JPH10279938A - Production of regenerated soil - Google Patents

Production of regenerated soil

Info

Publication number
JPH10279938A
JPH10279938A JP10088595A JP8859598A JPH10279938A JP H10279938 A JPH10279938 A JP H10279938A JP 10088595 A JP10088595 A JP 10088595A JP 8859598 A JP8859598 A JP 8859598A JP H10279938 A JPH10279938 A JP H10279938A
Authority
JP
Japan
Prior art keywords
soil
mixer
water
powder
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10088595A
Other languages
Japanese (ja)
Inventor
Kenji Mori
賢治 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP10088595A priority Critical patent/JPH10279938A/en
Publication of JPH10279938A publication Critical patent/JPH10279938A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce recycling soil excellent in strength and water permeability in a manner to contribute to the environmental protection, without sun drying of the construction soil, by mixing the construction soil and a specific polymer powder, mixing the resultant granules with powdery lime in a specific mixer and aging the resulting mixture. SOLUTION: (A) The soil from the constitution site is mixed with (B) a carboxyl-bearing water-soluble polymer powder, for example, a (meth)acrylic acid (or its salt) and a (meth)acrylamide copolymer powder with a weight- average particle size of 0.05-0.4 mm in a mixer to form granules. To the granules, are added (C) a lime powder (for example, quick line with an average particle size of <=1 mm and they are mixed by means of a mixer, for example, of a drum type, a screw type, a wavy oscillation conveyer type or a horizontal oscillation type and then aged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、建設発生土の利用方法
に関し、特に土木、建築工事等に伴って発生する建設発
生土(以下「残土」ということがある)を土質改良し、
資源として再利用を図るのに適した再生土を製造する方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for utilizing construction-generated soil, and more particularly, to improving soil quality of construction-generated soil (hereinafter sometimes referred to as "remaining soil") generated with civil engineering and construction work.
The present invention relates to a method for producing reclaimed soil suitable for reuse as a resource.

【0002】[0002]

【従来の技術】従来、建設発生土の殆どは、再利用でき
ず埋立て処分したり他の場所へ搬出・廃棄しており、近
年、環境への影響が問題になってきている。こうした背
景から建設発生土の再利用に関して、比較的含水比の低
い(含水比40%程度以下)粘性の余り高くない残土を
対象として、生石灰を用いた残土処理のプラントを稼働
させている従来例が知られている(特開昭54−121
086号等)。
2. Description of the Related Art Conventionally, most of soil generated from construction cannot be reused and is disposed of in landfills or transported to other places for disposal. In recent years, the impact on the environment has become a problem. Against this background, regarding the reuse of construction-generated soil, a conventional example of operating a plant for the treatment of residual soil using quicklime, targeting relatively low-viscosity residual soil having a relatively low water content (about 40% or less). (Japanese Patent Application Laid-Open No. 54-121)
No. 086).

【0003】しかしながら、この種のプラントの処理方
法では、含水比が40%を超えるような粘性の高い残土
については、生石灰等の土質安定材の添加割合を極端に
高くしたり、あらかじめ天日乾燥して含水比を低減しな
いと処理できない。また、通常の土質改良プラントでは
天日乾燥だけのために敷地を広く取れないので、現場で
発生した含水比の高い残土は天日乾燥せずにそのまま改
良する方が現実的である。しかし、含水比の高い残土は
粘着性が大であり、混合機などに土塊が付着し易いため
処理が困難であり、また、無理やり処理しても強度向上
が望めず、再生土の製品としての歩留りも悪い。一方、
生石灰の添加割合を極端に高くして処理すると、強度が
高くなりすぎて、再掘削が困難になるなどの問題があ
る。
[0003] However, in this type of plant treatment method, with respect to highly viscous residual soil having a water content of more than 40%, the ratio of addition of a soil stabilizing material such as quicklime or the like is extremely increased, or the soil is dried in advance. Therefore, treatment cannot be performed unless the water content is reduced. In addition, in a general soil improvement plant, the site cannot be widened due to solar drying alone, so it is more realistic to improve the residual soil generated at the site with a high moisture content without drying in the sun. However, the residual soil having a high water content has a large tackiness, and is difficult to treat because the soil mass easily adheres to a mixer or the like, and the strength cannot be expected to be improved even if it is forcibly treated. Yield is poor. on the other hand,
If the treatment is performed with the addition ratio of quick lime extremely high, there is a problem that the strength becomes too high and re-digging becomes difficult.

