JP4908716B2 - Alkaline storage battery, nickel electrode for alkaline storage battery, active material powder for nickel electrode. - Google Patents

Alkaline storage battery, nickel electrode for alkaline storage battery, active material powder for nickel electrode. Download PDF

Info

Publication number
JP4908716B2
JP4908716B2 JP2002048673A JP2002048673A JP4908716B2 JP 4908716 B2 JP4908716 B2 JP 4908716B2 JP 2002048673 A JP2002048673 A JP 2002048673A JP 2002048673 A JP2002048673 A JP 2002048673A JP 4908716 B2 JP4908716 B2 JP 4908716B2
Authority
JP
Japan
Prior art keywords
active material
nickel
hydroxide
storage battery
alkaline storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002048673A
Other languages
Japanese (ja)
Other versions
JP2003249214A (en
Inventor
香織 初代
充浩 児玉
誠二郎 落合
正治 綿田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2002048673A priority Critical patent/JP4908716B2/en
Publication of JP2003249214A publication Critical patent/JP2003249214A/en
Application granted granted Critical
Publication of JP4908716B2 publication Critical patent/JP4908716B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アルカリ蓄電池用ニッケル電極とアルカリ蓄電池およびそれに適用するニッケル電極用活物質粉末に関するものである。
【0002】
【従来の技術とその課題】
現在広く使用されているアルカリ蓄電池用ニッケル電極活物質は、β形のNi(OH)2である。該活物質は、充電においてβ-Ni(OH)2(ニッケルの酸化数は2価)からβ形のオキシ水酸化ニッケルβ-NiOOH(ニッケルの酸化数は3価)に酸化され、放電において元のβ-Ni(OH)2に還元される。充電および放電時の酸化還元反応は、1電子反応(理論容量289mAh/g)で進行する。
【0003】
しかし、このβ-NiOOHは、過充電により一部が高次のγ-NiOOH(ニッケルの酸化数は3価を超える)にまで酸化される。従来の技術によれば、前記により生成したγ-NiOOHは、不活性であり起電反応に寄与しないため、γ-NiOOHが生成すると、容量が低下したり、電圧が低下する原因となる。また、γ-NiOOHは、水分子やカリウムイオン(K+)などの金属カチオンを結晶格子の層間に取り込み膨張する、このために電極の体積膨張が起こって活物質と基板との接触不良が発生したり、また、水分子を結晶格子の層間に取り込むことによって水分の消費がおきるので、電解液の濃度変化や遍在を引き起こし、充放電サイクル性能等電池の特性の低下を引き起こす問題があった。そのため、γ-NiOOHの生成を抑制する工夫がなされてきた。
【0004】
一方で、電池の高容量化に対する要望は、ますます高まっており、これを実現させるために、正極・負極・電解液・セパレータなどの電池材料の改良や電池のデザインの改良がさまざま試みられている。例えば、セパレータの薄型化、極板の高密度化、活物質の利用率を高める各種添加剤や導電助剤の改良が行われている。
【0005】
前記のように、電池の材料、デザインに関して様々な改良が行われているにも拘わらず、電池容量は、ほぼ飽和状態に達しつつあり、飛躍的な電池の高容量化が望めない状況にある。そこで、電池容量を飛躍的に向上させるために、正極の高容量化が重要になってきている。高次酸化物であるγ-NiOOHが活物質として機能を発揮すれば、前記起電反応は、1電子を超える反応(以下多電子反応と記述する)となるので、活物質単位重量当たりの容量が増大する。従って、γ-NiOOHを活物質として機能させることができれば、アルカリ蓄電池の容量を大幅に向上させることが可能となる。このような状況から、前記γ-NiOOHが活物質として機能する技術を開発することが電池の容量を飛躍的に向上させる鍵となる。
【0006】
前記のように、従来のβ-Ni(OH)2からγ-NiOOHへの反応は、活物質として不活性な物質の生成を伴うため、充放電を行うと容量低下をきたす。また、活物質材料の結晶格子の層間が広がるために電極が体積膨張を起こし、基板との接触不良や電解液の遍在を引き起こすなどの問題があった。
【0007】
そこで、γ-NiOOHと格子定数の差が小さく、同型の結晶構造を有するα-Ni(OH)2を活物質として用いることが提案されている。充電および放電が、α-Ni(OH)2と γ-NiOOHとの間を行き来する反応を利用すると、該反応が可逆反応である上、かつ充放電時の体積変化も少なく、電極の体積膨張による基板と活物質の接触不良や電解液の遍在を引き起こす心配もない。前記のように、該反応は多電子反応なので、ニッケル電極の容量を飛躍的に向上させることが可能となる。
【0008】
ただし、α-Ni(OH)2は、アルカリ溶液中で不安定であり、容易にβ-Ni(OH)2に変化してしまう性質がある。この変化を回避する方法として、α型結晶構造を保持できるように、3価のカチオン(Al、Fe、Mnなど)でニッケルの一部を置換し、結晶格子の層間にアニオンを固定する方法が提案されている。特に、Mnを固溶した活物質に関して特開平11-312519号公報、特開平11−329426号公報など幾つかの提案がされている。
【0009】
また、Alが3価で安定性が高いことから、J. Electrochem. Soc., 141 (11) 2956-2959 (1994)、J. Electrochem.Soc., 146 (4) 1251-1255 (1999)、J. Power Sources, 89 40-45 (2000)や特開平11−185746号公報に記載されている如く、ニッケルの一部をAlで置換したα-Ni(OH)2について、さまざまな研究がなされいてる。
【0010】
しかしながら、前記の文献に見られる正極活物質には、導電性を確保するために、Co化合物やNi粉末を大量に添加することを必要とし、ニッケル電極中に占める水酸化ニッケルの量が相対的に少ない。文献によっては、活物質とほぼ同量の導電助剤を添加している例もある。このため、狙いとする高容量化が望めない。また、Alを固溶させたα-Ni(OH)2活物質は、初期活性化が遅いという欠点がある。
【0011】
アルカリ蓄電池の場合、充放電操作を数回〜10回程度繰り返し実施することによって活性化(以下化成と記述する)を図る。α-Ni(OH)2を活物質とするニッケル電極を用いた電池において、化成が遅い原因の一つは、α-Ni(OH)2の酸化電位と酸素発生電位が近接しており、充電の過程でニッケル電極の充電と同時に水の分解が生じ、ニッケル電極から酸素が発生するためである。酸素が発生すると、その分充電効率が低下しニッケル電極の充電が進まない。そのために化成に多くの時間を要し、且つ、電気を無駄に消費することになる。
【0012】
特開平11−273716号公報には、α-Ni(OH)2にマンガン(Mn)を固溶させることによって、充電時にニッケル電極から酸素ガスが発生するのを抑制することが提案されている。しかし、該提案をもってしてもその効果は十分ではなく、更なる改良が求められている。
【0013】
【発明が解決しようとする課題】
本発明は、上記従来技術の問題点に鑑みなされたものであり、アルカリ蓄電池の容量を飛躍的に向上することを可能とするα-Ni(OH)2をニッケル電極用活物質として適用したアルカリ蓄電池において、その充電受け入れ性が劣るという欠点を解消し、該電池の急速充電を可能にすると同時に初期活性化の高速化を可能にするものである。
【0014】
【課題を解決するための手段】
本発明は、正極として、活物質であるα形の水酸化ニッケル{α-Ni(OH)2}を主体とする活物質以外にエルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)のうち少なくとも1種の元素を含む水酸化物およびまたはオキシ水酸化物を含有し、前記α形の水酸化ニッケル{α-Ni(OH)}がアルミニウム(Al)を固溶状態で含有しかつ前記活物質のアルミニウムの含有比率(=原子吸光で定量したAl量/硫酸アルミニウムと硫酸ニッケルを溶解させた水溶液中においてアンモニア水溶液と水酸化ナトリウム水溶液を滴下することにより得た沈殿物をろ過、水洗、乾燥したα-Ni(OH) 活物質粉末)が4重量%以上10重量%以下であるニッケル電極を用いてアルカリ蓄電池を構成する。
【0015】
本発明は、前記本発明に係るアルカリ蓄電池の正極に用いるニッケル電極を提供するものであって、前記α形の水酸化ニッケル{α-Ni(OH) 2}を主体とする活物質と、該ニッケル電極内にエルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)のうちから選んだ少なくとも1種の元素を含む酸化物、水酸化物またはオキシ水酸化物のうち少なくとも1種を含有、前記α形の水酸化ニッケル{α-Ni(OH)}がアルミニウム(Al)を固溶状態で含有かつ前記活物質のアルミニウムの含有比率(=原子吸光で定量したAl量/硫酸アルミニウムと硫酸ニッケルを溶解させた水溶液中においてアンモニア水溶液と水酸化ナトリウム水溶液を滴下することにより得た沈殿物をろ過、水洗、乾燥したα-Ni(OH) 活物質粉末)が4重量%以上10重量%以下である。
【0016】
本発明は、前記本発明に係るニッケル電極に適用する活物質粉末を提供するものであって、前記α形の水酸化ニッケル{α-Ni(OH)2}を主体とする活物質粉末に、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)のうちから選んだ少なくとも1種の元素を含む酸化物、水酸化物またはオキシ水酸化物(以下これらの化合物を総称する場合は、希土類元素の化合物と記述する)のうち少なくとも1種を含有、前記α形の水酸化ニッケル{α-Ni(OH)}がアルミニウム(Al)を固溶状態で含有かつ前記活物質のアルミニウムの含有比率(=原子吸光で定量したAl量/硫酸アルミニウムと硫酸ニッケルを溶解させた水溶液中においてアンモニア水溶液と水酸化ナトリウム水溶液を滴下することにより得た沈殿物をろ過、水洗、乾燥したα-Ni(OH) 活物質粉末)4重量%以上10重量%以下である。
【0017】
ここでいうα-Ni(OH)2を主体とする活物質には、α-Ni(OH)2の他α-Ni(OH)2にAl、Co、Mn、Fe等の異種元素を固溶または共晶状態で含ませたものも適用することができる。ここでいう、固溶状態または共晶状態とは、活物質のX線回折図を取った時に添加したAl、Co等の異種元素の単体または化合物に特有の回折ピークが観測されない状態を意味する。
【0018】
本発明に係るニッケル電極および該ニッケル電極に適用する活物質粉末においては、前記α-Ni(OH)2を主体とする活物質に対する、前記エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)の4種のうちから選んだ元素の総含有比率を0.5〜5重量%とすることが望ましい。
【0019】
前記希土類元素の化合物は、ニッケル電極の酸素過電圧を高め、充電時にニッケル電極から酸素ガスが発生するのを抑制する機能を有する。希土類元素の含有比率が0.5重量%を下回ると前記酸素ガスの発生を抑制する効果が小さい。また、該効果は希土類元素の含有比率が5重量%までで飽和に達し、それ以上含有比率を多くしても更なる向上は望めない。
【0020】
【発明の実施の形態】
本発明に係るアルカリ蓄電池は、α形の水酸化ニッケル{α-Ni(OH)2}を主体とする活物質と、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)およびルテチウム(Lu)のうち少なくとも1種の元素を含む水酸化物およびまたはオキシ水酸化物を含有するニッケル電極を正極として備えたアルカリ蓄電池である。
【0021】
前記本発明に係るアルカリ蓄電池に用いるニッケル電極においては、α形の水酸化ニッケル{α-Ni(OH)2}を主体とする活物質を備え、それ以外にEr、Tm、Yb、Lu(これら4種の元素を総称する時は便宜上希土類元素と記述する)のうち少なくとも1種の元素を含む酸化物、水酸化物またはオキシ水酸化物のうち少なくとも1種を含ませる。該ニッケル電極を正極として電池に組み込むと、電池内において希土類元素の酸化物も最終的に水酸化物またはオキシ水酸化物に変化し、前記本発明に係る構成を満たすアルカリ蓄電池となる。
【0022】
(Er、Tmの水酸化物とオキシ水酸化物の同時生成その1)
市販の酸化エルビウム(Er23)粉末や酸化ツリウム(Tm23)粉末を濃度30%苛性ソーダ水溶液中に浸漬し、温度60℃において48時間放置した。放置後の粉末をX線回折にかけ、その回折ピークからErやTmの水酸化物およびオキシ水酸化物の両方を同定した。
(Yb、Luのオキシ水酸化物の生成その1)
市販の酸化エルビウム(Yb23)粉末や酸化ツリウム(Lu23)粉末を濃度30%苛性ソーダ水溶液中に浸漬し、温度60℃において48時間放置した。放置後の粉末をX線回折にかけ、その回折ピークからYbやLuのオキシ水酸化物を同定した。
【0023】
(Er、Tmの水酸化物とオキシ水酸化物の同時生成その2)
従来のβ-Ni(OH)2 の活物質粉末95重量部に市販の酸化エルビウム(Er23)粉末や酸化ツリウム(Tm23)粉末をそれぞれ5重量部混合添加したニッケル電極を作製した。該ニッケル電極を正極に、水素吸蔵合金電極を負極に,電解液に6.8Mの苛性カリ水溶液を用いて開放型のセルを作製し、ニッケル水素電池に適用する通常の充電および放電条件において充放電操作を3回行った。3回目の充電終了後および3回目の放電終了後の電池のニッケル電極を回収してX線回折にかけ、充電後、放電後のどちらの電極にも前記両元素の水酸化物とオキシ水酸化物を同定した。
【0024】
(Yb、Luのオキシ水酸化物の生成その2)
従来のβ-Ni(OH)2 の活物質粉末95重量部に市販の酸化イッテルビウム(Yb23)粉末や酸化ルテチウム(Lu23)粉末をそれぞれ5重量部混合添加したニッケル電極を作製した。該ニッケル電極を正極に、水素吸蔵合金電極を負極に電解液に6.8Mの苛性カリ水溶液を用いて開放型のセルを作製し、ニッケル水素電池に適用する通常の充電および放電条件において充放電操作を3回行った。3回目の充電終了後および3回目の放電終了後の電池のニッケル電極を回収してX線回折にかけ、充電後、放電後のどちらの電極にも前記両元素のオキシ水酸化物を同定した。
【0025】
以上記述したように、分析調査によれば、前記4種類の希土類元素の酸化物や水酸化物をアルカリ蓄電池の内部と同じかもしくはそれに近い条件(pH、電位)においた時、ErとTmの場合、ErとTmの水酸化物とオキシ水酸化物の生成が確認された。他方、Yb、Luの場合は該元素のオキシ水酸化物の生成が確認された。このことは、ニッケル電極に添加した希土類元素の化合物は、電池内において、ErとTmの場合には水酸化物とオキシ水酸化物になり、YbとLuの場合にはオキシ水酸化物を主成分とする化合物が生成していることを示唆するものである。尚、オキシ水酸化物の場合は、式LnOOH・2H2O(LnはEr、Tm、Yb、Luを指す)で表される水和物として存在していることが確認された。
【0026】
前記希土類元素の化合物をニッケル電極内に含有させる方法は、特に限定されるものではない。予め合成した前記希土類元素の化合物の粉末を、前記活物質粉末と混合した後に多孔性基板に充填する方法が適用できる。
【0027】
また、水酸化物やオキシ水酸化物を含有させる方法としては、含浸法が適用できる。該含浸法は、前記α-Ni(OH)2を主体とする活物質粉末を発砲ニッケル等の多孔性基板に充填した後に、該電極に当該希土類元素の塩の水溶液を含浸し、乾燥したものを苛性アルカリ水溶液に接触させて水酸化物を生成させる。水酸化物を生成させた後に、後記の如く苛性アルカリ水溶液中で高温エージング処理をするか、または、酸化剤を用いて化学的酸化処理を施すことによって、水酸化物をオキシ水酸化物に変えることができる。
【0028】
前記4種類の希土類元素を含む水酸化物は、公知の方法によって得ることができる。具体的には、前記希土類元素の塩(硝酸塩、硫酸塩など)の水溶液に苛性アルカリ等のアルカリを添加することによって沈殿として得ることができる。この時、1種類の希土類元素の塩を含む水溶液を適用すれば1種の希土類元素を含む水酸化物が得られる。また、2種以上の希土類元素の塩を含む水溶液を適用すれば、共沈させることによって、2種以上の希土類元素を含む水酸化物を得ることができる。
【0029】
前記希土類元素を含む酸化物としては、市販品を適用することができる。また、公知の方法(例えば水酸化物を空気中で強熱する)によって合成することができる。酸化物を合成するための材料として、2種以上の希土類元素を含む塩や水酸化物を適用することによって、2種以上の希土類元素を含む酸化物を得ることができる。
【0030】
前記希土類元素を含むオキシ水酸化物は、式LnOOH・2H2O(LnはEr、Tm、Yb、Luを指す)で示される水和物として得られる。該希土類元素のオキシ水酸化物は、前記希土類元素の酸化物や水酸化物を、例えば30〜40重量%の苛性ソーダ水溶液等、高濃度の化成アルカリ水溶液中において60℃において数十時間放置(エージング)することによって得ることができる。また、水酸化物を苛性アルカリ水溶液に分散させ、該分散液に次亜塩素酸塩や過硫酸塩等の酸化剤を添加して酸化することによっても得ることができる。また、希土類元素の酸化物や水酸化物を含有させたニッケル電極をアルカリ蓄電池の正極として電池に組み込み、該電池を充電することによってもオキシ水酸化物が生成する。材料に2種以上の希土類元素を含む水酸化物を適用することによって、適用した材料に含まれる希土類元素を含むオキシ水酸化物を得ることができる。
【0031】
前記のように、希土類元素の化合物をニッケル電極に添加する方法は、特に限定されるものではないが、前記希土類元素の化合物の効果を発揮させるためには、希土類元素の化合物をニッケル電極内に均一に分布させた方が良い。酸化物の場合は、予め酸化物の粉末を合成し、該粉末を{α-Ni(OH)2}を主体とする活物質粉末と混合する。この場合前記希土類元素の酸化物粉末の粒径を小さくした方が均一に混合できる。そのため、該酸化物粉末の平均粒径を10μm以下することが望ましい。添加した酸化物は、アルカリ電池に組み込まれた後では、一旦電解液中に溶解した後、活物質粉末の表面またはその細孔内に水酸化物として再析出する。
【0032】
本発明に係る希土類原素の化合物を含有するニッケル電極用活物質粉末は、α-Ni(OH)2を主体とするニッケル電極用活物質粉末粒子に、希土類元素の水酸化物、酸化物またはオキシ水酸化物を担持させる。該活物質を適用することによって、希土類元素をニッケル電極内に均一に分布させることができる利点がある。α-Ni(OH)2粉末は、細孔を数多く有する粉末である。前記のニッケル電極の場合と同様、含浸法によって、α-Ni(OH)2粉末の細孔内またはその表面に希土類元素の水酸化物やオキシ水酸化物を担持させることができる。
【0033】
本発明に係るニッケル電極活物質は、α-Ni(OH)2を主体とする活物質である。対象とするニッケル電極活物質がα-Ni(OH)2を主体とする活物質であるか否か、合成した活物質のX線回折図によって同定することが出来る。図1に、本発明に係るα-Ni(OH)2のX線回折図を示す(但し、希土類元素の化合物は含まない)。該活物質は、5重量%のAlを含有するが、Al単体またはその化合物に帰属する回折ピークが認められないところから、Alは活物質内に固溶または共晶状態で存在すると想定される。
【0034】
本発明に係るα形の水酸化ニッケル{α-Ni(OH)2}を主体とする活物質は、Alを固溶状態で含有することが好ましい。前記のように、α-Ni(OH)2をアルカリ電解液に浸漬するとβ-Ni(OH)2に変化してしまう。前記のように、α-Ni(OH)2の安定性を向上させるためにAl以外にMn、Fe等を添加することが提案されている。しかし、これらの元素の中でもAlを添加した時の効果が顕著である。
