JPH10266812A - Electric power control method of steam supply power generating gas turbine combined plant - Google Patents

Electric power control method of steam supply power generating gas turbine combined plant

Info

Publication number
JPH10266812A
JPH10266812A JP9090256A JP9025697A JPH10266812A JP H10266812 A JPH10266812 A JP H10266812A JP 9090256 A JP9090256 A JP 9090256A JP 9025697 A JP9025697 A JP 9025697A JP H10266812 A JPH10266812 A JP H10266812A
Authority
JP
Japan
Prior art keywords
steam
gas turbine
power
turbine
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9090256A
Other languages
Japanese (ja)
Inventor
Hiroshi Suefusa
博 末房
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9090256A priority Critical patent/JPH10266812A/en
Publication of JPH10266812A publication Critical patent/JPH10266812A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To absorb an electric power load variation on the combined power generation equipment side by performing gas turbine power generation by maximum output operation, and effectively controlling electric power on the steam turbine side. SOLUTION: In an electric power control method of this steam supply power generating gas turbine combined plant, power generation on the gas turbine 1 side is performed by constant output operation, and a power generation quantity is adjusted by a steam turbine generator 5, and the power generation quantity is adjusted according to a plant electric power load variation, and a low pressure boiler 15 is arranged to increase-decrease an extraction steam quantity 19 from a steam turbine 4 regardless of a plant steam sending quantity 17, and a fuel control valve 16 of this boiler 15 is adjusted, and a steam quantity of the boiler 15 is increased-decreased, and an extraction steam quantity of the extraction steam turbine 4 is increased-decreased so as to be almost in inverse proportion to this, and output of the steam turbine generator 5 is increased-decreased while keeping the plant steam sending quantity 17 constant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は熱併給ガスタ−ビン
コンバインドプラントに適用される電力制御方法に係
り、特に熱併給ガスタ−ビンコンバインドプラントで抽
気(蒸気)復水タ−ビンを具え、該タ−ビンの抽気は工
場その他のプロセスで利用するシステムにおける電力制
御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power control method applied to a cogeneration gas turbine combined plant, and more particularly to a cogeneration gas turbine combined plant having a bleed (steam) condensing turbine. -Bin bleed relates to a method of controlling power in systems used in factories and other processes.

【0002】[0002]

【従来の技術】従来よりガスタービンと、その排熱を利
用して生成される蒸気供給により運転される抽気蒸気タ
−ビン夫々に発電機を連結して電力供給を行なう熱併給
ガスタ−ビンコンバインドプラントは公知であり、その
概略構成を図3の系統図に基づいて説明するに、1はガ
スタ−ビンで、ガスタ−ビン発電機2を連結するととも
に、ガスタ−ビン燃料制御弁3の開弁制御により駆動制
御されながらガスタ−ビン発電機2を回転させ所定の発
電を行なう。そしてガスタ−ビン1より排出された排ガ
スは排ガスボイラ12に導入され、該排ガスボイラ12
内で加熱コイル13aと熱交換し、該加熱コイル13a
内の循環水及び蒸気を加熱する。加熱された蒸気は主蒸
気管13を通って主蒸気加減弁6を介して、蒸気タ−ビ
ン発電機5が連結された抽気復水蒸気タ−ビン4に供給
され、該抽気復水蒸気タ−ビン4の回転駆動により発電
機5が回転し発電を行なう。抽気復水蒸気タ−ビン4の
回転に使用された蒸気は復水器8で復水させた後、復水
ポンプ9を介して給水タンク10に導き、ボイラ給水ポ
ンプ11よりボイラ12の加熱コイル13aに導く。一
方抽気加減弁7通過後の抽気は工場送気管14、工場送
気流量計17、蒸気タ−ビン抽気流量計19を介して工
場に送られる。
2. Description of the Related Art Conventionally, a cogeneration gas turbine combined with a gas turbine and a bleed steam turbine which is operated by supplying steam generated by using exhaust heat thereof, is connected to a generator to supply electric power. The plant is known and its schematic configuration will be described with reference to the system diagram of FIG. 3. Reference numeral 1 denotes a gas turbine, which connects the gas turbine generator 2 and opens the gas turbine fuel control valve 3. The gas turbine generator 2 is rotated while the drive is controlled by the control to generate a predetermined power. The exhaust gas discharged from the gas turbine 1 is introduced into an exhaust gas boiler 12, and the exhaust gas boiler 12
Exchanges heat with the heating coil 13a within the heating coil 13a.
Heat the circulating water and steam inside. The heated steam is supplied through a main steam pipe 13 via a main steam control valve 6 to an extraction steam recovery turbine 4 to which a steam turbine generator 5 is connected. The generator 5 is rotated by the rotation drive of 4 to generate electric power. The steam used for the rotation of the bleed condensate steam turbine 4 is condensed by a condenser 8, then led to a water supply tank 10 via a condensate pump 9, and heated by a boiler water supply pump 11 to a heating coil 13 a of the boiler 12. Lead to. On the other hand, the bleed air after passing through the bleed control valve 7 is sent to the factory via a factory air pipe 14, a factory air flow meter 17, and a steam turbine bleed air flow meter 19.