【0004】一方、我々は、先に特開平4−34568
5号、特開平6−170529号等において、建設発生
土をそのまま天日乾燥せずプラントでカルボキシル基含
有水溶性重合体粉末と石灰を添加して粒状にし、固化さ
せ砂のような流動性ある改良された再生土の製造方法を
提案している。この方法で得られた再生土は、道路の配
管埋め戻しなどの用途において、山砂より作業性が良好
であり、施工後の物性も優れている。
On the other hand, we have previously described Japanese Patent Application Laid-Open No. 4-34568.
No. 5, JP-A-6-170529, etc., the construction-generated soil is not dried in the sun, but a carboxyl group-containing water-soluble polymer powder and lime are added at a plant to make granules, which are solidified and have a fluidity like sand. An improved method for producing recycled soil is proposed. The reclaimed soil obtained by this method has better workability than mountain sand in applications such as backfilling of pipes on roads, and also has excellent physical properties after construction.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、建設発
生土の再利用率を高めるには、種々の用途に対応できる
再生土を調製できることが必要である。例えば、上記の
ような方法で得られた従来の再生土においては、一般に
水分の透水性が十分でないなどの問題があり更なる改良
が望まれていた。
However, in order to increase the recycling rate of construction soil, it is necessary to be able to prepare recycled soil that can be used for various purposes. For example, the conventional reclaimed soil obtained by the above-described method generally has a problem that the water permeability of water is not sufficient, and further improvement has been desired.

【0006】[0006]

【課題を解決するための手段】本発明者等は、再生土の
物性をさらに改良すべく鋭意検討した結果、建設発生土
への水溶性重合体、石灰の混合方法が、得られる再生土
の物性に非常に影響を与えていることを発見し、本発明
に到達した。即ち、本発明の要旨は、建設発生土とカル
ボキシル基含有水溶性重合体粉末とをて攪拌混合機で混
合して粒状物を得、該粒状物に石灰粉末を添加して、ド
ラム式混合機、スクリュ−式混合機、波形振動コンベア
式混合機、又は水平振動式混合機のいずれかを用いて混
合し、次いで養生することを特徴とする再生土の製造方
法に存する。
The present inventors have conducted intensive studies to further improve the physical properties of the reclaimed soil. As a result, a method of mixing the water-soluble polymer and lime into the construction-generated soil has been described. The inventors have found that they have greatly affected physical properties, and have reached the present invention. That is, the gist of the present invention is that a construction-generated soil and a carboxyl group-containing water-soluble polymer powder are mixed with a stirring mixer to obtain granules, and lime powder is added to the granules, and a drum-type mixer is used. , A screw-type mixer, a corrugated-vibration-conveyor-type mixer or a horizontal-vibration-type mixer, followed by curing, followed by curing.

【0007】以下、本発明を詳細に説明する。本発明に
おける建設発生土とは、具体的には、上下水道工事、道
路工事、宅地造成工事などの一般の土木・建設工事に伴
って発生する軟弱または粘着性の高い土である。本発明
において土質の改良が期待できる建設発生土は、土質に
よって含水比は異なるが、含水比が40〜200%、好
ましくは50〜150%程度のものであり、含水比が1
00%前後の関東ロームのような高含水比の土も含まれ
る。なお、含水比とは、110℃の炉乾燥によって失わ
れる土中水の質量の、土の炉乾燥質量に対する比を百分
率で表した値であり、JIS A1203(含水比試験
方法)によって測定される値である。
Hereinafter, the present invention will be described in detail. The construction-generated soil in the present invention is, specifically, soft or highly adhesive soil generated with general civil engineering and construction works such as water and sewage works, road works, and residential land development works. In the present invention, the construction soil that can be expected to improve soil quality has a water content ratio of about 40 to 200%, preferably about 50 to 150%, although the water content ratio varies depending on the soil quality.
It also includes high water content soils such as the Kanto loam of around 00%. In addition, the water content is a value in which the ratio of the mass of soil water lost by oven drying at 110 ° C. to the oven dry mass of soil is expressed as a percentage, and is measured according to JIS A1203 (moisture content test method). Value.

【0008】また、本発明による再生土とは、上記の建
設発生土を処理することにより、建設発生土の物性が改
良されたものであり、具体的には固化および造粒される
ため砂のような流動性が付与され、粘着性および水中で
の膨潤性が無くなり、地盤支持力が向上し埋め戻しなど
の用途において再利用可能としたものである。従って、
単に含水比の高い土を塊状固化し、流動性が失われた状
態にしたものではない。
[0008] The reclaimed soil according to the present invention is a reclaimed soil obtained by treating the above-mentioned reclaimed soil to improve the properties of the reclaimed soil. Specifically, the reclaimed soil is solidified and granulated. Such fluidity is imparted, the tackiness and the swelling property in water are lost, the ground support force is improved, and the material can be reused in applications such as backfilling. Therefore,
This does not mean that the soil having a high water content is simply solidified and lost its fluidity.