【0035】
前記のように、α-Ni(OH)2中に含まれるAlは、α-Ni(OH)2のアルカリ溶液中での安定性を向上させる。活物質中のAlの含有比率が3重量%以下であると、活物質のアルカリ溶液中での安定性が不足し、α-Ni(OH)2構造を維持できない虞がある。また、α-Ni(OH)2中にAlが固溶または共晶状態で存在する濃度の最大値は約7重量%である。従って、それ以上Alの含有比率を増やしても、α-Ni(OH)2の安定性向上に関して顕著な効果は得られない。Alは、起電反応に寄与しない。Alの含有比率が7重量%を超えると、活物質であるNi(OH)2の量が相対的に少なくなるため、容量が低下する欠点がある。従って、Alの含有比率を3〜7重量%にすることが望ましい。
【0036】
α形の水酸化ニッケル{α-Ni(OH)2}を主体とする活物質は、前記公知文献に記述されている公知の方法によって合成する。該活物質は粉末状であって、その平均粒径を5〜25μmとすることが望ましい。また、本発明に好適なアルカリ蓄電池用ニッケル電極活物質は、タップ密度が1.5g/ml以上であることが好ましい。また、比表面積が6m2/g以上であって、半径が4nm以上の細孔の容積が、全細孔容積に対して占める比率が40%以下である高密度球状粉末であることが好ましい。タップ密度が1.5g/ml未満や半径が4nm以上の細孔の容積が、全細孔容積に対して占める比率が40%を超えるものは活物質の充填密度が低い欠点がある。また、比表面積が6m2/g未満のものは活物質としての活性が低い欠点がある。
【0037】
本発明に係るアルカリ蓄電池用ニッケル電極は、集電体と、この集電体に充填配置された、本発明に係るニッケル電極活物質とを備えている。ニッケル電極に用いられる集電体は、アルカリ蓄電池用のニッケル電極において利用可能なものであれば、特に限定されるものではない。例えば、発泡ニッケル板、繊維状ニッケルの焼結体やニッケルメッキを施した穿孔鋼板を適用することができる。
【0038】
本発明に係るアルカリ蓄電池の負極には、水素吸蔵合金電極やカドミウム電極、亜鉛電極などを使用することができる。例えば、水素吸蔵電極として、CaCu5型構造を有するMmNi3.55Co0.75Mn0.4Al0.3組成の合金を用いることができる、ここで、Mmは、希土類元素の混合物であるミッシュメタル[ランタン(La), セリウム(Ce), プラセオジウム(Pr), ネオジウム(Nd)]などを意味する。なお、本発明は、このような水素吸蔵合金電極の使用に限定されるものではなく、任意の負極を適宜使用することができる。例えば、“MmNi5合金”のNiの一部を、Al, Mn, Co, Ti, Cu, Znのような元素で置換した多元素系のものや、または、TiNi系、TiFe系の合金を適用することができる。
【0039】
本発明で用いる、セパレータとしては、例えば、アクリル酸グラフト重合させることによって親水性を付与したポリプロピレン(PP)繊維からなる不織布を用いることができる。ただし、本発明は、これに限定されるものではなく、任意のセパレータを適宜使用することができる。例えば、ポリプロピレンを含むポリオレフィン繊維やポリアミド繊維の不織布や、これらの繊維にスルホン基などの親水性官能基を付与したものを適用することができる。
【0040】
電解液の組成も特に限定されるものではない。通常使用される水酸化カリウム水溶液の他、水酸化ナトリウムおよび水酸化リチウムの単独またはこれら3種のうち少なくとも2種を含む水溶液を適用することができる。
【0041】
【実施例】
次に、1実施例により本発明を詳細に説明する。尚、実施例はあくまで1例であって、本発明は、以下の実施例に限定されるものではなく、前記請求項記載の発明を特定する事項の範囲内で、種々の変更、変形が可能である。
【0042】
(α-Ni(OH)2 の合成)
以下に記述する方法により、ニッケル電極活物質であるα-Ni(OH)2 を合成した。活物質中のAlの含有比率が3、4、5、7および10重量%になるよう、硫酸アルミニウム{Al2(SO43}と硫酸ニッケル{NiSO4}の比率を調整し、該2つの塩を含む水溶液を準備した。具体的には、表1に示す量の{Al2(SO43}と{NiSO4}を溶解させた2ルットル(l)の水溶液を5種類用意した。
【0043】
【表1】
【0044】
前記5種類の溶液を、それぞれ激しく撹拌しながら、それぞれの溶液にアンモニア水溶液と水酸化ナトリウム水溶液を同時に滴下した。この間、反応浴の温度を40〜50℃の範囲に保った。また、水酸化ナトリウム水溶液の滴下スピードを調整して、反応浴のpHを11±0.1の範囲に保持した。滴下を止めた後、12時間混合を継続した。その後、沈殿物を濾過、水洗し、一定の重量になるまで60℃で乾燥した。
【0045】
生成した物質をCoのKα線を用いたX線回折にかけ、α-Ni(OH)2 を主成分とする活物質粉末であることを確認した。また、Al量を原子吸光法で定量し、前記の値になっていることを確認した。生成したサンプル2gを採取し、10mlの硝子製メスシリンダー内に入れ、該メスシリンダーを10cmの高さから厚さ1mmのゴム製シートを敷いた台上に落下させた。該落下操作を100回繰り返し行った後、サンプルの占有体積からタップ密度を算定した。また、BET法によりサンプルの比表面積を測定した。
【0046】
(実施例1)
(ニッケル電極板の作製)
前記Alの含有比率を5重量%とした平均粒径10μmのα-Ni(OH)2 活物質粉末98重量部と平均粒径4μmの酸化エルビウム{Er23}粉末2重量部の混合粉末に導電助剤の前駆体である一酸化コバルト粉末10重量部を添加混合した。これに結着剤としてカルボキシルメチルセルロースを含む水溶液を加えてペースト状とした。このペーストを面密度450g/m2、多孔度が約95%の発砲ニッケル製多孔基板に所定量充填した。乾燥後プレスして所定の厚さを持つニッケル電極を作成した。活物質1g当たりの容量を前記289mAh/gと仮定して、該電極の活物質充填量より求めたニッケル電極の容量は1000mAhであった。
【0047】
(負極の作製)
負極には、水素吸蔵合金として、CaCu5型構造を有するMm(La:45%, Ce:30%, Pr:3%, Nd:22%)Ni3.55Co0.75Mn0.4Al0.3の組成を有する合金を用いた。この合金粉末に増粘剤を加えてぺースト状にしたものを、穿孔鋼板に塗布し、乾燥した。これを加圧形成後、切断し、水素吸蔵合金電極(負極)を作製した。該水素吸蔵合金電極の活物質充填容量を極板1枚当たり850mAhとした。
【0048】
(試験用ニッケル水素電池の作製)
前記正極板を、アクリル酸グラフト重合したポリプロピレン(PP)繊維不織布製のセパレータで包み、それを二枚の負極板で挟み、開放型の容器に挿入した。また、電解液として濃度6.8Mの水酸化カリウム水溶液を注液し、試験用開放型電池とした。
【0049】
(実施例2)
実施例1において、ニッケル電極に添加する希土類元素の化合物に、酸化エルビウムに替えて、酸化ツリウム{Tm23}粉末を適用した。それ以外は実施例1と同じとした。
【0050】
(実施例3)
実施例1において、ニッケル電極に添加する希土類元素の化合物に、酸化エルビウムに替えて、酸化イッテルビウム{Yb23}粉末を適用した。それ以外は実施例1と同じとした。
【0051】
(実施例4)
実施例1において、ニッケル電極に添加する希土類元素の化合物に、酸化エルビウムに替えて、酸化ルテチウム{Lu23}粉末を適用した。
【0052】
比較例5)
実施例3において、Alの含有比率を5重量%としたα-Ni(OH) 活物質に替えて、Alの含有比率を3重量%としたα-Ni(OH)2 活物質を適用した。それ以外は実施例1と同じとした。
【0053】
(実施例6)
実施例3において、Alの含有比率を5重量%としたα-Ni(OH)2 活物質に替えて、Alの含有比率を4重量%としたα-Ni(OH)2 活物質を適用した。それ以外は実施例1と同じとした。
【0054】
(実施例7)
実施例3において、Alの含有比率を5重量%としたα-Ni(OH)2 活物質に替えて、Alの含有比率を7重量%としたα-Ni(OH)2 活物質を適用した。それ以外は実施例1と同じとした。
【0055】
(実施例8)
実施例3において、Alの含有比率を5重量%としたα-Ni(OH)2 活物質に替えて、Alの含有比率を10重量%としたα-Ni(OH)2 活物質を適用した。それ以外は実施例1と同じとした。
【0056】
(比較例1)
実施例1において、ニッケル電極作製の過程で、酸化エルビウム{Er23}粉末を用いずに、Alの含有比率を5重量%としたα-Ni(OH)2 活物質粉末100重量部に導電助剤の前駆体である一酸化コバルト粉末10重量部を添加混合した。それ以外は実施例1と同じとした。
【0057】
(比較例2)
実施例1において、ニッケル電極に添加する希土類の化合物に、酸化エルビウムに替えて、酸化ユーロピウム{Eu23}粉末を適用した。それ以外は実施例1と同じとした。
【0058】
(比較例3)
実施例1において、活物質粉末として従来公知のAlを含有しないβ-Ni(OH)2を用い、酸化エルビウム{Er23}粉末を用いずに、活物質粉末100重量部に導電助剤の前駆体である一酸化コバルト粉末10重量部を添加混合した。それ以外は実施例1と同じとした。
【0059】
実施例および比較例の活物質粉末の物性値を表2に示す。
【表2】
【0060】
表2に示したように、本発明に係る実施例による活物質粉末は、タップ密度、比表面積ともに前記望ましい範囲(タップ密度1.5g/m2以上、比表面積6m2/g以上)を満足しており、充填密度が高く、活性の高い活物質粉末であることを示唆している。
【0061】
(充放電サイクル試験)
前記の開放型ニッケル水素蓄電池を、温度20℃において充放電サイクル試験に供した。電流100mA{正極の容量を1000mAhとすると0.1It(A)に相当}の定電流で実容量の150%充電し、電流200mA{正極の容量を1000mAhとすると0.2It(A)に相当}の定電流で放電した。正極の電位が参照極(Hg/HgO電極)に対して0Vになった時点を放電終止とした。該充放電を1サイクルとし、充放電を繰り返し実施して放電容量の推移をしらべた。前記実容量は、実施例、比較例の予備の電池を容易し、電流100mA{正極の容量を1000mAhとすると0.1It(A)に相当}の定電流で15時間充電、電流200mA{正極の容量を1000mAhとすると0.2It(A)に相当}の定電流で正極の電位が参照極(Hg/HgO電極)に対して0Vになるまで放電し、該充放電を1サイクルとして繰り返し充放電操作を行い、容量が安定した時の放電容量もって実容量とした。放電容量の推移を図2に示す。
【0062】
次いで、前記条件にて充放電サイクルを10サイクル繰り返し実施して、各々の電池の放電容量が安定したことを確認した。該安定した時点での放電容量(実容量に等しい)の前記活物質充填量から算定される値(1000mAh)に対する比率{実容量(mAh)/1000(mAh)×100(%)}をもって利用率とし、放電容量の大きさを比較した。該結果を表3に示す。
【0063】
【表3】
【0064】
図2に示すように。本発明に係る実施例電池の放電容量の立ち上がりが急である。このことは実施例電池において化成が急速に進むことを示している。比較例電池2に用いたニッケル電極は、希土類の1種であるEuの酸化物を添加しているが、希土類元素の酸化物を添加してない比較例1と比べて、容量の立ち上がりに大差がない。また、実施例電池においてはβ-Ni(OH)2活物質を用いた比較例3に比べて放電容量において約20%上回る高い値を示している。
【0065】
表3にまとめて示すように、本発明に係るAl含有α-Ni(OH)2 活物質を用いた電池の方が、利用率が100%を超えており(実施例電池においてはニッケル電極の反応が多電子反応であることを示唆している)、高い放電容量を有している。特にAl含有比率が、4〜7%の場合高い放電容量が得られることが判る。
【0066】
(酸素過電圧の測定)
前記、図2に示した化成の進む速さはニッケル電極の酸素発生電位に関係していると考えられる。前記のように酸素発生電位とニッケル電極の充電電位の差が大きいと充電効率が向上するため化成が速く進む。前記試作電池を電流100mA{正極の容量を1000mAhとすると0.1It(A)に相当}の定電流で充電した。充電中のニッケル電極の酸化水銀電極(Hg/HgO)に対する電位を計測した。充電を行うと、Hg/HgO電極基準で約480mV付近にα-Ni(OH)2 の酸化に基づく電位のプラトーが観測され、さらに充電を継続するとやがてニッケル電極からの酸素発生に基づく電位のプラトーが計測される。先のプラトーの電位を酸化電位、後のプラトーの電位を酸素発生電位、その差を過電圧とした。結果を表4に示す。
【0067】
【表4】
【0068】
表4に示すように、本発明に係る希土類元素の酸化物を添加したニッケル電極の過電圧は、希土類元素の酸化物を添加してないニッケル電極の過電圧と比較して大きい値を示している。また、希土類の1種ではあるが、Euの酸化物を添加してもニッケル電極の酸素過電圧の増大に対する効果が小さいことが判る。
【0069】
図2および表4に示すように、Er、Tm、Yb、Luの何れの酸化物を添加した場合でも有効である。そして、前記のようにこれらの元素の化合物は、電池の内部において水酸化物およびまたはオキシ水酸化物として存在している。従って、ここでは省略するが、前記希土類元素の酸化物ではなく、水酸化物またはオキシ水酸化物をニッケル電極に添加しても同様の効果が得られる。また、前記4つの希土類元素の化合物は、各々が効果を有しており、これら4つの元素のうち2つ以上を含む酸化物、水酸化物、オキシ水酸化物を添加することも有効である。
【0070】
以上記述した如く、本発明によれば、従来化成の速さが遅かったα-Ni(OH)2 活物質を用いたアルカリ蓄電池において、ニッケル電極の酸素過電圧を高めることによって、化成の速さを高めることができる。また、同電池の充電受け入れ性を高めガス発生を抑制することによって充電時に電池の内圧が上昇するのを抑制することができる。
【発明の効果】
【0071】
本発明の請求項1によれば、高容量で初期活性化の速さを向上させたアルカリ蓄電池を提供することを可能にする。
【0072】
本発明の請求項によれば、アルミニウム(Al)を含有させることによって、容量の高いα形の水酸化ニッケル{α-Ni(OH)}を主体とするニッケル電極活物質の安定性を高めることができる。
【0073】
本発明の請求項3によれば、前記請求項1に係るアルカリ蓄電池用のニッケル電極を提供することができる。
【0074】
本発明の請求項4は、請求項3にかかるニッケル電極に適用する活物質を提供するものであって、希土類元素の分布が均一なニッケル電極を提供するのに有効である。。
【図面の簡単な説明】
【図1】本発明に係るニッケル電極活物質粉末のX線回折図である。
【図2】本発明電池および比較例電池の初期充放電サイクルにおける利用率の推移を示すグラフである
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nickel electrode for an alkaline storage battery, an alkaline storage battery, and an active material powder for a nickel electrode applied thereto.
[0002]
[Prior art and its problems]
The nickel electrode active material for alkaline storage batteries currently widely used is β-form Ni (OH)2It is. The active material is β-Ni (OH) during charging.2(The oxidation number of nickel is divalent) to β-form nickel oxyhydroxide β-NiOOH (nickel oxidation number is trivalent), and the original β-Ni (OH) is discharged in the discharge.2Reduced to The oxidation-reduction reaction during charging and discharging proceeds with a one-electron reaction (theoretical capacity 289 mAh / g).
[0003]
However, this β-NiOOH is partially oxidized to higher-order γ-NiOOH (the oxidation number of nickel exceeds 3) due to overcharge. According to the conventional technique, the γ-NiOOH produced as described above is inactive and does not contribute to the electromotive reaction. Therefore, when γ-NiOOH is produced, it causes a decrease in capacity or voltage. Γ-NiOOH is a water molecule or potassium ion (K+) And other metal cations are taken up and expanded between the layers of the crystal lattice. For this reason, volume expansion of the electrode occurs, resulting in poor contact between the active material and the substrate, and water molecules are taken up between the layers of the crystal lattice. As a result, water consumption occurs, causing a change in concentration and ubiquity of the electrolytic solution, resulting in deterioration of battery characteristics such as charge / discharge cycle performance. Therefore, the device which suppresses the production | generation of (gamma) -NiOOH has been made | formed.
[0004]
On the other hand, demands for higher battery capacity are increasing, and in order to achieve this, various attempts have been made to improve battery materials such as positive electrode, negative electrode, electrolyte, separator, and battery design. Yes. For example, various additives and conductive aids that reduce the thickness of the separator, increase the density of the electrode plate, and increase the utilization rate of the active material have been improved.
[0005]