【0003】従ってかかるコンバインドプラントの電力
制御はガスタ−ビン発電機2の出力(回転)増減にて行
われ、制御弁として燃料制御弁3を制御する。この時、
蒸気タ−ビン4は主蒸気加減弁6と抽気加減弁7で制御
され、主蒸気管13と工場送気管14の圧力を一定にす
る制御が行われている。
Accordingly, the power control of the combined plant is performed by increasing or decreasing the output (rotation) of the gas turbine generator 2, and controls the fuel control valve 3 as a control valve. At this time,
The steam turbine 4 is controlled by a main steam control valve 6 and a bleed control valve 7 to control the pressure of the main steam pipe 13 and the factory air pipe 14 to be constant.

【0004】[0004]

【発明が解決しようとする課題】前記説明より明らかな
ように、従来技術の熱併給ガスタ−ビンコンバインドプ
ラントでは発電量の制御はガスタ−ビン発電機2の出力
を増減する方法がとられている為、ガスタ−ビン1の運
転は常に(発電機の出力の増減が可能なように)出力に
余裕を持たせた運転しか出来ない。従って最大出力での
連続運転が困難であるガスタ−ビン発電は最大出力運転
が最も効率が良いが、前記のように出力に余裕を持たせ
た部分負荷運転になると効率が下がり経済的に成立しに
くくなる。而もガスタ−ビン1は頻繁に出力を変えると
寿命消費が早くなり好ましくない。
As is apparent from the above description, in the prior art cogeneration gas turbine combined plant, power generation is controlled by increasing or decreasing the output of the gas turbine generator 2. Therefore, the operation of the gas turbine 1 can always be performed only with an allowance for the output (so that the output of the generator can be increased or decreased). Therefore, gas turbine power generation, in which continuous operation at maximum output is difficult, is most efficient in maximum output operation.However, in partial load operation in which the output has a margin as described above, the efficiency decreases and the system is economically established. It becomes difficult. However, if the output of the gas turbine 1 is frequently changed, the life consumption is shortened, which is not preferable.

【0005】さて、通常の産業用コンバインド発電設備
は電力会社系統と連系されており契約電力内での工場電
力の運用を義務づけられているが、使用電力変動の大き
い工場においては、契約電力量を電力負荷変動を考慮し
て、負荷変動の最大値まで増やして契約し電力負荷変動
の吸収を電力会社の系統にまかせ、(前記したようにガ
スタ−ビン側の部分負荷運転や出力変動は好ましくない
ために)産業用コンバインド発電設備は工場負荷変動に
かかわらず発電量一定運転としている事が多い。この場
合、使用電力変動の大きい工場においては、契約電力量
を電力負荷変動を考慮して契約しているために、余分な
契約電力が必要となり不経済となる。
[0005] Normal industrial combined power generation facilities are interconnected with the power company system and are required to operate factory power within the contracted power. Considering the power load fluctuation, increase the contract to the maximum value of the load fluctuation and let the power company absorb the power load fluctuation. (As described above, the partial load operation and output fluctuation on the gas turbine side are preferable. In many cases, industrial combined power generation equipment is operated at a constant power generation regardless of factory load fluctuations. In this case, since the contract power amount is contracted in consideration of the power load fluctuation in the factory where the used power fluctuation is large, extra contract power is required, which is uneconomical.

【0006】本発明はかかる技術的課題に鑑み、ガスタ
−ビン側の部分負荷運転や出力変動を行なう事なくガス
タ−ビン発電は最大出力運転で行なうとともに、蒸気タ
ービン側で効果的に電力制御を行ない、これにより電力
負荷変動の吸収をコンバインド発電設備側で行なうよう
にした熱併給ガスタ−ビンコンバインドプラントの電力
制御方法を提供する事にある。
In view of such technical problems, the present invention performs gas turbine power generation at maximum output operation without partial load operation and output fluctuation on the gas turbine side, and effectively controls power on the steam turbine side. Accordingly, it is an object of the present invention to provide a power control method for a combined heat and gas combined turbine plant in which power load fluctuations are absorbed by a combined power generation facility.

【0007】[0007]

【課題を解決するための手段】本発明は第一発電機を駆
動するガスタ−ビンと、該ガスタ−ビンからの廃熱を利
用して生成された蒸気供給により運転される、第二発電
機を駆動する抽気蒸気タ−ビンと、該抽気蒸気タ−ビン
からの抽気を工場その他のプロセスへ供給する抽気ライ
ンとを具えた熱併給ガスタ−ビンコンバインドプラント
において、前記抽気ラインの途中に蒸気発生手段を設
け、該蒸気発生手段の蒸気発生量の制御量に対応させて
前記抽気蒸発タ−ビンの抽気量を増減し、これにより抽
気蒸発タ−ビンの出力を調節し第二発電機の電力を制御
することを特徴とするものである。
SUMMARY OF THE INVENTION The present invention provides a gas turbine for driving a first generator and a second generator operated by supplying steam generated by utilizing waste heat from the gas turbine. In a combined heat and gas combined turbine plant having a bleed steam turbine for driving a gas turbine and a bleed line for supplying bleed air from the bleed steam turbine to a factory or other process, steam is generated in the middle of the bleed line. Means for increasing or decreasing the amount of bleed air of the bleed evaporator turbine in accordance with the control amount of the amount of steam generated by the steam generator, thereby adjusting the output of the bleed evaporator turbine and controlling the power of the second generator. Is controlled.

【0008】即ちより具体的に説明するに、第一発電機
を駆動するガスタ−ビンと、該ガスタ−ビンからの廃ガ
スを利用して運転される廃熱ボイラと、該廃熱ボイラか
らの蒸気が供給され第二発電機を駆動する抽気蒸気タ−
ビンと、該抽気蒸気タ−ビンからの抽気蒸気を工場へ供
給する抽気ラインとを具えた熱併給ガスタ−ビンコンバ
インドプラントであって、前記抽気ラインの途中に蒸気
発生用のボイラを設け、該ボイラの燃料制御弁を調節す
ることによって、ボイラの蒸発量を増減するとともに、
これに略反比例するごとく抽気蒸発タ−ビンの抽気量を
増減させ、これにより抽気蒸発タ−ビンの出力を調節し
第二発電機の電力を制御することが出来るものである。
[0008] More specifically, the gas turbine driving the first generator, the waste heat boiler operated by using the waste gas from the gas turbine, and the waste heat boiler. Bleed steam turbine for supplying steam and driving the second generator
A combined heat and power gas turbine combined plant comprising a bin and an extraction line for supplying extracted steam from the extracted steam turbine to a factory, wherein a boiler for generating steam is provided in the middle of the extraction line. By adjusting the fuel control valve of the boiler, the amount of evaporation of the boiler is increased or decreased,
The amount of bleed air of the evacuated evaporating turbine is increased or decreased so as to be substantially inversely proportional thereto, whereby the output of the evacuated evaporating turbine can be adjusted to control the power of the second generator.

【0009】かかる発明によれば、図1に示すように、
ガスタ−ビン1側の発電を一定出力運転とし、かつ最高
効率点の最大出力運転可能とする。そして発電量の調整
は蒸気タ−ビン発電機5にて行ない工場電力負荷変動に
合せて発電量を調整する。即ち蒸気タ−ビン発電機5の
出力増減は蒸気タ−ビン4からの抽気量を抽気加減弁7
を加減して行う訳であるが、このように構成するとこれ
に対応して工場送気量が変動してしまう。
According to the invention, as shown in FIG.
The power generation on the gas turbine 1 side is set to a constant output operation, and the maximum output operation at the highest efficiency point is enabled. The amount of power generation is adjusted by the steam turbine generator 5, and the amount of power generation is adjusted in accordance with fluctuations in factory power load. That is, the output of the steam turbine generator 5 is increased or decreased by adjusting the amount of bleed air from the steam turbine 4 to a bleed control valve 7.
However, with this configuration, the factory air supply amount fluctuates correspondingly.

【0010】そこで本発明は(抽気流量計19により検
知される)蒸気タ−ビン抽気量19の増減を(流量計1
7により検知される)工場送気量17に関係なく実現す
るために低圧ボイラ15を設置し、該ボイラ15の燃料
制御弁16を調節してボイラ15の蒸発量を増減すると
ともに、これに略反比例するごとく抽気蒸発タ−ビン4
の抽気量を増減ることにより工場送気量17の一定化を
図りながら、蒸気タ−ビン発電機5の出力増減が可能と
なる。そして本発明に係る発電設備は電力会社系統と連
系させ、瞬時の工場電力負荷変動は系統側に吸収させ、
本発電設備での電力制御は1〜2分間程度の間隔での必
要電力量と発生電力の差を調整する比較的ゆるやかな制
御とするのがよい。
Therefore, the present invention provides a method for detecting an increase or decrease in the steam turbine bleed amount 19 (detected by the bleed flow meter 19).
A low-pressure boiler 15 is installed in order to realize it regardless of the factory air supply amount 17 (detected by 7), and the fuel control valve 16 of the boiler 15 is adjusted to increase or decrease the amount of evaporation of the boiler 15, and Extraction evaporation turbine 4 as inversely proportional
The output of the steam turbine generator 5 can be increased / decreased while the factory air supply amount 17 is kept constant by increasing / decreasing the extracted air amount. And the power generation equipment according to the present invention is connected to the power company grid, the instantaneous factory power load fluctuation is absorbed by the grid side,
It is preferable that the power control in the power generation equipment be relatively gradual control that adjusts the difference between the required power amount and the generated power at intervals of about 1 to 2 minutes.

【0011】以下図1に基づいて本発明を更に詳細に説
明する。図1においてガスタ−ビン1は出力一定運転と
し、蒸気タ−ビン4は主蒸気圧力制御を主蒸気加減弁6
で行ない、抽気ラインの工場送気管14の圧力制御を抽
気加減弁7で行なう。この運転状態において工場送気管
14のライン途中に設置する低圧ボイラ15の燃料制御
弁16に発電制御をかける。発電量を増加する場合は燃
料制御弁16の開度を増加させ低圧ボイラ15の蒸発量
をふやす。低圧ボイラ15の蒸発量が増えると蒸気タ−
ビン4からの抽気量19が減少し結果として蒸気タ−ビ
ン4の発電量が増加し、必要発電量が確保出来る。
Hereinafter, the present invention will be described in more detail with reference to FIG. In FIG. 1, a gas turbine 1 is operated at a constant output, and a steam turbine 4 is a main steam pressure control valve 6 for controlling a main steam pressure.
The pressure control of the factory air pipe 14 of the bleed line is performed by the bleed control valve 7. In this operation state, the power generation control is applied to the fuel control valve 16 of the low-pressure boiler 15 installed in the middle of the line of the factory air pipe 14. When increasing the amount of power generation, the opening of the fuel control valve 16 is increased to increase the amount of evaporation of the low-pressure boiler 15. When the evaporation of the low-pressure boiler 15 increases, the steam
The amount of extracted air 19 from the bin 4 decreases, and as a result, the amount of power generation of the steam turbine 4 increases, and the required amount of power generation can be secured.

【0012】低圧ボイラ15の燃料量の変化と蒸気タ−
ビン4の出力変化の関係は図4に示す関係となる。つま
り低圧ボイラ15の燃料を増加させると低圧ボイラ15
の蒸発量18が増加する。その結果工場送気管14の圧
力が増加するので蒸気タ−ビンの抽気圧力制御弁が動作
し蒸気タ−ビン抽気量が減少し蒸気タ−ビンの出力が増
加する事となる。その関係は次式のごとくなる。 ΔW=K*ΔF ……(1) ΔW:蒸気タ−ビンの出力変化(kW) ΔF:低圧ボイラ燃料量の変化(l/h) K:比例定数
Changes in fuel quantity of the low-pressure boiler 15 and steam tar
The relationship of the output change of the bin 4 is as shown in FIG. That is, if the fuel of the low-pressure boiler 15 is increased,
Is increased. As a result, the pressure of the factory air supply pipe 14 increases, so that the extraction pressure control valve of the steam turbine operates to decrease the amount of steam turbine bleed and increase the output of the steam turbine. The relationship is as follows. ΔW = K * ΔF (1) ΔW: change in steam turbine output (kW) ΔF: change in low-pressure boiler fuel amount (l / h) K: proportional constant

【0013】[0013]

【発明の実施の形態】以下、図面を参照して本発明の好
適な実施形態を例示的に詳しく説明する。但しこの実施
形態に記載されている構成部品の寸法、材質、形状、そ
の相対的配置等は特に特定的な記載がないかぎりは、こ
の発明の範囲をそれに限定する趣旨ではなく、単なる説
明例にすぎない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will now be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, and are merely illustrative examples. Only.