【0009】本発明で使用する水溶性重合体は、100
mlの水に通常0.5g以上溶解する重合体である。該
重合体は、親水基としてカルボキシル基を有するもので
あり、重合体を構成する全単量体単位のうちカルボキシ
ル基を有する単量体が、通常1〜80モル%、好ましく
は5〜60モル%含まれる。また、カルボキシル基は、
遊離酸または塩の形のどちらで存在してもよい。塩の種
類としては、例えばナトリウム、カリウムなどのアルカ
リ金属の塩、カルシウム、マグネシウムなどのアルカリ
土類金属の塩、アンモニウム塩、炭素数1〜18のアル
キルアミン、アルカノールアミンなどのアミン塩、およ
びこれら2種以上の混合物があるが、好ましくはアルカ
リ金属の塩である。
The water-soluble polymer used in the present invention is 100
It is a polymer that is usually dissolved in 0.5 g or more of water. The polymer has a carboxyl group as a hydrophilic group, and a monomer having a carboxyl group in all the monomer units constituting the polymer is usually 1 to 80 mol%, preferably 5 to 60 mol. %included. Also, the carboxyl group is
It may be present in either the free acid or salt form. Examples of the type of salt include salts of alkali metals such as sodium and potassium, salts of alkaline earth metals such as calcium and magnesium, ammonium salts, amine salts such as alkylamines having 1 to 18 carbon atoms, alkanolamines, and the like. There is a mixture of two or more, but preferably a salt of an alkali metal.

【0010】かかる水溶性重合体としては、(メタ)ア
クリル酸又はその塩と(メタ)アクリルアミドとの共重
合体、マレイン酸またはその塩と酢酸ビニルとの共重合
体、イタコン酸またはその塩と(メタ)アクリルアミド
との共重合体などの合成水溶性重合体、アラビアゴム、
カラヤガム、トラントガム、アルギン酸などの天然水溶
性重合体、及び、カルボキシメチルセルロース、カルボ
キシハイドロエチルセルロース、グアーガム変性物のよ
うな半合成水溶性重合体が例示される。
Examples of the water-soluble polymer include a copolymer of (meth) acrylic acid or a salt thereof and (meth) acrylamide, a copolymer of maleic acid or a salt thereof and vinyl acetate, an itaconic acid or a salt thereof. Synthetic water-soluble polymers such as copolymers with (meth) acrylamide, gum arabic,
Examples include natural water-soluble polymers such as karaya gum, tran gum, and alginic acid, and semi-synthetic water-soluble polymers such as carboxymethylcellulose, carboxyhydroethylcellulose, and modified guar gum.

【0011】以上のカルボキシル基含有水溶性重合体の
うち、好ましくは(メタ)アクリル酸またはその塩と
(メタ)アクリルアミドとの共重合体である。(メタ)
アクリル酸またはその塩を含有する(メタ)アクリルア
ミド系重合体としては、(メタ)アクリル酸またはその
塩と(メタ)アクリルアミドを共重合したもののほか、
(メタ)アクリルアミドの単独重合体を部分加水分解し
たものでもよい。
Among the above water-soluble polymers containing a carboxyl group, a copolymer of (meth) acrylic acid or a salt thereof and (meth) acrylamide is preferred. (Meta)
Examples of the (meth) acrylamide-based polymer containing acrylic acid or a salt thereof include those obtained by copolymerizing (meth) acrylic acid or a salt thereof and (meth) acrylamide,
(Meth) acrylamide homopolymer may be partially hydrolyzed.

【0012】更に、以上のカルボキシル基含有水溶性重
合体には、親水性基としてスルホン酸基を含む単量体、
例えばビニルスルホン酸、アリルスルホン酸、2−アク
リルアミド−2−メチルプロパンスルホン酸およびこれ
らの塩などを含めて共重合してもよい。また、水溶性を
阻害しない程度の量であればオレフィン、アクリル酸エ
ステル、ビニルエステルのような疎水性単量体を含んで
いてもよい。
Further, the above carboxyl group-containing water-soluble polymer includes a monomer containing a sulfonic acid group as a hydrophilic group,
For example, copolymerization may be carried out including vinylsulfonic acid, allylsulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid and salts thereof. Further, a hydrophobic monomer such as an olefin, an acrylate or a vinyl ester may be contained as long as the amount does not inhibit water solubility.

【0013】建設発生土と混合される水溶性重合体粉末
の平均粒径(重量平均)は、通常0.05〜0.4m
m、好ましくは0.1〜0.3mmのものを使用する。
かかる範囲内の粉末を得るためには、必要に応じて、篩
分、混合などが行なわれる。粒径が0.4mmを越える
場合は、改良効果の発現に時間がかかり、一方、粒径が
0.05mm未満では吸湿により粒子同士が付着し塊状
となりやすく、同様に改良効果の発現により時間がかか
るので好ましくない。
The average particle size (weight average) of the water-soluble polymer powder mixed with the construction soil is usually 0.05 to 0.4 m.
m, preferably 0.1 to 0.3 mm.
In order to obtain a powder within such a range, sieving, mixing, and the like are performed as necessary. When the particle size exceeds 0.4 mm, it takes time to develop the improvement effect. On the other hand, when the particle size is less than 0.05 mm, the particles tend to adhere to each other due to moisture absorption and become agglomerated. This is not preferred.