As described above, despite various improvements in battery materials and designs, the battery capacity is almost reaching saturation, and it is not possible to expect a dramatic increase in battery capacity. . Therefore, in order to dramatically improve the battery capacity, it is important to increase the capacity of the positive electrode. If the higher-order oxide γ-NiOOH functions as an active material, the electromotive reaction becomes a reaction exceeding one electron (hereinafter referred to as a multi-electron reaction), so the capacity per unit weight of the active material. Will increase. Therefore, if γ-NiOOH can function as an active material, the capacity of the alkaline storage battery can be greatly improved. Under such circumstances, developing a technology in which the γ-NiOOH functions as an active material is the key to dramatically improving the battery capacity.
[0006]
As mentioned above, conventional β-Ni (OH)2Since the reaction from γ-NiOOH involves generation of an inactive substance as an active material, the capacity is reduced when charging and discharging are performed. In addition, since the interlayer of the crystal lattice of the active material spreads, the electrode undergoes volume expansion, causing problems such as poor contact with the substrate and the ubiquitous presence of the electrolyte.
[0007]
Therefore, α-Ni (OH) having a small difference in lattice constant from γ-NiOOH and having the same crystal structure2It has been proposed to use as an active material. Charging and discharging is α-Ni (OH)2When the reaction between the γ-NiOOH and the γ-NiOOH is utilized, the reaction is reversible, and the volume change during charge / discharge is small. There is no worry of causing ubiquity. As described above, since the reaction is a multi-electron reaction, the capacity of the nickel electrode can be dramatically improved.
[0008]
However, α-Ni (OH)2Is unstable in alkaline solution and is easily β-Ni (OH)2It has the property of changing. As a method for avoiding this change, there is a method in which a part of nickel is substituted with a trivalent cation (Al, Fe, Mn, etc.) so that an α-type crystal structure can be maintained, and an anion is fixed between layers of the crystal lattice. Proposed. In particular, several proposals have been made regarding an active material in which Mn is dissolved, such as JP-A-11-312519 and JP-A-11-329426.
[0009]
Moreover, since Al is trivalent and highly stable, J. Electrochem. Soc., 141 (11) 2956-2959 (1994), J. Electrochem. Soc., 146 (4) 1251-1255 (1999), As described in J. Power Sources, 89 40-45 (2000) and Japanese Patent Application Laid-Open No. 11-185746, α-Ni (OH) in which a part of nickel is substituted with Al.2Various researches have been made.
[0010]
However, it is necessary to add a large amount of Co compound or Ni powder to the positive electrode active material found in the above-mentioned literature, and the amount of nickel hydroxide in the nickel electrode is relatively high. Very few. Depending on the literature, there is an example in which the same amount of conductive assistant as the active material is added. For this reason, the desired increase in capacity cannot be expected. Further, α-Ni (OH) in which Al is dissolved2The active material has a drawback that initial activation is slow.
[0011]
In the case of an alkaline storage battery, activation (hereinafter referred to as chemical conversion) is achieved by repeatedly performing the charge / discharge operation several times to 10 times. α-Ni (OH)2One of the causes of slow formation in a battery using a nickel electrode with an active material is α-Ni (OH)2This is because the oxidation potential of oxygen and the oxygen generation potential are close to each other, water is decomposed simultaneously with the charging of the nickel electrode in the charging process, and oxygen is generated from the nickel electrode. When oxygen is generated, the charging efficiency is lowered accordingly, and the nickel electrode is not charged. Therefore, a lot of time is required for chemical conversion, and electricity is wasted.
[0012]
JP-A-11-273716 discloses α-Ni (OH).2It has been proposed to suppress the generation of oxygen gas from the nickel electrode during charging by solid solution of manganese (Mn). However, even if it has this proposal, the effect is not enough, and the further improvement is calculated | required.
[0013]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described problems of the prior art, and α-Ni (OH) that can dramatically improve the capacity of an alkaline storage battery.2In the alkaline storage battery to which the active material for nickel electrode is applied, the disadvantage that the charge acceptance is inferior is solved, and the battery can be rapidly charged and at the same time the initial activation speed can be increased.
[0014]
[Means for Solving the Problems]
The present invention uses an α-type nickel hydroxide {α-Ni (OH) as an active material as a positive electrode.2}, In addition to an active material mainly composed of erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), a hydroxide containing at least one element and / or an oxyhydroxide, Α-type nickel hydroxide {α-Ni (OH)2} Contains aluminum (Al) in a solid solution state, and the aluminum content of the active material(= Al amount determined by atomic absorption / precipitation of precipitate obtained by dropping ammonia aqueous solution and sodium hydroxide aqueous solution in aqueous solution in which aluminum sulfate and nickel sulfate are dissolved, filtered, washed and dried α-Ni (OH ) 2 Active material powder)An alkaline storage battery is constituted by using a nickel electrode having a content of 4 wt% or more and 10 wt% or less.
[0015]
The present invention provides a nickel electrode used for the positive electrode of the alkaline storage battery according to the present invention, wherein the α-type nickel hydroxide {α-Ni (OH)2}, And an oxide containing at least one element selected from erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu) in the nickel electrode, hydroxide Contains at least one of the product or oxyhydroxideShiΑ-type nickel hydroxide {α-Ni (OH)2} Contains aluminum (Al) in a solid solution stateShiAnd the aluminum content ratio of the active material(= Al amount determined by atomic absorption / precipitation of precipitate obtained by dropping ammonia aqueous solution and sodium hydroxide aqueous solution in aqueous solution in which aluminum sulfate and nickel sulfate are dissolved, filtered, washed and dried α-Ni (OH ) 2 Active material powder)Is 4 wt% or more and 10 wt% or less.
[0016]
The present invention provides an active material powder applied to the nickel electrode according to the present invention, wherein the α-form nickel hydroxide {α-Ni (OH)2}, An oxide, hydroxide or oxy water containing at least one element selected from erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu) Contains at least one of oxides (hereinafter these compounds are collectively referred to as rare earth element compounds)ShiΑ-type nickel hydroxide {α-Ni (OH)2} Contains aluminum (Al) in a solid solution stateShiAnd the aluminum content ratio of the active material(= Al amount determined by atomic absorption / precipitation of precipitate obtained by dropping ammonia aqueous solution and sodium hydroxide aqueous solution in aqueous solution in which aluminum sulfate and nickel sulfate are dissolved, filtered, washed and dried α-Ni (OH ) 2 Active material powder)4 wt% or more and 10 wt% or less.
[0017]
Α-Ni (OH) here2For the active material mainly composed of α-Ni (OH)2Other α-Ni (OH)2In addition, a material in which a different element such as Al, Co, Mn, and Fe is contained in a solid solution or a eutectic state can be applied. The solid solution state or eutectic state here means a state in which a diffraction peak peculiar to a simple substance or compound of different elements such as Al and Co added when taking an X-ray diffraction diagram of the active material is not observed. .
[0018]
In the nickel electrode according to the present invention and the active material powder applied to the nickel electrode, the α-Ni (OH)2The total content of the elements selected from the four types of erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu) with respect to the active material mainly composed of 0.5 to 5% by weight It is desirable to do.
[0019]
The rare earth element compound has a function of increasing the oxygen overvoltage of the nickel electrode and suppressing the generation of oxygen gas from the nickel electrode during charging. When the content ratio of the rare earth element is less than 0.5% by weight, the effect of suppressing the generation of the oxygen gas is small. Further, the effect reaches saturation when the content ratio of the rare earth element is up to 5% by weight, and further improvement cannot be expected even if the content ratio is increased further.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
The alkaline storage battery according to the present invention comprises α-type nickel hydroxide {α-Ni (OH)2} And an active material mainly composed of erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu), a hydroxide containing at least one element and nickel containing oxyhydroxide It is an alkaline storage battery provided with an electrode as a positive electrode.
[0021]