【0014】図1は本発明の実施形態にかかる熱併給ガ
スタ−ビンコンバインドプラントの系統図で図5はその
動作手順を示すフロ−チャ−トを示す。図1において、
前記従来技術で説明したように、ガスタ−ビン1の排ガ
スは排ガスボイラ12に導入される。排ガスボイラ12
にて発生した蒸気は主蒸気管13を通り蒸気タ−ビン4
へ導かれ、その蒸気の一部は抽気され工場送気管14を
通り工場へ送気される。残りは復水器8で復水され復水
ポンプ9にて給水タンク10へ戻される。なお、2はガ
スタービン発電機、3はガスタービン燃料制御弁、11
はボイラ給水ポンプである。工場送気管14のライン途
中には、蒸気タ−ビン抽気流量計19と工場送気流量計
17を介装し、その間のラインに低圧ボイラの蒸気が、
低圧ボイラ流量計18を介して供給されるように構成す
る。16は低圧ボイラ15の燃料制御弁で、低圧ボイラ
流量計18の計測流量に基づいて燃料制御される。
FIG. 1 is a system diagram of a cogeneration gas turbine combined plant according to an embodiment of the present invention, and FIG. 5 is a flowchart showing an operation procedure thereof. In FIG.
As described in the related art, the exhaust gas from the gas turbine 1 is introduced into an exhaust gas boiler 12. Exhaust gas boiler 12
The steam generated by the steam turbine passes through the main steam pipe 13
And a part of the steam is bled and sent to the factory through the factory air pipe 14. The remainder is condensed by a condenser 8 and returned to a water supply tank 10 by a condensate pump 9. 2 is a gas turbine generator, 3 is a gas turbine fuel control valve, 11
Is a boiler feed pump. A steam turbine bleed air flow meter 19 and a factory air flow meter 17 are interposed in the middle of the line of the factory air pipe 14, and the steam of the low-pressure boiler is supplied to the line between them.
It is configured to be supplied via the low-pressure boiler flow meter 18. Reference numeral 16 denotes a fuel control valve of the low-pressure boiler 15, which controls the fuel based on the flow rate measured by the low-pressure boiler flow meter 18.

【0015】図2は前記熱併給ガスタ−ビンコンバイン
ドプラントが組込まれた電力系統図で、ガスタ−ビン1
にて駆動された発電機2よりの発生電力は遮断器20を
経由して、又蒸気タ−ビン4にて駆動された発電機5よ
りの発生電力は遮断器20を経由し夫々工場電力負荷側
に送られる。発電量の不足分は、電力会社系統側より遮
断器を経由して工場電力負荷側に供給される。
FIG. 2 is a power system diagram in which the cogeneration gas turbine combined plant is incorporated.
The power generated from the generator 2 driven by the power generator 2 passes through a circuit breaker 20, and the power generated from the generator 5 driven by the steam turbine 4 passes through the circuit breaker 20, respectively. Sent to the side. The power generation shortage is supplied from the power company grid side to the factory power load side via a circuit breaker.

【0016】図中、W1はガスタ−ビン発電機電力計、
W2は蒸気タ−ビン発電機電力計、W3は工場負荷電力
計、W4は系統電力計である。電力会社側より供給され
る電力量W4は式(2)にて表される。 W4=W3−(W1+W2)…(2) 電力会社からの供給電力W4には前記したように契約電
力量Wで上限があるので、この上限を守るべく発電量を
制御するのが前記低圧ボイラ15による電力制御であ
る。電力会社からの供給契約電力量Wの時、実際の供給
電力量がW4の場合の低圧ボイラ制御燃料量はΔFは式
(1)より、 ΔW=W−W4 =KΔF ΔF=(W−W4) /K…(3) となる。
In the figure, W1 is a gas turbine generator power meter,
W2 is a steam turbine generator wattmeter, W3 is a factory load wattmeter, and W4 is a system wattmeter. The amount of power W4 supplied from the power company is represented by equation (2). W4 = W3− (W1 + W2) (2) Since the supply power W4 from the power company has an upper limit with the contracted power amount W as described above, it is the low-pressure boiler 15 that controls the power generation amount to keep this upper limit. Power control. When the supply amount of electric power from the electric power company is W, the low-pressure boiler control fuel amount when the actual amount of supply electric power is W4 is ΔF from the equation (1). ΔW = W−W4 = KΔF ΔF = (W−W4) / K (3)

【0017】次にかかる実施形態における低圧ボイラの
燃料制御弁の動作手順を図5のフローチャート図に基づ
いて説明する。先ずガスタ−ビン1は燃料制御弁の制御
により最大出力で一定運転されるように設定し(S
1)、その発電機2よりの発生電力は発生電力は遮断器
20を経由し夫々工場電力負荷側に送られる。蒸気タ−
ビン4は主蒸気加減弁6と抽気加減弁7とにより主蒸気
圧力制御と抽気圧力制御を行ない(S2)、その発電機
5よりの発生電力は遮断器20を経由し夫々工場電力負
荷側に送られる。発電量の不足分は、電力会社系統側よ
り遮断器を経由して工場電力負荷側に供給される。
Next, the operation procedure of the fuel control valve of the low-pressure boiler according to this embodiment will be described with reference to the flowchart of FIG. First, the gas turbine 1 is set to be operated at a constant maximum output by controlling the fuel control valve (S
1) The generated power from the generator 2 is sent to the factory power load via the circuit breaker 20. Steam tar
The bin 4 performs main steam pressure control and bleed pressure control by the main steam control valve 6 and the bleed control valve 7 (S2), and the generated power from the generator 5 passes through the circuit breaker 20 to the factory power load side. Sent. The power generation shortage is supplied from the power company grid side to the factory power load side via a circuit breaker.

【0018】そして工場電力負荷は電力計W3で測定さ
れ、その工場負荷変動の有無を検知し(S3)、工場電
力負荷が増加している場合は(S4)、低圧ボイラの燃
料制御弁の開度を大きくする(S5)。そしてボイラ流
量計の流量検知により、低圧ボイラの蒸発量が増加する
と(S6)その増加した流量の反比例するごとく(図4
参照)、抽気加減弁の開度を絞り、蒸気タービンの抽気
量を減少させる(S7)事により、蒸気タービンの発電
機の出力が増加する(S8)。そして前記動作を必要電
力が確保されるまで行なわれる。(S9)
The factory power load is measured by the power meter W3, and the presence or absence of the factory load fluctuation is detected (S3). If the factory power load is increasing (S4), the fuel control valve of the low-pressure boiler is opened. The degree is increased (S5). Then, when the evaporation amount of the low-pressure boiler is increased by the flow rate detection of the boiler flow meter (S6), the evaporation rate is inversely proportional to the increased flow rate (FIG. 4).
Reference), the opening of the bleed control valve is reduced, and the amount of bleed of the steam turbine is reduced (S7), so that the output of the generator of the steam turbine is increased (S8). The above operation is performed until the required power is secured. (S9)

【0019】一方前記工場負荷変動の有無を検知し、工
場電力負荷が減少している場合は(S4)、低圧ボイラ
の燃料制御弁の開度を小さくする(S10)。そしてボ
イラ流量計の流量検知により、低圧ボイラの蒸発量が減
少すると(S11)その減少した流量の反比例するごと
く(図4参照)、抽気加減弁の開度を大きくし、蒸気タ
ービンの抽気量を増加させる事により(S12)、蒸気
タービンの発電機の出力が減少する(S13)。そして
前記動作を必要電力まで低下するまで行なわれる。(S
14)
On the other hand, the presence or absence of the factory load fluctuation is detected, and if the factory power load is decreasing (S4), the opening of the fuel control valve of the low-pressure boiler is reduced (S10). When the amount of evaporation of the low-pressure boiler is reduced by the flow rate detection of the boiler flow meter (S11), the opening degree of the bleed control valve is increased so as to be inversely proportional to the reduced flow rate (see FIG. 4), and the bleed amount of the steam turbine is reduced. By increasing (S12), the output of the generator of the steam turbine decreases (S13). The above operation is performed until the required power is reduced. (S
14)

【0020】尚、本設備の電力制御の運用としては、瞬
時の工場電力負荷変動は系統側で吸収させ、本設備では
電力会社系統側よりの供給電力W4が、電力会社との契
約電力Wとなるべく電力量の偏差{(W−W4) /
K}を積分して1〜2分間隔で前記図5に示す動作に基
づいて{ΔF}の制御を行なうようにしている。
In the power control operation of the present facility, instantaneous fluctuations in factory power load are absorbed by the grid side, and in this facility, the supply power W4 from the power company grid side is equal to the contract power W with the power company. Power deviation {(W-W4) /
The control of {ΔF} is performed at intervals of 1 to 2 minutes by integrating K} based on the operation shown in FIG.

【0021】[0021]

【発明の効果】以上記載のごとく本発明によれば、熱併
給ガスタ−ビンコンバインドプラントの電力制御が抽気
ラインの途中に設けた蒸気発生手段の蒸気発生量を制
御、より具体的には低圧ボイラの燃料供給量を制御する
ことによりガスタ−ビンを出力一定にて連続運転する事
が可能となった。これにより、ガスタ−ビンの高温部品
の交換期間が長くなり、プラントの信頼性が向上すると
ともに、ガスタ−ビンを最大出力で連続運転して、かつ
電力制御が可能となったので、電力会社との契約電力量
を少なく出来る。等の種々の効果を奏する。
As described above, according to the present invention, the power control of the cogeneration gas turbine combined plant controls the amount of steam generated by the steam generating means provided in the middle of the extraction line, and more specifically, the low pressure boiler. By controlling the amount of fuel supplied, the gas turbine can be operated continuously at a constant output. As a result, the replacement period of the high-temperature parts of the gas turbine is extended, the reliability of the plant is improved, and the gas turbine can be continuously operated at the maximum output and the power can be controlled. Power consumption can be reduced. And so on.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る熱併給ガスタ−ビンコ
ンバインドプラントの系統図である。
FIG. 1 is a system diagram of a cogeneration gas turbine combined plant according to an embodiment of the present invention.

【図2】図1の熱併給ガスタ−ビンコンバインドプラン
トの電力系統単線結線図である。
FIG. 2 is a single-line diagram of a power system of the combined heat and gas combined turbine plant of FIG. 1;

【図3】従来技術の熱併給ガスタ−ビンコンバインドプ
ラントの系統図である。
FIG. 3 is a system diagram of a conventional cogeneration gas turbine combined plant.

【図4】本発明の低圧ボイラの燃料変化と蒸気タ−ビン
の出力変化の関係を示すグラフ図である。
FIG. 4 is a graph showing a relationship between a fuel change and a steam turbine output change of the low-pressure boiler of the present invention.

【図5】図5は、図1の実施形態の動作手順を示すフロ
−チャ−ト図である。
FIG. 5 is a flowchart showing an operation procedure of the embodiment of FIG. 1;

【符号の説明】[Explanation of symbols]

1 ガスタ−ビン 2 ガスタ−ビン発電機 3 ガスタ−ビン燃料制御弁 4 抽気復水蒸気タ−ビン 5 蒸気タ−ビン発電機 6 主蒸気加減弁 7 抽気加減弁 8 復水器 9 復水ポンプ 10 給水タンク 11 ボイラ給水ポンプ 12 排ガスボイラ 13 主蒸気管 14 工場送気管 15 低圧ボイラ 16 低圧ボイラ燃料制御弁 17 工場送気流量計 18 低圧ボイラ流量計 19 蒸気タ−ビン抽気流量計 20 遮断器 W1 ガスタ−ビン発電機電力計 W2 蒸気タ−ビン発電機電力計 W3 工場負荷電力計 W4 系統電力計 REFERENCE SIGNS LIST 1 gas turbine 2 gas turbine generator 3 gas turbine fuel control valve 4 extraction steam recovery turbine 5 steam turbine generator 6 main steam control valve 7 extraction control valve 8 condenser 9 condensate pump 10 water supply Tank 11 Boiler feed pump 12 Exhaust gas boiler 13 Main steam pipe 14 Factory air pipe 15 Low pressure boiler 16 Low pressure boiler fuel control valve 17 Factory air flow meter 18 Low pressure boiler flow meter 19 Steam turbine extraction air flow meter 20 Circuit breaker W1 gas turbine Bin generator power meter W2 Steam turbine power meter W3 Factory load power meter W4 Grid power meter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第一発電機を駆動するガスタ−ビンと、
該ガスタ−ビンからの廃熱を利用して生成された蒸気供
給により運転される、第二発電機を駆動する抽気蒸気タ
−ビンと、該抽気蒸気タ−ビンからの抽気を工場その他
のプロセスへ供給する抽気ラインとを具えた熱併給ガス
タ−ビンコンバインドプラントにおいて、 前記抽気ラインの途中に蒸気発生手段を設け、該蒸気発
生手段の蒸気発生量の制御量に対応させて前記抽気蒸発
タ−ビンの抽気量を増減し、これにより抽気蒸発タ−ビ
ンの出力を調節し、前記第二発電機の電力を制御するこ
とを特徴とする熱併給ガスタ−ビンコンバインドプラン
トの電力制御方法。
A gas turbine for driving a first generator;
An extraction steam turbine driven by a steam supply generated by utilizing waste heat from the gas turbine for driving a second generator, and an extraction air from the extraction steam turbine is supplied to a plant or other process. A combined gas and gas turbine combined plant provided with a bleeding line for supplying steam to the bleeding line. A power control method for a combined heat and gas turbine combined plant, comprising: increasing and decreasing the amount of bleed air from a bin, thereby adjusting the output of the bleed evaporator turbine, and controlling the power of the second generator.
JP9090256A 1997-03-25 1997-03-25 Electric power control method of steam supply power generating gas turbine combined plant Withdrawn JPH10266812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9090256A JPH10266812A (en) 1997-03-25 1997-03-25 Electric power control method of steam supply power generating gas turbine combined plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9090256A JPH10266812A (en) 1997-03-25 1997-03-25 Electric power control method of steam supply power generating gas turbine combined plant

Publications (1)

Publication Number Publication Date
JPH10266812A true JPH10266812A (en) 1998-10-06

Family

ID=13993423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9090256A Withdrawn JPH10266812A (en) 1997-03-25 1997-03-25 Electric power control method of steam supply power generating gas turbine combined plant

Country Status (1)

Country Link
JP (1) JPH10266812A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092721A (en) * 2005-09-30 2007-04-12 Hitachi Ltd Multiple-axle combined cycle power generation facility
JP2009079580A (en) * 2007-09-27 2009-04-16 Toshiba Corp Power generation plant and its control method
WO2009096028A1 (en) * 2008-01-31 2009-08-06 Hitachi, Ltd. Motive power supply system for plant, method for operating the same, and method for modifying the same
JP2012140959A (en) * 2011-01-03 2012-07-26 General Electric Co <Ge> Power generation apparatus
CN104594963A (en) * 2014-12-05 2015-05-06 东方电气集团东方汽轮机有限公司 High-pressure industrial heat supply method for thermal power plant
CN106287735A (en) * 2016-09-05 2017-01-04 重庆科技学院 The refuse gasification combustion gas of a kind of humid air turbine and steam turbine combined generating system
CN106523047A (en) * 2016-11-30 2017-03-22 上海电气电站设备有限公司 Cogeneration steam turbine capable of regulating steam extraction every other stage

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092721A (en) * 2005-09-30 2007-04-12 Hitachi Ltd Multiple-axle combined cycle power generation facility
JP2009079580A (en) * 2007-09-27 2009-04-16 Toshiba Corp Power generation plant and its control method
US8511093B2 (en) 2007-09-27 2013-08-20 Kabushiki Kaisha Toshiba Power generation plant and control method thereof
WO2009096028A1 (en) * 2008-01-31 2009-08-06 Hitachi, Ltd. Motive power supply system for plant, method for operating the same, and method for modifying the same
JPWO2009096028A1 (en) * 2008-01-31 2011-05-26 株式会社日立製作所 Power supply system for plant, its operation method and remodeling method
JP4910042B2 (en) * 2008-01-31 2012-04-04 株式会社日立製作所 Power supply system for plant, its operation method and remodeling method
JP2012140959A (en) * 2011-01-03 2012-07-26 General Electric Co <Ge> Power generation apparatus
CN104594963A (en) * 2014-12-05 2015-05-06 东方电气集团东方汽轮机有限公司 High-pressure industrial heat supply method for thermal power plant
CN104594963B (en) * 2014-12-05 2016-09-14 东方电气集团东方汽轮机有限公司 Steam power plant's high pressure industrial heat supply method
CN106287735A (en) * 2016-09-05 2017-01-04 重庆科技学院 The refuse gasification combustion gas of a kind of humid air turbine and steam turbine combined generating system
CN106287735B (en) * 2016-09-05 2018-03-27 重庆科技学院 A kind of refuse gasification combustion gas of humid air turbine and steam turbine combined generating system
CN106523047A (en) * 2016-11-30 2017-03-22 上海电气电站设备有限公司 Cogeneration steam turbine capable of regulating steam extraction every other stage

Similar Documents

Publication Publication Date Title
US5483797A (en) Method of and apparatus for controlling the operation of a valve that regulates the flow of geothermal fluid
US4551980A (en) Hybrid system for generating power
US5497624A (en) Method of and apparatus for producing power using steam
US4982569A (en) Parallel hybrid system for generating power
US7350365B2 (en) Method for controlling cogeneration system
KR20160032172A (en) System for generating power from fuel cell waste heat
JPH10266812A (en) Electric power control method of steam supply power generating gas turbine combined plant
US4987735A (en) Heat and power supply system
US4145995A (en) Method of operating a power plant and apparatus therefor
JPH1136818A (en) Controller for cogeneration plant utilizing waste heat
JPH09228806A (en) Air bleed type steam turbine plant
KR100722275B1 (en) Cogeneration system and its control method
SU1090899A1 (en) Method of operating heat-electric generation plant
CN221032779U (en) Quick peak regulating steam turbine power generation system
CN221074393U (en) Turbine power generation system capable of carrying out peak regulation in real time
JPH0297801A (en) Method for bleeding auxiliary steam from exhaust heat recovery boiler
KR100755317B1 (en) Cogeneration system and its control method
JPS59145307A (en) Control system of bleeder condensing turbine in thermal and power generation plant
JP2645128B2 (en) Coal gasification power plant control unit
KR100662990B1 (en) Soot blower Control System
JPH06241404A (en) Power generation value control method for highly efficient garbage power generation system
JPS5783616A (en) Output controller for combined cycle
JPH09287482A (en) Cogeneration system
JP2656352B2 (en) Coal gasification power plant
JPH10110602A (en) Method for controlling steam turbine and steam turbine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040601