【0014】本発明で使用される石灰粉末は、処理後の
再生土を長期に渡って粒状に保持し得るものが望まし
く、そのためには水溶性重合体の添加混合により粒状化
した土の表面に付着しやすいものがよいので、平均粒径
1mm以下であり、できれば最大の粒径が1mm以下の
石灰粉末が好ましい。石灰粉末としては、生石灰、消石
灰、水硬性セメント、石灰系改良材、セメント系改良材
など特に制限はないが、プラントで使用するには脱水お
よび硬化反応の速い、生石灰系の粉末が特に好ましい。
The lime powder used in the present invention is desirably capable of holding the treated reclaimed soil in a granular form over a long period of time. For this purpose, the lime powder is applied to the surface of the soil granulated by adding and mixing a water-soluble polymer. It is preferable to use a lime powder having an average particle diameter of 1 mm or less, and preferably a maximum particle diameter of 1 mm or less, because it is easy to adhere. The lime powder is not particularly limited, such as quick lime, slaked lime, hydraulic cement, lime-based improving material, cement-based improving material, but quick lime-based powder that has a fast dehydration and hardening reaction for use in a plant is particularly preferable.

【0015】本発明では、土壌へのその他の添加物とし
て、細骨材、フライアッシュ、水硬性セメント、石膏、
高吸水性樹脂等を併用して、残土の改良効果を調整する
こともできる。
In the present invention, as other additives to the soil, fine aggregate, fly ash, hydraulic cement, gypsum,
The effect of improving the residual soil can be adjusted by using a highly water-absorbing resin or the like in combination.

【0016】以下、本発明の方法に図面を参照して説明
する。図1は、本発明の再生土製造設備の工程を図式的
に示した一例であるが、本発明は図1の方法に限定され
るものではない。原料の建設発生土10は、ホッパ20
に投入される。ホッパ20の上部には、格子材22を設
け、不適当な石等の大塊24は除去される。発生土10
を投入するバックホウのバケットを、格子付きの解砕可
能なバケット(ロータリーバケット)に代えることによ
り、格子材22は省略できる。発生土10はホッパ20
を経て、攪拌混合機30に、カルボキシル基含有水溶性
重合体粉末50と共に添加され、一定時間混合される。
この攪拌混合機としては、好適には2軸のパドルミキサ
ーが使用される。該混合については、好ましくは緩やか
な撹拌をしつつ、通常0.2〜5分程度行なうのが望ま
しい。かかる処理により、原料土が実質的に造粒される
ことになる。また、一定時間混合した後、撹拌を中止
し、熟成時間を置いてもよい。
Hereinafter, the method of the present invention will be described with reference to the drawings. FIG. 1 is an example schematically showing the steps of the recycled soil production equipment of the present invention, but the present invention is not limited to the method of FIG. The soil 10 generated from the construction of the raw material is
It is thrown into. A grid member 22 is provided on the upper part of the hopper 20, and large blocks 24 such as inappropriate stones are removed. Born soil 10
The grid material 22 can be omitted by replacing the bucket of the backhoe into which is supplied with a crushable bucket (rotary bucket) with a grid. The generated soil 10 is a hopper 20
After that, the mixture is added to the stirring mixer 30 together with the carboxyl group-containing water-soluble polymer powder 50 and mixed for a certain period of time.
Preferably, a twin-screw paddle mixer is used as the stirring mixer. The mixing is preferably performed for about 0.2 to 5 minutes, preferably with gentle stirring. By such treatment, the raw material soil is substantially granulated. After mixing for a certain period of time, stirring may be stopped and a ripening time may be allowed.

【0017】カルボキシル基含有水溶性重合体粉末の最
適な添加量は、建設発生土の含水比などの性質に応じて
異なるが、建設発生土に対して通常0.001〜1重量
%、好ましくは0.01〜0.5重量%である。
The optimum addition amount of the carboxyl group-containing water-soluble polymer powder varies depending on properties such as the water content of the construction soil, but is usually 0.001 to 1% by weight, preferably 0.001% by weight, based on the construction soil. It is 0.01 to 0.5% by weight.

【0018】上記の工程による原料土からの粒状物は、
粒径が通常0〜60mmの範囲のものであり、好ましく
は粒径が0〜6mmのものが50%以上のものである。
必要に応じて、篩分して粒子の粒径をそろえてもよい。
次に、該に粒状物に、石灰粉末60を添加し、ドラム式
混合機、スクリュ−式混合機、波形振動コンベア式混合
機、又は水平振動式混合機のいずれかの混合機40に導
入し、粒子を転動しながら石灰の粉を粒子表面に付着さ
せる。この結果、土の表面に水溶性重合体と石灰が被覆
され瞬時に反応固化し、該混合機40の出口より処理土
として回収される。
The particulate matter from the raw soil obtained by the above process is
The particle size is usually in the range of 0 to 60 mm, and preferably 0 to 6 mm is 50% or more.
If necessary, the particles may be sieved to make the particle size uniform.
Next, the lime powder 60 is added to the granules, and the mixture is introduced into any one of a mixer 40 of a drum type mixer, a screw type mixer, a corrugated vibration conveyor type mixer or a horizontal vibration type mixer. The lime powder adheres to the surface of the particles while rolling the particles. As a result, the surface of the soil is coated with the water-soluble polymer and lime, and is instantaneously reacted and solidified, and is recovered as treated soil from the outlet of the mixer 40.