In the nickel electrode used for the alkaline storage battery according to the present invention, α-type nickel hydroxide {α-Ni (OH)2}, And an oxide containing at least one element of Er, Tm, Yb, and Lu (when these four elements are collectively referred to as a rare earth element for convenience), At least one of hydroxide or oxyhydroxide is included. When the nickel electrode is incorporated into the battery as a positive electrode, the rare earth element oxide is finally changed into a hydroxide or oxyhydroxide in the battery, and the alkaline storage battery satisfying the configuration according to the present invention is obtained.
[0022]
(Simultaneous production of Er and Tm hydroxide and oxyhydroxide, part 1)
Commercially available erbium oxide (Er2OThree) Powder and thulium oxide (Tm2OThree) The powder was immersed in a 30% aqueous caustic soda solution and left at a temperature of 60 ° C. for 48 hours. The powder after standing was subjected to X-ray diffraction, and both Er and Tm hydroxides and oxyhydroxides were identified from the diffraction peaks.
(Production of oxyhydroxides of Yb and Lu, part 1)
Commercially available erbium oxide (Yb2OThree) Powder and thulium oxide (Lu)2OThree) The powder was immersed in a 30% aqueous caustic soda solution and left at a temperature of 60 ° C. for 48 hours. The powder after standing was subjected to X-ray diffraction, and Yb and Lu oxyhydroxides were identified from the diffraction peaks.
[0023]
(Simultaneous production of Er and Tm hydroxide and oxyhydroxide, part 2)
Conventional β-Ni (OH)2 Commercially available erbium oxide (Er2OThree) Powder and thulium oxide (Tm2OThree) Nickel electrodes were prepared by mixing and adding 5 parts by weight of each powder. An open cell was prepared using the nickel electrode as the positive electrode, the hydrogen storage alloy electrode as the negative electrode, and a 6.8M aqueous solution of caustic potash as the electrolyte, and charged and discharged under the normal charging and discharging conditions applied to nickel-metal hydride batteries. The operation was performed 3 times. The nickel electrode of the battery after the third charge and after the third discharge was collected and subjected to X-ray diffraction, and both the hydroxides and oxyhydroxides of the two elements were charged on both electrodes after charge and discharge. Was identified.
[0024]
(Production of oxyhydroxides of Yb and Lu, part 2)
Conventional β-Ni (OH)2 Of ytterbium oxide (Yb2OThree) Powder and lutetium oxide (Lu)2OThree) Nickel electrodes were prepared by mixing and adding 5 parts by weight of each powder. Using the nickel electrode as the positive electrode, the hydrogen storage alloy electrode as the negative electrode, and an electrolyte of 6.8M caustic potash aqueous solution, an open-type cell was prepared, and charge / discharge operation was performed under normal charge and discharge conditions applied to nickel metal hydride batteries. Was performed three times. The nickel electrode of the battery after completion of the third charge and after completion of the third discharge was collected and subjected to X-ray diffraction, and the oxyhydroxides of both elements were identified on both electrodes after charge and discharge.
[0025]
As described above, according to the analysis survey, when the oxides and hydroxides of the four kinds of rare earth elements are in the same conditions as in the alkaline storage battery (pH, potential), Er and Tm In this case, formation of hydroxides and oxyhydroxides of Er and Tm was confirmed. On the other hand, in the case of Yb and Lu, formation of oxyhydroxide of the element was confirmed. This is because the rare earth element compound added to the nickel electrode becomes hydroxide and oxyhydroxide in the case of Er and Tm, and mainly oxyhydroxide in the case of Yb and Lu. This suggests that a compound as a component is produced. In the case of oxyhydroxide, the formula LnOOH · 2H2It was confirmed that it exists as a hydrate represented by O (Ln indicates Er, Tm, Yb, Lu).
[0026]
The method of incorporating the rare earth element compound in the nickel electrode is not particularly limited. A method of filling a porous substrate with a powder of the rare earth element compound synthesized in advance and mixing with the active material powder is applicable.
[0027]
An impregnation method can be applied as a method of containing a hydroxide or oxyhydroxide. The impregnation method is the α-Ni (OH)2After filling an active material powder mainly composed of foamed porous substrate such as nickel, the electrode is impregnated with an aqueous solution of the salt of the rare earth element, and the dried product is contacted with an aqueous caustic solution to form a hydroxide. Let After the hydroxide is formed, the hydroxide is converted into an oxyhydroxide by performing high-temperature aging treatment in a caustic aqueous solution as described later, or by performing chemical oxidation treatment using an oxidizing agent. be able to.
[0028]
The hydroxide containing the four kinds of rare earth elements can be obtained by a known method. Specifically, it can be obtained as a precipitate by adding an alkali such as caustic to an aqueous solution of the rare earth element salt (nitrate, sulfate, etc.). At this time, if an aqueous solution containing one kind of rare earth element salt is applied, a hydroxide containing one kind of rare earth element can be obtained. Further, if an aqueous solution containing a salt of two or more rare earth elements is applied, a hydroxide containing two or more rare earth elements can be obtained by coprecipitation.
[0029]
As the oxide containing the rare earth element, a commercially available product can be applied. Moreover, it is compoundable by a well-known method (For example, a hydroxide is ignited in the air.). By applying a salt or hydroxide containing two or more rare earth elements as a material for synthesizing the oxide, an oxide containing two or more rare earth elements can be obtained.
[0030]
The oxyhydroxide containing the rare earth element has the formula LnOOH · 2H2It is obtained as a hydrate represented by O (Ln indicates Er, Tm, Yb, Lu). The rare earth element oxyhydroxide is allowed to stand for several tens of hours at 60 ° C. in an aqueous alkali salt solution of high concentration such as a 30 to 40 wt% aqueous solution of caustic soda (aging). ) Can be obtained. It can also be obtained by dispersing a hydroxide in an aqueous caustic solution and oxidizing the dispersion by adding an oxidizing agent such as hypochlorite or persulfate. An oxyhydroxide is also produced by incorporating a nickel electrode containing a rare earth oxide or hydroxide into the battery as a positive electrode of an alkaline storage battery and charging the battery. By applying a hydroxide containing two or more kinds of rare earth elements to the material, an oxyhydroxide containing rare earth elements contained in the applied material can be obtained.
[0031]
As described above, the method of adding the rare earth element compound to the nickel electrode is not particularly limited. However, in order to exert the effect of the rare earth element compound, the rare earth element compound is contained in the nickel electrode. It is better to distribute it uniformly. In the case of an oxide, an oxide powder is synthesized in advance, and the powder is {α-Ni (OH)2} Is mixed with the active material powder mainly composed of. In this case, the smaller the particle size of the rare earth element oxide powder, the more uniform the mixing. Therefore, it is desirable that the average particle size of the oxide powder is 10 μm or less. After the added oxide is incorporated in the alkaline battery, it is once dissolved in the electrolytic solution and then re-deposited as a hydroxide on the surface of the active material powder or in the pores thereof.
[0032]
The active material powder for nickel electrodes containing the rare earth element compound according to the present invention is α-Ni (OH)2A rare earth element hydroxide, oxide or oxyhydroxide is supported on the nickel electrode active material powder particles mainly composed of. By applying the active material, there is an advantage that the rare earth element can be uniformly distributed in the nickel electrode. α-Ni (OH)2The powder is a powder having many pores. As in the case of the nickel electrode, α-Ni (OH) is obtained by impregnation.2Rare earth element hydroxides or oxyhydroxides can be supported in the pores of the powder or on the surface thereof.
[0033]
The nickel electrode active material according to the present invention is α-Ni (OH).2Is an active material. The target nickel electrode active material is α-Ni (OH)2Can be identified by the X-ray diffraction pattern of the synthesized active material. FIG. 1 shows α-Ni (OH) according to the present invention.2X-ray diffractogram (note that rare earth element compounds are not included). The active material contains 5% by weight of Al, but since no diffraction peak attributed to Al alone or a compound thereof is observed, Al is assumed to be present in a solid solution or a eutectic state in the active material. .
[0034]
Α-form nickel hydroxide {α-Ni (OH) according to the present invention2} Is preferably contained in a solid solution state. As mentioned above, α-Ni (OH)2When immersed in alkaline electrolyte, β-Ni (OH)2Will change. As mentioned above, α-Ni (OH)2In order to improve the stability of Mn, it has been proposed to add Mn, Fe, etc. in addition to Al. However, the effect when Al is added among these elements is remarkable.
[0035]
As mentioned above, α-Ni (OH)2Al contained therein is α-Ni (OH)2To improve the stability in the alkaline solution. When the Al content in the active material is 3% by weight or less, the stability of the active material in an alkaline solution is insufficient, and α-Ni (OH)2There is a possibility that the structure cannot be maintained. Α-Ni (OH)2The maximum value of the concentration in which Al is present in a solid solution or eutectic state is about 7% by weight. Therefore, even if the content ratio of Al is further increased, α-Ni (OH)2No significant effect is obtained with respect to the improvement of stability. Al does not contribute to the electromotive reaction. When the content ratio of Al exceeds 7% by weight, Ni (OH) which is an active material2Since the amount of this is relatively small, there is a disadvantage that the capacity is lowered. Therefore, it is desirable that the content ratio of Al is 3 to 7% by weight.
[0036]
α-form nickel hydroxide {α-Ni (OH)2} Is synthesized by a known method described in the above-mentioned known literature. The active material is in the form of a powder, and the average particle size is desirably 5 to 25 μm. Moreover, it is preferable that the nickel electrode active material for alkaline storage batteries suitable for the present invention has a tap density of 1.5 g / ml or more. The specific surface area is 6m2/ G or more, and the volume of pores having a radius of 4 nm or more is preferably a high-density spherical powder in which the proportion of the total pore volume is 40% or less. When the tap density is less than 1.5 g / ml or the ratio of the volume of pores having a radius of 4 nm or more to the total pore volume exceeds 40%, the active material filling density is low. The specific surface area is 6m2Those having a weight less than / g have a drawback of low activity as an active material.
[0037]
The nickel electrode for alkaline storage batteries according to the present invention includes a current collector and the nickel electrode active material according to the present invention filled and arranged in the current collector. The current collector used for the nickel electrode is not particularly limited as long as it can be used in the nickel electrode for alkaline storage batteries. For example, a foamed nickel plate, a sintered body of fibrous nickel, or a perforated steel plate plated with nickel can be used.
[0038]
A hydrogen storage alloy electrode, a cadmium electrode, a zinc electrode, or the like can be used for the negative electrode of the alkaline storage battery according to the present invention. For example, as a hydrogen storage electrode, CaCuFiveMmNi with mold structure3.55Co0.75Mn0.4Al0.3An alloy having a composition can be used, where Mm means a mixture of rare earth elements such as misch metal [lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd)]. In addition, this invention is not limited to use of such a hydrogen storage alloy electrode, Arbitrary negative electrodes can be used suitably. For example, “MmNiFiveA multi-element alloy in which a part of Ni in the alloy is replaced with an element such as Al, Mn, Co, Ti, Cu, Zn, or a TiNi-based or TiFe-based alloy can be applied.
[0039]
As a separator used by this invention, the nonwoven fabric which consists of a polypropylene (PP) fiber which provided hydrophilicity by carrying out acrylic acid graft polymerization can be used, for example. However, this invention is not limited to this, Arbitrary separators can be used suitably. For example, a polyolefin fiber containing polypropylene or a nonwoven fabric of polyamide fiber, or those obtained by adding a hydrophilic functional group such as a sulfone group to these fibers can be applied.
[0040]
The composition of the electrolytic solution is not particularly limited. In addition to a commonly used aqueous potassium hydroxide solution, sodium hydroxide and lithium hydroxide alone or an aqueous solution containing at least two of these three types can be applied.
[0041]
【Example】
Next, the present invention will be described in detail with reference to one embodiment. The embodiment is merely an example, and the present invention is not limited to the following embodiment, and various changes and modifications can be made within the scope of the matters specifying the invention described in the claims. It is.
[0042]
(Α-Ni (OH)2 Synthesis)
Α-Ni (OH), which is a nickel electrode active material, by the method described below2 Was synthesized. Aluminum sulfate {Al is used so that the content ratio of Al in the active material is 3, 4, 5, 7 and 10% by weight.2(SOFour)Three} And nickel sulfate {NiSOFour} Was adjusted to prepare an aqueous solution containing the two salts. Specifically, the amount of {Al shown in Table 12(SOFour)Three} And {NiSOFour}, 5 types of aqueous solutions of 2 liters (l) were prepared.
[0043]
[Table 1]
[0044]
While stirring each of the five types of solutions vigorously, an aqueous ammonia solution and an aqueous sodium hydroxide solution were simultaneously added dropwise to each solution. During this time, the temperature of the reaction bath was kept in the range of 40-50 ° C. Further, the dropping speed of the aqueous sodium hydroxide solution was adjusted to maintain the pH of the reaction bath in the range of 11 ± 0.1. After stopping dropping, mixing was continued for 12 hours. Thereafter, the precipitate was filtered, washed with water, and dried at 60 ° C. until a constant weight was obtained.
[0045]
The produced material was subjected to X-ray diffraction using Co Kα ray, and α-Ni (OH)2 It was confirmed that the powder was an active material powder containing as a main component. Moreover, the amount of Al was quantified by the atomic absorption method, and it confirmed that it was the said value. 2 g of the produced sample was collected and placed in a 10 ml glass graduated cylinder, and the graduated cylinder was dropped from a height of 10 cm onto a table laid with a rubber sheet having a thickness of 1 mm. After repeating this dropping operation 100 times, the tap density was calculated from the occupied volume of the sample. Further, the specific surface area of the sample was measured by the BET method.
[0046]
Example 1
(Preparation of nickel electrode plate)
Α-Ni (OH) having an average particle size of 10 μm with an Al content of 5 wt%2 98 parts by weight of active material powder and erbium oxide with an average particle size of 4 μm {Er2OThree} 10 parts by weight of cobalt monoxide powder, which is a precursor of the conductive additive, was added to and mixed with 2 parts by weight of the mixed powder. An aqueous solution containing carboxymethyl cellulose as a binder was added thereto to make a paste. This paste has a surface density of 450 g / m.2A predetermined amount was filled into a foamed nickel porous substrate having a porosity of about 95%. The nickel electrode having a predetermined thickness was prepared by pressing after drying. Assuming the capacity per gram of the active material is 289 mAh / g, the capacity of the nickel electrode determined from the active material filling amount of the electrode was 1000 mAh.
[0047]
(Preparation of negative electrode)
For the negative electrode, as a hydrogen storage alloy, CaCuFiveMm having a mold structure (La: 45%, Ce: 30%, Pr: 3%, Nd: 22%) Ni3.55Co0.75Mn0.4Al0.3An alloy having the following composition was used. A paste obtained by adding a thickener to this alloy powder was applied to a perforated steel sheet and dried. This was pressed and then cut to prepare a hydrogen storage alloy electrode (negative electrode). The active material filling capacity of the hydrogen storage alloy electrode was 850 mAh per electrode plate.
[0048]
(Preparation of test nickel-metal hydride batteries)
The positive electrode plate was wrapped with a separator made of an acrylic acid graft-polymerized polypropylene (PP) fiber nonwoven fabric, sandwiched between two negative electrode plates, and inserted into an open container. Further, an aqueous potassium hydroxide solution having a concentration of 6.8 M was injected as an electrolytic solution to obtain an open battery for testing.
[0049]
(Example 2)
In Example 1, instead of erbium oxide, a rare earth element compound added to the nickel electrode is replaced with thulium oxide {Tm2OThree} The powder was applied. Otherwise, it was the same as Example 1.
[0050]
(Example 3)
In Example 1, instead of erbium oxide, the ytterbium oxide {Yb2OThree} The powder was applied. Otherwise, it was the same as Example 1.
[0051]
Example 4
In Example 1, instead of erbium oxide, the compound of the rare earth element added to the nickel electrode is replaced with lutetium oxide {Lu2OThree} The powder was applied.
[0052]
(ComparisonExample 5)
  In Example 3, α-Ni (OH) in which the content ratio of Al is 5% by weight2 Instead of the active material, an α-Ni (OH) 2 active material having an Al content ratio of 3% by weight was applied. Otherwise, it was the same as Example 1.
[0053]
(Example 6)
In Example 3, α-Ni (OH) in which the content ratio of Al is 5% by weight2 Instead of the active material, α-Ni (OH) with an Al content of 4 wt%2 The active material was applied. Otherwise, it was the same as Example 1.
[0054]
(Example 7)
In Example 3, α-Ni (OH) in which the content ratio of Al is 5% by weight2 Instead of the active material, α-Ni (OH) with an Al content ratio of 7 wt%2 The active material was applied. Otherwise, it was the same as Example 1.
[0055]
(Example 8)
In Example 3, α-Ni (OH) in which the content ratio of Al is 5% by weight2 Instead of the active material, α-Ni (OH) with an Al content ratio of 10% by weight2 The active material was applied. Otherwise, it was the same as Example 1.
[0056]
(Comparative Example 1)
In Example 1, in the process of producing the nickel electrode, erbium oxide {Er2OThree} Α-Ni (OH) without using powder and Al content of 5% by weight2 To 100 parts by weight of the active material powder, 10 parts by weight of cobalt monoxide powder which is a precursor of the conductive additive was added and mixed. Otherwise, it was the same as Example 1.
[0057]
(Comparative Example 2)
In Example 1, instead of erbium oxide, a rare earth compound added to the nickel electrode is replaced by europium oxide {Eu2OThree} The powder was applied. Otherwise, it was the same as Example 1.
[0058]
(Comparative Example 3)
In Example 1, β-Ni (OH) which does not contain any conventionally known Al as the active material powder2Erbium oxide {Er2OThree} Without using the powder, 10 parts by weight of cobalt monoxide powder, which is a precursor of the conductive additive, was added to and mixed with 100 parts by weight of the active material powder. Otherwise, it was the same as Example 1.
[0059]
  Table 2 shows the physical property values of the active material powders of Examples and Comparative Examples.
[Table 2]
[0060]
As shown in Table 2, the active material powder according to the example of the present invention has the tap density and the specific surface area in the desired range (tap density 1.5 g / m 2).2Above, specific surface area 6m2/ G or more), suggesting that the active material powder has a high packing density and high activity.
[0061]
(Charge / discharge cycle test)
The open nickel-metal hydride storage battery was subjected to a charge / discharge cycle test at a temperature of 20 ° C. A current of 100 mA {corresponding to 0.1 It (A) when the capacity of the positive electrode is 1000 mAh} is charged at 150% of the actual capacity at a constant current of 200 mA {corresponding to 0.2 It (A) when the capacity of the positive electrode is 1000 mAh} The battery was discharged at a constant current. When the potential of the positive electrode became 0 V with respect to the reference electrode (Hg / HgO electrode), the discharge was terminated. The charging / discharging was made into 1 cycle, charging / discharging was implemented repeatedly and the transition of discharge capacity was investigated. The actual capacity is easy for the spare batteries of Examples and Comparative Examples, and is charged for 15 hours with a constant current of 100 mA (corresponding to 0.1 It (A) if the capacity of the positive electrode is 1000 mAh), and the current is 200 mA {positive electrode When the capacity is 1000 mAh, it corresponds to 0.2 It (A)} and is discharged until the potential of the positive electrode becomes 0 V with respect to the reference electrode (Hg / HgO electrode), and charging and discharging is repeated as one cycle. The actual capacity was obtained with the discharge capacity when the operation was performed and the capacity was stabilized. The transition of the discharge capacity is shown in FIG.
[0062]
Next, the charge / discharge cycle was repeated 10 times under the above conditions, and it was confirmed that the discharge capacity of each battery was stable. Utilization rate with the ratio {actual capacity (mAh) / 1000 (mAh) × 100 (%)} of the discharge capacity (equal to the actual capacity) at the stable time point to the value (1000 mAh) calculated from the active material filling amount And the magnitudes of the discharge capacities were compared. The results are shown in Table 3.
[0063]
[Table 3]
[0064]
As shown in FIG. The rise of the discharge capacity of the example battery according to the present invention is abrupt. This indicates that the chemical conversion proceeds rapidly in the example battery. The nickel electrode used in Comparative Example Battery 2 is added with an oxide of Eu, which is a kind of rare earth, but has a large difference in the rise in capacity compared with Comparative Example 1 in which no rare earth element oxide is added. There is no. Further, in the example battery, β-Ni (OH)2Compared to Comparative Example 3 using an active material, the discharge capacity is higher by about 20%.
[0065]
As summarized in Table 3, Al-containing α-Ni (OH) according to the present invention2 The battery using the active material has a utilization rate exceeding 100% (in the example battery, suggesting that the reaction of the nickel electrode is a multi-electron reaction), and has a high discharge capacity. Yes. It can be seen that a high discharge capacity can be obtained particularly when the Al content ratio is 4 to 7%.
[0066]
(Measurement of oxygen overvoltage)
The speed of the chemical conversion shown in FIG. 2 is considered to be related to the oxygen generation potential of the nickel electrode. As described above, if the difference between the oxygen generation potential and the charging potential of the nickel electrode is large, the charging efficiency is improved, so that the formation proceeds rapidly. The prototype battery was charged with a constant current of 100 mA (equivalent to 0.1 It (A) when the capacity of the positive electrode was 1000 mAh). The potential of the nickel electrode during charging with respect to the mercury oxide electrode (Hg / HgO) was measured. When charged, α-Ni (OH) is about 480 mV near the Hg / HgO electrode.2 A plateau of potential based on the oxidation of oxygen is observed, and when the charging is continued, the plateau of potential based on the generation of oxygen from the nickel electrode is measured. The potential of the previous plateau was the oxidation potential, the potential of the subsequent plateau was the oxygen generation potential, and the difference was the overvoltage. The results are shown in Table 4.
[0067]
[Table 4]
[0068]
As shown in Table 4, the overvoltage of the nickel electrode added with the rare earth element oxide according to the present invention is larger than the overvoltage of the nickel electrode not added with the rare earth element oxide. In addition, although it is a kind of rare earth, it can be seen that the effect of the nickel electrode on the increase in oxygen overvoltage is small even when Eu oxide is added.
[0069]
As shown in FIG. 2 and Table 4, it is effective when any oxide of Er, Tm, Yb, and Lu is added. As described above, the compounds of these elements exist as hydroxides and / or oxyhydroxides in the battery. Accordingly, although omitted here, the same effect can be obtained by adding hydroxide or oxyhydroxide to the nickel electrode instead of the rare earth element oxide. Further, each of the four rare earth element compounds has an effect, and it is also effective to add an oxide, hydroxide, or oxyhydroxide containing two or more of these four elements. .
[0070]
As described above, according to the present invention, α-Ni (OH), which has been slow in chemical conversion, has been conventionally performed.2 In an alkaline storage battery using an active material, the rate of chemical conversion can be increased by increasing the oxygen overvoltage of the nickel electrode. Moreover, it is possible to suppress an increase in the internal pressure of the battery during charging by increasing the charge acceptability of the battery and suppressing gas generation.
【The invention's effect】
[0071]
According to the first aspect of the present invention, it is possible to provide an alkaline storage battery having a high capacity and an improved initial activation speed.
[0072]
  Claims of the invention1According to the present invention, by containing aluminum (Al), high capacity α-type nickel hydroxide {α-Ni (OH)2} As a main component, the stability of the nickel electrode active material can be improved.
[0073]
According to claim 3 of the present invention, a nickel electrode for an alkaline storage battery according to claim 1 can be provided.
[0074]
A fourth aspect of the present invention provides an active material applied to the nickel electrode according to the third aspect, and is effective in providing a nickel electrode having a uniform distribution of rare earth elements. .
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction pattern of a nickel electrode active material powder according to the present invention.
FIG. 2 is a graph showing the transition of the utilization rate in the initial charge / discharge cycle of the battery of the present invention and the comparative example battery.

Claims (4)

α形の水酸化ニッケル{α-Ni(OH)}を主体とする活物質と、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)およびルテチウム(Lu)のうち少なくとも1種の元素を含む水酸化物およびまたはオキシ水酸化物を含有するニッケル電極を備えたアルカリ蓄電池であって、
前記α形の水酸化ニッケル{α-Ni(OH)}はアルミニウム(Al)を固溶状態で含有しかつ前記活物質のアルミニウムの含有比率(=原子吸光法で定量したAl量/硫酸アルミニウムと硫酸ニッケルを溶解させた水溶液中においてアンモニア水溶液と水酸化ナトリウム水溶液を滴下することにより得た沈殿物をろ過、水洗、乾燥したα-Ni(OH) 活物質粉末)が4重量%以上10重量%以下であることを特徴とするアルカリ蓄電池。
an active material mainly composed of α-type nickel hydroxide {α-Ni (OH) 2 } and at least one element selected from erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu) An alkaline storage battery comprising a nickel electrode containing a hydroxide and / or an oxyhydroxide,
The α-form nickel hydroxide {α-Ni (OH) 2 } contains aluminum (Al) in a solid solution state, and the content ratio of aluminum in the active material (= Al content determined by atomic absorption method / aluminum sulfate) The precipitate obtained by dropping an aqueous ammonia solution and an aqueous sodium hydroxide solution in an aqueous solution in which nickel sulfate is dissolved is filtered, washed with water, and dried, and the α-Ni (OH) 2 active material powder) is 4 wt% or more 10 An alkaline storage battery characterized by being less than or equal to% by weight.
α形の水酸化ニッケル{α-Ni(OH)}を主体とする活物質と、ツリウム(Tm)およびルテチウム(Lu)のうち少なくとも1種の元素を含む水酸化物およびまたはオキシ水酸化物を含有するニッケル電極を備えたアルカリ蓄電池であって、
前記α形の水酸化ニッケル{α-Ni(OH)}はアルミニウム(Al)を固溶状態で含有しかつ前記活物質のアルミニウムの含有比率(=原子吸光法で定量したAl量/硫酸アルミニウムと硫酸ニッケルを溶解させた水溶液中においてアンモニア水溶液と水酸化ナトリウム水溶液を滴下することにより得た沈殿物をろ過、水洗、乾燥したα-Ni(OH) 活物質粉末)が4重量%以上10重量%以下であることを特徴とするアルカリ蓄電池。
Hydroxides and / or oxyhydroxides containing an active material mainly composed of α-form nickel hydroxide {α-Ni (OH) 2 } and at least one element of thulium (Tm) and lutetium (Lu) An alkaline storage battery equipped with a nickel electrode containing
The α-form nickel hydroxide {α-Ni (OH) 2 } contains aluminum (Al) in a solid solution state, and the content ratio of aluminum in the active material (= Al content determined by atomic absorption method / aluminum sulfate) The precipitate obtained by dropping an aqueous ammonia solution and an aqueous sodium hydroxide solution in an aqueous solution in which nickel sulfate is dissolved is filtered, washed with water, and dried, and the α-Ni (OH) 2 active material powder) is 4 wt% or more 10 An alkaline storage battery characterized by being less than or equal to% by weight.
α形の水酸化ニッケル{α-Ni(OH)}を主体とする活物質と、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)のうち少なくとも1種の元素を含む酸化物、水酸化物またはオキシ水酸化物のうち少なくとも1種を含有するアルカリ蓄電池用ニッケル電極であって、
前記α形の水酸化ニッケル{α-Ni(OH)}がアルミニウム(Al)を固溶状態で含有しかつ前記活物質のアルミニウムの含有比率(=原子吸光法で定量したAl量/硫酸アルミニウムと硫酸ニッケルを溶解させた水溶液中においてアンモニア水溶液と水酸化ナトリウム水溶液を滴下することにより得た沈殿物をろ過、水洗、乾燥したα-Ni(OH) 活物質粉末)が4重量%以上10重量%以下であることを特徴とするアルカリ蓄電池用ニッケル電極。
An active material mainly composed of α-type nickel hydroxide {α-Ni (OH) 2 } and at least one element of erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu) A nickel electrode for an alkaline storage battery containing at least one of an oxide, a hydroxide or an oxyhydroxide,
The α-form nickel hydroxide {α-Ni (OH) 2 } contains aluminum (Al) in a solid solution state, and the aluminum content of the active material (= Al content determined by atomic absorption method / aluminum sulfate) The precipitate obtained by dropping an aqueous ammonia solution and an aqueous sodium hydroxide solution in an aqueous solution in which nickel sulfate is dissolved is filtered, washed with water, and dried, and the α-Ni (OH) 2 active material powder) is 4 wt% or more 10 Nickel electrode for alkaline storage battery, characterized by being no more than wt%.
α形の水酸化ニッケル{α-Ni(OH)}を主体とするアルカリ蓄電池のニッケル電極用活物質粉末であって、
該粉末にエルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)のうち少なくとも1種の元素を含む酸化物、水酸化物またはオキシ水酸化物のうち少なくとも1種を含有すること
および前記α形の水酸化ニッケル{α-Ni(OH)}がアルミニウム(Al)を固溶状態で含有しかつ前記活物質のアルミニウムの含有比率(=原子吸光法で定量したAl量/硫酸アルミニウムと硫酸ニッケルを溶解させた水溶液中においてアンモニア水溶液と水酸化ナトリウム水溶液を滴下することにより得た沈殿物をろ過、水洗、乾燥したα-Ni(OH) 活物質粉末)が4重量%以上10重量%以下であることを特徴とするアルカリ蓄電池のニッケル電極用活物質粉末。
An active material powder for a nickel electrode of an alkaline storage battery mainly composed of α-type nickel hydroxide {α-Ni (OH) 2 },
The powder contains at least one oxide, hydroxide or oxyhydroxide containing at least one element selected from erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu). And the α-form nickel hydroxide {α-Ni (OH) 2 } contains aluminum (Al) in a solid solution state and the aluminum content ratio of the active material (= Al content determined by atomic absorption method / The precipitate obtained by dropping an aqueous ammonia solution and an aqueous sodium hydroxide solution in an aqueous solution in which aluminum sulfate and nickel sulfate are dissolved is filtered, washed with water, and dried by α-Ni (OH) 2 active material powder). An active material powder for a nickel electrode of an alkaline storage battery, characterized in that the content is 10% by weight or less.
JP2002048673A 2002-02-25 2002-02-25 Alkaline storage battery, nickel electrode for alkaline storage battery, active material powder for nickel electrode. Expired - Fee Related JP4908716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002048673A JP4908716B2 (en) 2002-02-25 2002-02-25 Alkaline storage battery, nickel electrode for alkaline storage battery, active material powder for nickel electrode.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002048673A JP4908716B2 (en) 2002-02-25 2002-02-25 Alkaline storage battery, nickel electrode for alkaline storage battery, active material powder for nickel electrode.

Publications (2)

Publication Number Publication Date
JP2003249214A JP2003249214A (en) 2003-09-05
JP4908716B2 true JP4908716B2 (en) 2012-04-04

Family

ID=28661407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002048673A Expired - Fee Related JP4908716B2 (en) 2002-02-25 2002-02-25 Alkaline storage battery, nickel electrode for alkaline storage battery, active material powder for nickel electrode.

Country Status (1)

Country Link
JP (1) JP4908716B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5339346B2 (en) * 2008-11-04 2013-11-13 国立大学法人神戸大学 Method for producing aluminum-substituted α-type nickel hydroxide
US9716271B2 (en) 2014-03-12 2017-07-25 Gs Yuasa International Ltd. Nickel hydroxide for alkaline secondary battery and alkaline secondary battery
CN107925076B (en) 2015-11-06 2021-12-28 丰田自动车株式会社 Positive electrode active material and alkaline battery
WO2021166662A1 (en) * 2020-02-21 2021-08-26 Fdk株式会社 Nickel electrode for alkaline secondary cell and alkaline secondary cell including this nickel electrode

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3358702B2 (en) * 1996-10-17 2002-12-24 株式会社ユアサコーポレーション Nickel electrode for alkaline storage battery
JP3631016B2 (en) * 1998-10-29 2005-03-23 三洋電機株式会社 Sealed alkaline storage battery
JP2001256973A (en) * 2000-03-09 2001-09-21 Matsushita Electric Ind Co Ltd Paste type nickel cathode for alkaline storage battery and sealed type alkaline storage battery
JP4474722B2 (en) * 2000-03-21 2010-06-09 パナソニック株式会社 Alkaline storage battery and positive electrode for alkaline storage battery used therefor

Also Published As

Publication number Publication date
JP2003249214A (en) 2003-09-05

Similar Documents

Publication Publication Date Title
EP0774793B1 (en) Alkaline storage battery and method for producing positive electrode thereof
EP1783848B1 (en) Positive electrode active material for alkaline storage battery, positive electrode for alkaline storage battery, alkaline storage battery, and method of manufacturing positive electrode active material for alkaline storage battery
US7635512B2 (en) Nickel electrode material, and production method therefor, and nickel electrode and alkaline battery
JPWO2006064979A1 (en) Nickel electrode for alkaline secondary battery, method for producing the same, and alkaline secondary battery
JP4578038B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JP2000021401A (en) Nickel hydroxide powder for alkaline battery and nickel hydroxide electrode using the same
JP4321997B2 (en) Positive electrode active material for alkaline storage battery, and positive electrode and alkaline storage battery using the same
JP4284711B2 (en) Cathode active material for alkaline storage battery
WO2001097305A1 (en) Anode active material for alkali storage battery, anode including the same, and alkali storage battery
JP4908716B2 (en) Alkaline storage battery, nickel electrode for alkaline storage battery, active material powder for nickel electrode.
JP4458725B2 (en) Alkaline storage battery
JP4320521B2 (en) Nickel electrode active material for alkaline storage battery, nickel electrode and alkaline storage battery.
JP4474722B2 (en) Alkaline storage battery and positive electrode for alkaline storage battery used therefor
JP4458713B2 (en) Alkaline storage battery
KR100404658B1 (en) Nickel-Metal Hydride Batteries and Manufacturing Method
JP4432285B2 (en) Nickel electrode active material for alkaline storage battery, nickel electrode for alkaline storage battery and alkaline storage battery
JP3433049B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH11219701A (en) Unsintered nickel electrode for sealed alkaline storage battery and battery
JP2001043855A (en) Non-sintered nickel electrode for alkali storage battery
WO1999017388A1 (en) Nickel-hydrogen storage battery
JP3744642B2 (en) Nickel-metal hydride storage battery and method for manufacturing the same
JP3744317B2 (en) Nickel positive electrode for alkaline storage battery and alkaline storage battery using the same
JP7256350B2 (en) Hydrogen-absorbing alloy negative electrode for hydrogen-air secondary battery, and hydrogen-air secondary battery including this hydrogen-absorbing alloy negative electrode
JP3851022B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JP5309479B2 (en) Alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060404

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100202

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4908716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees