capacity and an excellent cycle characteristic and manufacturing
JPH10284078A (en) Hydride secondary battery and its manufacture
JP4059357B2 (en) Hydride secondary battery and manufacturing method thereof
JP4908716B2 (en) Alkaline storage battery, nickel electrode for alkaline storage battery, active material powder for nickel electrode.
JP4511298B2 (en) Nickel metal hydride storage battery
JP3744317B2 (en) Nickel positive electrode for alkaline storage battery and alkaline storage battery using the same
JP7122946B2 (en) Air electrode catalyst for air secondary battery, method for producing air electrode catalyst, and air secondary battery
JP3851022B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JPH11191414A (en) Hydride secondary battery
JPS62264557A (en) Metal oxide-hydrogen battery
JP4187351B2 (en) Hydride secondary battery and manufacturing method thereof
JP2003045420A (en) Non-sintered positive electrode, its manufacturing method, and alkaline storage battery using same
JPH10214637A (en) Hydride secondary battery and its manufacture
US20190097213A1 (en) Processes and compositions to improve high-temperature performance of nimh batteries
JP2538610B2 (en) Metal oxide / hydrogen battery
JP3631206B2 (en) Non-sintered nickel electrode for alkaline storage battery
CN117276482A (en) Positive plate for alkaline storage battery and alkaline storage battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040706