【0019】該混合機としては、図2の40b〜40e
に例示したような装置が利用できる。40bはドラム式
混合機で、粒子を円筒内で回転させながら転動混合する
方法である。40cはスクリュ−式混合機で、粒子をス
クリュー面に転がしながら混合する。その他にも40d
の波形振動コンベア式混合機、40eの水平振動式混合
機などが例示される。これらの装置は、通常のインパク
トミキサー等の解砕混合機と比べ、いずれも構造が簡単
でエネルギー的にも有利で安価である。
As the mixer, 40b to 40e in FIG.
A device as exemplified in (1) can be used. Numeral 40b is a drum type mixer, which is a method of tumbling and mixing particles while rotating them in a cylinder. Reference numeral 40c denotes a screw type mixer, which mixes the particles while rolling them on the screw surface. In addition, 40d
And a horizontal vibration type mixer 40e. Each of these devices has a simple structure, is advantageous in terms of energy, and is inexpensive, as compared with a conventional disintegrating mixer such as an impact mixer.

【0020】従来、水溶性重合体で処理された土の粒状
物と石灰粉末の混合には、混合効率が最もよいと考えら
れる解砕混合機(インパクトミキサー)が汎用されてい
る。しかしながら、該混合機では粒状物と石灰の混合の
際に、粒子が潰されるため、この処理土を養生していく
と透水性が低下しやすいという問題があった。
Conventionally, a crusher-mixer (impact mixer), which is considered to have the best mixing efficiency, is widely used for mixing the lime powder and the soil particles treated with the water-soluble polymer. However, in this mixer, when mixing the particulate matter and the lime, the particles are crushed, so that there is a problem that as this treated soil is cured, the water permeability tends to decrease.

【0021】一方、本発明の転動混合機を用いて石灰粉
末の混合した場合は、処理土を養生した場合の透水性の
低下は見られない。解砕混合機でないと土の粒状物と石
灰の混合が完全にできず充分な強度を有する再生土を得
ることができないのではないかとの問題が懸念された
が、実際は、意外なことに転動混合機を用いた混合方法
では土の粒子が殆ど潰れることなく、土の粒子表面で水
溶性重合体と石灰が反応固化し、養生すれば粒子内部ま
での固化が進むのである。
On the other hand, when the lime powder is mixed using the tumbling mixer of the present invention, no decrease in water permeability when the treated soil is cured. There was a concern that if it were not a crusher-mixer, it would not be possible to completely mix the particulate matter and lime and to obtain a reclaimed soil having sufficient strength. In the mixing method using a dynamic mixer, the particles of the soil are hardly crushed, and the water-soluble polymer and the lime react and solidify on the surface of the soil particles.

【0022】石灰粉末の最適な添加量は、建設発生土の
性質に応じて異なり特に限定されないが、建設発生土に
対して、通常0.2〜20重量%、好ましくは0.5〜1
0重量%である。また、カルボキシル基含有水溶性重合
体粉末と石灰粉末の重量比は、通常1:1〜1:10
0、好ましくは1:2〜1:50であり、建設発生土の
含水比、必要とする再生土の強度などにより適宜、選択
できる。
The optimum amount of lime powder to be added depends on the nature of the construction soil and is not particularly limited, but is usually 0.2 to 20% by weight, preferably 0.5 to 1% by weight based on the construction soil.
0% by weight. The weight ratio between the carboxyl group-containing water-soluble polymer powder and the lime powder is usually 1: 1 to 1:10.
0, preferably 1: 2 to 1:50, and can be appropriately selected depending on the water content ratio of the soil generated from the construction, the required strength of the reclaimed soil, and the like.

【0023】上記の工程で生石灰が付着した処理土は、
必要により、更に篩分機70に掛けて、大きな粒子を8
2より篩分して粒子の粒径をそろえることができる。最
後に、粒子の強度を発現させるために養生を行い、再生
土80として使用に供される。養生とは、通常、常温下
で1〜7日、好ましくは3〜6日程度放置することで行
なう。その場合は、雨天の場合を考慮して好ましくは屋
根がある方が好ましいが、野積みでも特に支障はない。
The treated soil to which quicklime adheres in the above process is
If necessary, the mixture is further sieved through a sieve 70 to reduce large particles to 8
By sieving from No. 2, the particle size of the particles can be made uniform. Lastly, curing is performed to develop the strength of the particles, and the cured soil 80 is used. Curing is usually carried out by leaving at room temperature for 1 to 7 days, preferably about 3 to 6 days. In that case, it is preferable to have a roof in consideration of the case of rainy weather, but there is no particular problem even in the case of piled up.

【0024】[0024]

【参考例】以下の参考例は、本発明で使用するドラム式
混合機、スクリュ−式混合機、波形振動コンベア式混合
機、又は水平振動式混合機とは異なるが、転動混合機で
あって、粒子を上方から落下させながら混合するシュー
ト式混合機を使用した例である。以下の表−1に参考例
で使用した重合体の組成と還元粘度を示した。還元粘度
については、重合体を1N食塩水に0.1g/dlの濃度
に溶解し、25℃でオスワルド粘度計を用いて測定し
た。
Reference Example The following reference example is different from the drum type mixer, screw type mixer, corrugated vibration conveyor type mixer or horizontal vibration type mixer used in the present invention, but is a rolling mixer. This is an example in which a chute type mixer for mixing particles while dropping them from above is used. Table 1 below shows the compositions and reduced viscosities of the polymers used in Reference Examples. The reduced viscosity was measured by dissolving the polymer in 1N saline at a concentration of 0.1 g / dl and using an Oswald viscometer at 25 ° C.

【0025】[0025]

【表1】 [Table 1]

【0026】参考例1 含水比98%の関東ロームが主体の建設発生土を原料土
として、図1に示す再生土製造設備により再生土の製造
を行った。但し、建設発生土10を投入するバックホウ
のバケットを、格子付きの解砕可能なバケット(ロータ
リーバケット)に代えることにより、格子材22は省略
した。原料土を格子間隔が60mmのロータリーバケッ
トを付けたバックホウでホッパー20に投入し、パドル
ミキサー30で、水溶性重合体Aを被処理土に対して
0.1%添加し、60秒間混合し、粒状の処理土を得
た。次に、図2のシュート式混合機40aを用いて生石
灰粉末を被処理土に対して0.1%添加混合し、篩分機
により、粒径を6〜0mm、13〜6mm、60〜13
mmに分けた。得られた再生土の比率は、夫々81%,
4%,15%であった。常温で6日間養生して得た再生
土のうちの粒径6〜0mmのものについて、CBR値、
平均粒径及び透水係数についての物性試験を行った。結
果を表−2に示す。
REFERENCE EXAMPLE 1 Recycled soil was produced by using a reclaimed soil production facility shown in FIG. 1 using construction-generated soil mainly composed of Kanto loam having a water content of 98% as a raw material soil. However, the lattice material 22 was omitted by replacing the bucket of the backhoe into which the construction soil 10 was charged with a crushable bucket (rotary bucket) with a lattice. The raw soil is put into the hopper 20 with a backhoe equipped with a rotary bucket having a lattice spacing of 60 mm, and the paddle mixer 30 adds 0.1% of the water-soluble polymer A to the soil to be treated and mixes for 60 seconds. A granular treated soil was obtained. Next, 0.1% of quicklime powder was added to and mixed with the soil to be treated using the chute mixer 40a shown in FIG. 2, and the particle diameters were 6 to 0 mm, 13 to 6 mm, and 60 to 13 by a sieving machine.
mm. The ratio of the obtained reclaimed soil is 81%,
4% and 15%. The CBR value of the reclaimed soil obtained by curing at room temperature for 6 days and having a particle size of 6 to 0 mm,
A physical property test was conducted for the average particle size and the water permeability. Table 2 shows the results.

【0027】なお、CBR値はJIS A1211(C
BR試験方法)、透水係数はJISA1218(土の透
水試験方法)の方法に従ったCBR値は大きいほど再生
土の強度が高いことを示し、CBR値としては、通常1
0〜25%であることが好ましい。また、透水係数はそ
の値が大きい程、透水性がよいことを示している。
The CBR value is based on JIS A1211 (C
The BR test method) and the permeability coefficient indicate that the larger the CBR value according to the method of JIS A1218 (Soil permeability test method), the higher the strength of the reclaimed soil, and the CBR value is usually 1
Preferably it is 0 to 25%. The larger the value of the water permeability coefficient, the better the water permeability.

【0028】参考例2 重合体Aの代りに重合体Bを使う以外は参考例1と同様
に行ったところ、得られた再生土は、粒径6〜0mm、
13〜6mm、60〜13mmの比率が、夫々82%、
6%、12%であった。得られた再生土のうちの粒径6
〜0mmのものの物性を表−2に示した。
Reference Example 2 The procedure of Reference Example 1 was repeated, except that the polymer B was used instead of the polymer A. The resulting reclaimed soil had a particle size of 6 to 0 mm.
The ratio of 13 to 6 mm and 60 to 13 mm is 82%,
6% and 12%. Particle size 6 of the obtained reclaimed soil
Table 2 shows the physical properties of の も の 0 mm.

【0029】参考例3 重合体Aの代りに重合体Cを被処理土に対して0.2%
使う以外は参考例1と同様に行ったところ、得られた再
生土は、粒径6〜0mm、13〜6mm、60〜13m
mの比率が、夫々71%、9%、20%であった。得ら
れた再生土のうちの粒径6〜0mmのものの物性を表−
2に示した。
Reference Example 3 Polymer C was used instead of Polymer A in an amount of 0.2% based on the soil to be treated.
Except for using it, the same procedure as in Reference Example 1 was carried out, and the obtained reclaimed soil had particle sizes of 6 to 0 mm, 13 to 6 mm, and 60 to 13 m.
The ratio of m was 71%, 9%, and 20%, respectively. Table 1 shows the physical properties of the obtained reclaimed soil with a particle size of 6 to 0 mm.
2 is shown.

【0030】比較例1 重合体Aの代りに重合体Dを使う以外は、参考例1と同
様に製造を試みたが、粒状化が非常に悪く、パドルミキ
サーに付着し、詰まりを生じ、処理不能であった。 比較例2 水溶性重合体を使用しない以外は、参考例1と同様の条
件で製造を試みたが、パドルミキサーで完全に付着し、
処理不能であった。
Comparative Example 1 Production was attempted in the same manner as in Reference Example 1 except that polymer D was used in place of polymer A, but the granulation was very poor, and the particles adhered to a paddle mixer, clogged, and It was impossible. Comparative Example 2 Production was attempted under the same conditions as in Reference Example 1 except that the water-soluble polymer was not used, but completely adhered using a paddle mixer.
It could not be processed.

【0031】比較例3 参考例1のシュート式混合機40aの代りに、従来の石
灰処理プラントで使用されている型式のインパクトミキ
サー(解砕混合機)を使用する以外は同様に製造を行っ
た。篩いが目詰りするため、13mmの篩いを通すのが
限界であった。以上の処理直後の粒径は、13〜0m
m、60〜13mmの比率が、夫々73%、28%であ
ったが、何れも偏平状で潰れていた。また、処理直後の
粒度分布と、6日間養生後の粒度分布測定をしたとこ
ろ、処理直後の平均粒径が3.6mmで、0.2mm以下
のものは0%であったのに対して、養生後は平均粒径が
0.8mmで、0.2mm以下は21%、75μm以下の
ものが9%測定された。なお、前記の参考例1〜3にお
いては、処理土の平均粒径、養生後の途粒度分布の変化
は全くなかった。
Comparative Example 3 Production was carried out in the same manner except that the chute mixer 40a of Reference Example 1 was replaced with an impact mixer (crushing mixer) of the type used in a conventional lime treatment plant. . Since the sieve was clogged, it was limited to pass through a 13 mm sieve. The particle size immediately after the above treatment is 13 to 0 m
The ratios of m and 60 to 13 mm were 73% and 28%, respectively, but both were flat and crushed. Further, when the particle size distribution immediately after the treatment and the particle size distribution measurement after curing for 6 days were measured, the average particle size immediately after the treatment was 3.6 mm, and those having 0.2 mm or less were 0%, After curing, the average particle size was 0.8 mm, 21% was measured for 0.2 mm or less, and 9% was measured for 75 μm or less. In Reference Examples 1 to 3, there was no change in the average particle size of the treated soil or the particle size distribution after curing.

【0032】更に、養生後の再生土のうちの粒径13〜
0mmのものの物性を表−2に示した。表−2より、シ
ュート式混合機を用いて得られた再生土は、強度および
透水性に優れていることがわかる。一方比較例3のイン
パクトミキサーを使用した場合、インパクトミキサー
で、粒子が潰れたり、偏平状になり、表面の被覆が不均
一になるため養生中に崩れてしまうため、粒子が細かく
なり過ぎてCBRが低下し、特に透水性が悪化している
ものと考えられる。従って、このシュート式混合機に代
えてドラム式混合機、スクリュ−式混合機、波形振動コ
ンベア式混合機、又は水平振動式混合機を使用すれば、
比較例に対して本参考例と同様の効果が得られると考え
られる。
Further, the particle size of the regenerated soil after curing is 13 to
Table 2 shows the physical properties of the sample of 0 mm. Table 2 shows that the reclaimed soil obtained using the chute mixer has excellent strength and water permeability. On the other hand, when the impact mixer of Comparative Example 3 was used, the particles were crushed or flattened by the impact mixer, and the surface was unevenly coated, and collapsed during curing. Is considered to have decreased, and in particular, the water permeability has deteriorated. Therefore, if a drum type mixer, a screw type mixer, a corrugated vibration conveyor type mixer, or a horizontal vibration type mixer is used instead of the chute type mixer,
It is considered that the same effects as in the present reference example can be obtained with respect to the comparative example.

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【発明の効果】本発明によれば、建設発生土を天日乾燥
せずに造粒する方法で、強度に優れ、かつ、極めて透水
性の優れた再生土とすることができる。これまでの再生
土では、透水性が十分でなかったため、その用途が配管
埋め戻しの一部などに限定されていたが、本発明による
再生土は種々の用途に使用できるので、建設発生土の再
利用率を高め、環境破壊の防止に貢献するところが大き
い。
According to the present invention, a method of granulating construction soil without drying it in the sun can provide a regenerated soil having excellent strength and extremely excellent water permeability. In the conventional reclaimed soil, its use was limited to a part of pipe backfilling etc. because of insufficient permeability, but the reclaimed soil according to the present invention can be used for various purposes, so It greatly contributes to raising the recycling rate and preventing environmental destruction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を示す工程図である。FIG. 1 is a process chart showing the method of the present invention.

【図2】本発明で使用する混合機及びシュート式混合機
の概念図である。
FIG. 2 is a conceptual diagram of a mixer and a chute type mixer used in the present invention.

【符号の説明】 10 建設発生土 20 ホッパ 30 攪拌混合機 40 転動混合機 50 カルボキシル基含有水溶性重合体粉末 60 石灰粉末 70 篩分機 80 再生土 40a シュート式混合機 40b ドラム式混合機 40c スクリュ−式混合機 40d 波形振動コンベア式混合機 40e 水平振動式混合機[Description of Signs] 10 Construction generated soil 20 Hopper 30 Stirring mixer 40 Tumble mixer 50 Carboxyl group-containing water-soluble polymer powder 60 Lime powder 70 Sieving machine 80 Reclaimed soil 40a Chute mixer 40b Drum mixer 40c Screw -Type mixer 40d corrugated vibration conveyor type mixer 40e horizontal vibration type mixer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 建設発生土とカルボキシル基含有水溶性
重合体粉末とを攪拌混合機で混合して粒状物を得、該粒
状物に石灰粉末を添加して、ドラム式混合機、スクリュ
−式混合機、波形振動コンベア式混合機、又は水平振動
式混合機のいずれかを用いて混合し、次いで養生するこ
とを特徴とする再生土の製造方法。
1. A construction material soil and a carboxyl group-containing water-soluble polymer powder are mixed with a stirring mixer to obtain granules, and lime powder is added to the granules, and a drum mixer, a screw mixer A method for producing reclaimed soil, comprising mixing using any of a mixer, a corrugated conveyor mixer, and a horizontal mixer, and then curing.
JP10088595A 1998-04-01 1998-04-01 Production of regenerated soil Pending JPH10279938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10088595A JPH10279938A (en) 1998-04-01 1998-04-01 Production of regenerated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10088595A JPH10279938A (en) 1998-04-01 1998-04-01 Production of regenerated soil

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP06187429A Division JP3089952B2 (en) 1994-08-09 1994-08-09 Production method of recycled soil

Publications (1)

Publication Number Publication Date
JPH10279938A true JPH10279938A (en) 1998-10-20

Family

ID=13947193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10088595A Pending JPH10279938A (en) 1998-04-01 1998-04-01 Production of regenerated soil

Country Status (1)

Country Link
JP (1) JPH10279938A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000136383A (en) * 1998-11-04 2000-05-16 Nippon Shokubai Co Ltd Conditioner and conditioning method for water- containing soil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000136383A (en) * 1998-11-04 2000-05-16 Nippon Shokubai Co Ltd Conditioner and conditioning method for water- containing soil

Similar Documents

Publication Publication Date Title
JP3496851B2 (en) Residual soil solidifying agent and method for solidifying residual soil
JP2019137763A (en) Additive material for soil granulation
JP2013056980A (en) Sludge improver, method of producing the sludge improver, and method of stably solidifying sludge
JP4506184B2 (en) High water content mud treatment method, high water content mud treatment agent, and granulated treated soil production method from high water content mud soil
JP3089952B2 (en) Production method of recycled soil
JP3549129B2 (en) Residual soil improver and method for improving residual soil
JP2002326099A (en) Mud modification method
JPH10279938A (en) Production of regenerated soil
JP3243804B2 (en) Aqueous soil conditioner
JP3639049B2 (en) Method for producing stone powder granules
JP3402373B2 (en) How to improve hydrated soil
JP4034419B2 (en) Method for treating dehydrated cake for reuse as roadbed material
JP4092373B2 (en) Sludge treatment method
JP2001276599A (en) Method for treating fine powder and apparatus therefor
JP3992778B2 (en) Solidifying agent and solidifying method of hydrous soil
JPH05156251A (en) Improving agent for water-containing soil
JP3644134B2 (en) Treatment agent for hydrous stone powder
JP2897476B2 (en) Aqueous soil conditioner
JP3628661B2 (en) Method for producing porous granular material using inorganic waste as raw material
JPH0770563A (en) Conditioner for water-containing soil
JP2007245027A (en) Method of processing sun-dried water purification sludge
JP3966916B2 (en) Solidifying agent and solidifying method for refining hydrous soil
JP3402374B2 (en) How to improve soft soil
JP4126727B2 (en) Method for producing granular improved soil
JPH101670A (en) Production of granular improved soil

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080619

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090619

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100619

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100619

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110619

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees