JPH0297801A - Method for bleeding auxiliary steam from exhaust heat recovery boiler - Google Patents

Method for bleeding auxiliary steam from exhaust heat recovery boiler

Info

Publication number
JPH0297801A
JPH0297801A JP25037088A JP25037088A JPH0297801A JP H0297801 A JPH0297801 A JP H0297801A JP 25037088 A JP25037088 A JP 25037088A JP 25037088 A JP25037088 A JP 25037088A JP H0297801 A JPH0297801 A JP H0297801A
Authority
JP
Japan
Prior art keywords
steam
pressure
heat recovery
exhaust heat
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25037088A
Other languages
Japanese (ja)
Other versions
JP2949287B2 (en
Inventor
Toshinori Shigenaka
利則 重中
Iwao Kusaka
日下 巌
Hiroshi Yoshizaki
吉崎 弘師
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP63250370A priority Critical patent/JP2949287B2/en
Publication of JPH0297801A publication Critical patent/JPH0297801A/en
Application granted granted Critical
Publication of JP2949287B2 publication Critical patent/JP2949287B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To bleed steam generated from an exhaust heat recovery boiler for the use as auxiliary steam without lowering the operation performance by sensing the drum pressure in any one of a plurality of exhaust heat recovery boilers and on the basis of a resulting signal by selecting either exhaust heat recovery boilers or an auxiliary boiler for supplying steam to an auxiliary steam system. CONSTITUTION:Steam is bled from a No.1 exhaust heat recovery boiler 5 by opening a regulating valve 26A until the pressure in a high-pressure drum 8 determined by a pressure sensor 27 reaches a value P1. When more steam is needed, either steam is bled from more exhaust heat recovery boilers, for example, with inclusion of No.2 and No.3, or an auxiliary boiler 23 is operated. Whether by bleeding from the exhaust heat recovery boilers 5 or by operating the auxiliary boiler 23 can be preset in a program in a control device 25, for example, a program in which exhaust heat recovery boilers 5 in operation have priority over the auxiliary boiler 23. It is feasible also to find a relationship between the load of a gas turbine 4 and the allowable pressure P1 and set it in the form of a program in the control device 25.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、複合発電プラントにおける排熱回収ボイラに
係り、特に発生蒸気を補助蒸気系へ供給する排熱回収ボ
イラの抽気方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an exhaust heat recovery boiler in a combined cycle power plant, and particularly relates to an extraction method for an exhaust heat recovery boiler that supplies generated steam to an auxiliary steam system. .

(従来の技術) 高効率発電の一環として、最近、複合発電プラントの建
設が進められてし−る。このプラントは、ガスタービン
によって発電するとともに、ガスタービンから排出され
た排ガスの保有熱を排熱回収ボイラで回収し、その排熱
回収ボイラで発生した蒸気により蒸気タービンを駆動し
て発電させるシステムになっている。
(Prior Art) As part of high-efficiency power generation, construction of combined power generation plants has recently been progressing. This plant uses a system that generates electricity using a gas turbine, recovers the heat retained in the exhaust gas discharged from the gas turbine using an exhaust heat recovery boiler, and uses the steam generated by the exhaust heat recovery boiler to drive a steam turbine to generate electricity. It has become.

このプラントは前述のような高効率発電に加えガスター
ビンの特長である急速起動の容易性、高い負荷応答性な
どの特長も有しており、近年の電力需要形態に即した中
間負荷運用に好適な発電プラントである。また、この発
電プラントは、ガスタービンと排熱回収ボイラと蒸気タ
ービンの組合わせで出力は約12万kwであるので、そ
れら複数の装置を組合わせて、高出力の発電プラントを
構成する。
In addition to high-efficiency power generation as mentioned above, this plant also has the features of gas turbines, such as ease of rapid startup and high load response, making it suitable for intermediate load operation in line with recent electricity demand patterns. It is a power generation plant. Furthermore, this power generation plant is a combination of a gas turbine, an exhaust heat recovery boiler, and a steam turbine, and has an output of approximately 120,000 kW, so a high-output power generation plant is constructed by combining a plurality of these devices.

第10wJは、この複合プラントの概略系統図である。The 10th wJ is a schematic diagram of this complex plant.

ガスタービン4からの排ガスGは、排熱回収ボイラ5の
排ガス通路6に導入される。この排ガス通路6には、過
熱器12.高圧ドラム8.高圧蒸発@l O,及び高圧
節炭器7.が配置される。
Exhaust gas G from the gas turbine 4 is introduced into an exhaust gas passage 6 of the exhaust heat recovery boiler 5. This exhaust gas passage 6 has a superheater 12. High pressure drum8. High-pressure evaporation@lO, and high-pressure economizer7. is placed.

一方、被加熱流体である給水Wpは、復水ポンプ17よ
り給水管18を経て高圧節炭器7に供給され、所定の温
度までに予熱された後、高圧ドラム8へ供給される。
On the other hand, the feed water Wp, which is the fluid to be heated, is supplied from the condensate pump 17 through the water supply pipe 18 to the high-pressure economizer 7, preheated to a predetermined temperature, and then supplied to the high-pressure drum 8.

高圧ドラム8へ供給された給水は、高圧ドラム8の高圧
下降管9を経て高圧蒸発$10で一部が蒸気となり残り
は給水で高圧ドラム8に戻る。高圧ドラム8内で分離さ
れた蒸気はドラム蒸気出口管11を経て、過熱器12へ
送らか、ここでさらに・昇温された後、高圧主蒸気管1
3より蒸気タービン14へ供給され、蒸気タービン14
により発電機15を駆動して発電を行なう。
The feed water supplied to the high-pressure drum 8 passes through the high-pressure downcomer pipe 9 of the high-pressure drum 8, undergoes high-pressure evaporation $10, and part of it becomes steam, and the rest returns to the high-pressure drum 8 as feed water. The steam separated in the high-pressure drum 8 passes through the drum steam outlet pipe 11 and is sent to the superheater 12, where it is further heated and then sent to the high-pressure main steam pipe 11.
3 to the steam turbine 14, and the steam turbine 14
The generator 15 is driven to generate electricity.

また、第11図に示す如く、プラント起動時または停止
時には蒸気タービン14のグランドシール用の蒸気を必
要とするため、補助蒸気ヘッダー21から蒸気が補助蒸
気管20およびグランドシール蒸気母管22を経由して
、蒸気タービン14へ供給される。なお、補助蒸気ヘッ
ダー21への蒸気供給源としては1通常、補助ボイラ2
3が使用されるが、複合発電プラントの場合、排熱回収
ボイラ5が複数設置されるため、排熱回収ボイラ5の高
圧主蒸気管13からの蒸気も、高圧主蒸気抽気管19を
経由して供給される。
In addition, as shown in FIG. 11, when starting or stopping the plant, steam is required for the grand seal of the steam turbine 14, so steam from the auxiliary steam header 21 passes through the auxiliary steam pipe 20 and the grand seal steam main pipe 22. Then, it is supplied to the steam turbine 14. Note that the steam supply source to the auxiliary steam header 21 is usually 1, the auxiliary boiler 2
3 is used, but in the case of a combined cycle power plant, multiple exhaust heat recovery boilers 5 are installed, so the steam from the high pressure main steam pipe 13 of the exhaust heat recovery boiler 5 also passes through the high pressure main steam extraction pipe 19. will be supplied.

一方、ガスタービン排ガスG中の窒素酸化物(以下NO
xと略す)を除去するため1通常、排熱回収ボイラ5の
中に、脱硝装置31が、第10図に示す如く、高圧蒸発
器lOの後流側あるいは、高圧蒸発器10の間に設置さ
れる。
On the other hand, nitrogen oxides (hereinafter referred to as NO) in gas turbine exhaust gas G
(abbreviated as x) 1 Usually, a denitrification device 31 is installed in the exhaust heat recovery boiler 5 on the downstream side of the high-pressure evaporator IO or between the high-pressure evaporator 10, as shown in FIG. be done.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように、補助蒸気として排熱回収ボイラ5からの発
生蒸気を利用する場合、蒸気を抽気することによって高
圧ドラム8の圧力が低下し、蒸発量が増加することから
、蒸気を多く抽気した場合以下のような問題が生ずる。
In this way, when using the steam generated from the heat recovery boiler 5 as auxiliary steam, the pressure of the high pressure drum 8 decreases by extracting the steam, and the amount of evaporation increases. The following problems arise.

すなわち、(1)  高圧ドラム8圧力が低下すると、
蒸発量が増加し−ドラムの内部に設置されている気水分
離器の分離性能が低下し、蒸気中の水滴が増加し蒸気タ
ービンのタービンブレードを損傷する。また。
That is, (1) When the high pressure drum 8 pressure decreases,
The amount of evaporation increases - the separation performance of the steam-water separator installed inside the drum decreases, and water droplets in the steam increase, damaging the turbine blades of the steam turbine. Also.

気水分離器の分離性能が低下することに対応して、気水
分離器の数を増加させると、ドラムが必要以上に大きく
なり非常に不経済である。
If the number of steam/water separators is increased in response to the decrease in the separation performance of the steam/water separators, the drum will become larger than necessary, which is very uneconomical.

(2)蒸発量が増加するため、高圧蒸発器出口連絡管2
4やドラム蒸気出口管11の中の蒸気流速が増加し、振
動が発生する。また、蒸発量の増加に対応して上記の管
径を大きくすることは非常に不経済である。
(2) Because the amount of evaporation increases, high pressure evaporator outlet connecting pipe 2
4 and the steam flow rate in the drum steam outlet pipe 11 increases and vibrations occur. Furthermore, it is extremely uneconomical to increase the diameter of the tube in response to an increase in the amount of evaporation.

(3)高圧ドラム8圧力が低下した場合、蒸発量が増加
し高圧蒸発器内の流体温度が下がり、それと熱交換する
ガスタービンの排ガスの保有熱が必要以上に奪われ、脱
硝装置31人口のガス温度が低下し、脱硝反応の反応速
度が低下し排出NOxが増加する。
(3) When the pressure of the high-pressure drum 8 decreases, the amount of evaporation increases and the temperature of the fluid in the high-pressure evaporator decreases. The gas temperature decreases, the reaction rate of the denitrification reaction decreases, and the amount of NOx discharged increases.

本発明の目的は、上記した従来技術の欠点を解消し、補
助蒸気用として排熱回収ボイラからの発生蒸気を運転性
能を低下させずに抽気する方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the prior art described above and to provide a method for extracting steam generated from an exhaust heat recovery boiler for use as auxiliary steam without deteriorating operating performance.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、排ガスから脱硝と熱回収をして蒸気を発生
しその蒸気を蒸気タービンと補助蒸気系統へ供給する系
統を備えた複数の排熱回収ボイラと、蒸気を発生しその
蒸気を前記補助蒸気系統へ供給する補助ボイラと、を有
し、前記複数の排熱回収ボイラの何れか1つの排熱回収
ボイラのドラム圧力を検知してその信号により前記補助
蒸気系統へ蒸気を供給する排熱回収ボイラと前記補助ボ
イラを選択する排熱回収ボイラの補助蒸気抽気方法を提
供することにより達成される。。
The above purpose is to provide a plurality of exhaust heat recovery boilers equipped with a system that denitrates and recovers heat from exhaust gas, generates steam, and supplies the steam to a steam turbine and an auxiliary steam system; and an auxiliary boiler for supplying steam to the auxiliary steam system, detecting drum pressure of any one of the plurality of exhaust heat recovery boilers and supplying steam to the auxiliary steam system based on the signal thereof. This is accomplished by providing an auxiliary steam extraction method for an exhaust heat recovery boiler that selects a recovery boiler and the auxiliary boiler. .

〔作用〕[Effect]

本発明は、複数の排熱回収ボイラの何れか1つの排熱回
収ボイラのドラム圧力、蒸気又は給水の配管内流電ある
いは配管内流速の信号、脱硝装置入口ガス温度の、蒸気
タービン入口圧力の信号を検知してその信号により前記
補助蒸気系統へ蒸気を供給する排熱回収ボイラと補助ボ
イラを選択することにより、上記した従来技術の欠点を
解消し、補助蒸気用として排熱回収ボイラからの発生蒸
気を運転性能を低下させずに抽気することが出来る。
The present invention provides a signal for controlling the drum pressure of any one of a plurality of exhaust heat recovery boilers, the current in the piping of steam or feed water or the flow velocity in the piping, the gas temperature at the inlet of the denitrification equipment, and the pressure at the steam turbine inlet. By detecting a signal and selecting the waste heat recovery boiler and the auxiliary boiler to supply steam to the auxiliary steam system based on the signal, the above-mentioned drawbacks of the conventional technology can be solved, and the waste heat recovery boiler can be used for auxiliary steam. Generated steam can be extracted without deteriorating operational performance.

〔実施例〕〔Example〕

以下1本発明の各実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の第1実施例に係る複合発電プラントの
概略系統図である0図中の符号LAから24までは従来
のものと同一である。第1図の説明の前に、排熱回収ボ
イラ5からの発生蒸気を抽気した場合の、高圧ドラム8
圧力、蒸発器および脱硝装置入口ガス温度の特性を説明
する。
FIG. 1 is a schematic system diagram of a combined power generation plant according to a first embodiment of the present invention. Reference numerals LA to 24 in FIG. 0 are the same as those of the conventional plant. Before explaining FIG.
The characteristics of pressure, evaporator, and denitrification equipment inlet gas temperature are explained.

第2図に、ガスタービン4は同一負荷であっても、蒸気
抽気量を増加すると高圧ドラム8圧力は低下し、それに
伴なって蒸発器が増加、脱硝装置31の入口ガス温度が
低下する関係を示す。
FIG. 2 shows a relationship in which, even if the gas turbine 4 has the same load, increasing the amount of steam extraction causes the pressure in the high-pressure drum 8 to decrease, the number of evaporators to increase accordingly, and the inlet gas temperature to the denitrification device 31 to decrease. shows.

第3図は、蒸気抽気量と高圧ドラム8圧力および気水分
離器の処理可能蒸気量の関係を示したもので、高圧ドラ
ム8圧力が低下すると蒸発量の増加により気水分離器の
気水分離性能が低減し、高圧ドラム8圧力の下限が存在
する。すなわち、蒸気は高圧ドラム8圧力が、抽気無し
のときの圧力P、から圧力pm(許容圧力)まで低下す
るまで抽気ができることになる。また、抽気可能量以上
の補助蒸気を必要とする場合は、抽気する排熱回収ボイ
ラ5の針数を増すか補助ボイラ23を運転することで対
応する必要がある。従って1本発明は第1図に示すよう
に高圧ドラム8圧力を圧力検知器27で検知して、圧力
P1になるまでは、調節弁26Aを開することによって
&1排熱回収ボイラ5から蒸気を抽気し、それ以上に蒸
気を必要とする場合は、Na2.Na3という具合に抽
気する排熱回収ボイラを増すか、あるいは、補助ボイラ
23を運転するようにしたものである。ここで、排熱回
収ボイラ5から抽気するか、補助ボイラ23を運転する
かは制御器25の中にあらかじめ、運転している排熱回
収ボイラ5を補助ボイラ23より優先する等のプログラ
ムを組んで決めておけばよい、また、ガスタービン4の
負荷によって、許容圧力P、は異なるので、ガスタービ
ン4の負荷と許容圧力P1の関係を求めて制御器25の
中にプログラムで組んでおくこともできる。このガスタ
ービン負荷によってプログラムを組むということは以下
に示す第2から第4実施例についても言えることである
Figure 3 shows the relationship between the amount of steam extracted, the pressure of the high pressure drum 8, and the amount of steam that can be processed by the steam separator. The separation performance is reduced and there is a lower limit of the high pressure drum 8 pressure. That is, steam can be extracted until the pressure of the high-pressure drum 8 decreases from the pressure P when no extraction occurs to the pressure pm (allowable pressure). In addition, if more auxiliary steam is required than the amount that can be extracted, it is necessary to deal with this by increasing the number of exhaust heat recovery boiler 5 that extracts steam or by operating the auxiliary boiler 23. Therefore, as shown in FIG. 1, the present invention detects the pressure of the high pressure drum 8 with a pressure detector 27, and opens the control valve 26A until the pressure reaches P1 to remove steam from the waste heat recovery boiler 5. If you need more steam than that, use Na2. Either an exhaust heat recovery boiler that extracts Na3 gas is added, or an auxiliary boiler 23 is operated. Here, whether to extract air from the exhaust heat recovery boiler 5 or operate the auxiliary boiler 23 is determined by setting up a program in the controller 25 in advance, such as giving priority to the operating exhaust heat recovery boiler 5 over the auxiliary boiler 23. Also, since the allowable pressure P varies depending on the load on the gas turbine 4, the relationship between the load on the gas turbine 4 and the allowable pressure P1 should be determined and programmed in the controller 25. You can also do it. This programming based on the gas turbine load also applies to the second to fourth embodiments described below.

第4図は、本発明の第2実施例を説明するための図であ
る。
FIG. 4 is a diagram for explaining a second embodiment of the present invention.

この実施例において、前記第1実施例と相違する点は、
第1実施例では高圧ドラム8圧力を検知して抽気蒸気量
を制御していたのに対し、第2実施例のものは、高圧蒸
発器出口連絡管24内の流量(流速)を流量計28で測
定して、それによって抽気蒸気量を制御するようにした
ところである。
This embodiment differs from the first embodiment as follows:
In the first embodiment, the pressure of the high-pressure drum 8 was detected to control the amount of extracted steam, whereas in the second embodiment, the flow rate (flow rate) in the high-pressure evaporator outlet communication pipe 24 was detected using a flow meter 28. The amount of extracted steam is controlled based on this measurement.

第51g1は、抽気蒸気量と高圧蒸発器出口連絡管24
内の蒸気流量、流速の関係を示したもので。
No. 51g1 is the amount of extracted steam and the high pressure evaporator outlet connecting pipe 24
This shows the relationship between the steam flow rate and flow velocity within.

制限流速V、どなる蒸気流量W1まで抽気可能というこ
とである。なお、ここで高圧蒸発器出口連絡管24内の
流量のかわりに、ドラム蒸気連絡管11や高圧主蒸気管
13や給水管18の中の流量で制御することも可能であ
る。
This means that extraction is possible up to the limited flow rate V and the roaring steam flow rate W1. Here, instead of the flow rate in the high-pressure evaporator outlet communication pipe 24, it is also possible to control the flow rate in the drum steam communication pipe 11, the high-pressure main steam pipe 13, or the water supply pipe 18.

第6図は、本発明の第β実施例を説明するための図であ
る。この実施例において、前記第1ないし第2実施例と
相違する点は、第1ないし第2実施例においては、高圧
ドラム8圧力や高圧蒸発器出口連絡管24内の流量で抽
気蒸気量を制御していたのに対し、第3実施例では、脱
硝装置31人ロガス温度で抽気蒸気量を制御するように
したところである。
FIG. 6 is a diagram for explaining the βth embodiment of the present invention. This embodiment differs from the first and second embodiments in that in the first and second embodiments, the amount of extracted steam is controlled by the pressure of the high-pressure drum 8 and the flow rate in the high-pressure evaporator outlet connecting pipe 24. In contrast, in the third embodiment, the amount of extracted steam is controlled based on the 31-person log gas temperature of the denitrification device.

第7図は抽気蒸気量と脱硝装置131人ロガス温度の関
係を示したもので、NOx排出規制値を満足するための
許容ガス温度T g zまで抽気可能ということである
FIG. 7 shows the relationship between the amount of extracted steam and the gas temperature of the denitrification device 131, which means that extraction is possible up to the allowable gas temperature T g z that satisfies the NOx emission regulation value.

第8図は、本発明の第4実施例を説明するための−であ
る。第8i11は、前記第1、第2および第3実施例と
比べ、排熱H収ボイラ5の高kI:#II炭器7のガス
後流側に比較的圧力の低い圧力系の低圧蒸発4$33お
よび低圧節炭器30を設けたものである。復水ポンプ1
7からの給水WFは低圧節度1130へ供給され、そこ
で所定の温度まで予熱された後、低圧゛ドラム37に供
給される。低圧ドラム37に供給された給水は、前記高
圧ドラム8と同様に、低圧下降管32を経て低圧蒸発器
33゜低圧ドラム37の順で循環する。低圧ドラム87
内で分離された蒸気は低圧主蒸気管35を経て。
FIG. 8 is a diagram illustrating a fourth embodiment of the present invention. 8i11 is different from the first, second and third embodiments in that the exhaust heat H collection boiler 5 has a high kI: the low pressure evaporator 4 has a relatively low pressure system on the gas downstream side of the #II coalizer 7. It is equipped with $33 and a low pressure economizer 30. Condensate pump 1
The water supply WF from 7 is supplied to the low pressure moderator 1130, where it is preheated to a predetermined temperature and then supplied to the low pressure drum 37. The feed water supplied to the low-pressure drum 37 is circulated through the low-pressure downcomer pipe 32 in the order of the low-pressure evaporator 33 and the low-pressure drum 37, similarly to the high-pressure drum 8. Low pressure drum 87
The steam separated inside passes through the low pressure main steam pipe 35.

蒸気タービン14へ送られる。高圧系へは低tin炭器
30出口給水の一部が分岐され高圧給水ポンプ34を経
て、高圧節炭器7へ供給される。それ以降は前記に示し
たとおりである。
It is sent to the steam turbine 14. A part of the water supplied from the outlet of the low tin coal machine 30 is branched off to the high pressure system and is supplied to the high pressure coal saver 7 via the high pressure water supply pump 34. The rest is as shown above.

前記第1.第2および第3の実施例は高圧系だけを有し
た排熱回収ボイラ5について記していたが、もちろん、
高圧系と低圧系を有する排熱回収ボイラ5についても言
えることである。
Said 1st. The second and third embodiments described the exhaust heat recovery boiler 5 having only a high pressure system, but of course,
The same can be said of the exhaust heat recovery boiler 5 having a high pressure system and a low pressure system.

第4の実施例において、前記第1実施例と相違する点は
、第1実施例においては、高圧ドラム8圧力で抽気蒸気
量を制御していたのに対し、低圧主蒸気管35の蒸気タ
ービン入口圧力36で抽気蒸気量を制御するようにした
ところである。もちろん蒸気タービン入口圧力36のか
わりに低圧ドラム37圧力で制御することもできる。
The difference between the fourth embodiment and the first embodiment is that in the first embodiment, the amount of extracted steam was controlled by the pressure of the high-pressure drum 8, whereas the steam turbine in the low-pressure main steam pipe 35 The amount of extracted steam is controlled by the inlet pressure 36. Of course, the pressure can be controlled using the low pressure drum 37 pressure instead of the steam turbine inlet pressure 36.

第9図は抽気蒸気量と低圧主蒸気管85の蒸気タービン
入口圧力36、低圧ドラム37圧力の関係を示したもの
で、a気タービン入ロ圧力36を大気圧より高めに保つ
最低圧力P、まで抽気可能ということである。ここで大
気圧より高めの圧力を確保する理由は、負圧になると空
気が侵入し。
FIG. 9 shows the relationship between the extracted steam amount, the steam turbine inlet pressure 36 of the low-pressure main steam pipe 85, and the low-pressure drum 37 pressure. This means that it is possible to bleed air up to The reason why we maintain a pressure higher than atmospheric pressure is that when the pressure becomes negative, air enters.

腐蝕等の問題が生ずるためである。もちろん、蒸気ター
ビン入口圧力36の代わりに低圧ドラム37圧力で制御
することも可能である。
This is because problems such as corrosion occur. Of course, it is also possible to control with the low pressure drum 37 pressure instead of the steam turbine inlet pressure 36.

(発明の効果〕 本発明によれば、補助蒸気として排熱回収ボイラの発生
蒸気を抽気して利用する場合、過剰抽気を防止できるの
で、排熱回収ボイラの正常運転が常に可能となる効果が
ある。
(Effects of the Invention) According to the present invention, when the generated steam of the exhaust heat recovery boiler is extracted and used as auxiliary steam, excessive extraction can be prevented, so that the normal operation of the exhaust heat recovery boiler is always possible. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例に係る複合発電プラントの
概略系統図、第2i11は蒸気抽気量と高圧ドラム圧力
、蒸発量および脱硝装置入口ガス温度の関係を表わす図
表、第3図は蒸気抽気量と高圧ドラム圧力および気水分
離泰の処理可能蒸気量の関係を示す図表、第4図は本発
明の第2実施例に係る複合発電プラントの概略系統図、
第5@は蒸気抽気量と蒸気流量、流速の関係を示す図表
、第6図は本発明の第3実施例に係る複合発電プラント
の概略系統図、第71ii1は蒸気抽気量と脱硝装置入
口ガス温度の関係を示す図表、第8図は本発明の第4実
施例に係る複合発電プラント概略系統図。 第9図は蒸気抽気量と低圧主蒸気管の蒸気タービン入口
圧力、低圧ドラム圧力の関係を示す図表。 第1O図は従来の複台発電プラントの概略系統図。 第111sは従来の補助蒸気系統図である。 4・・・ガスタービン、5・・・排熱回収ボイラ。 8・・・高圧ドラム、14・・・蒸気タービン。 21・・・補助蒸気ヘッダー、23・・・補助ボイラ。 24・・・高圧蒸発器出口連絡管、27・・・圧力検知
器、28・・・流量計、31・・・脱硝装置。 36・・・蒸気タービン入口圧力、G・・・排ガス。
FIG. 1 is a schematic system diagram of a combined power generation plant according to the first embodiment of the present invention, FIG. A chart showing the relationship between steam extraction amount, high pressure drum pressure, and steam amount that can be processed by steam/water separation; FIG. 4 is a schematic system diagram of a combined power generation plant according to the second embodiment of the present invention;
Fig. 5 is a diagram showing the relationship between steam extraction amount, steam flow rate, and flow velocity, Fig. 6 is a schematic system diagram of a combined power generation plant according to the third embodiment of the present invention, and Fig. 71ii1 is a diagram showing the relationship between steam extraction amount and denitrification equipment inlet gas. FIG. 8 is a schematic system diagram of a combined power generation plant according to a fourth embodiment of the present invention. FIG. 9 is a chart showing the relationship between the steam extraction amount, the steam turbine inlet pressure of the low-pressure main steam pipe, and the low-pressure drum pressure. Figure 1O is a schematic system diagram of a conventional multiple power generation plant. No. 111s is a conventional auxiliary steam system diagram. 4... Gas turbine, 5... Exhaust heat recovery boiler. 8...High pressure drum, 14...Steam turbine. 21... Auxiliary steam header, 23... Auxiliary boiler. 24... High pressure evaporator outlet communication pipe, 27... Pressure detector, 28... Flow meter, 31... Denitrification device. 36... Steam turbine inlet pressure, G... Exhaust gas.

Claims (1)

【特許請求の範囲】 1、排ガスから脱硝と熱回収をして蒸気を発生しその蒸
気を蒸気タービンと補助蒸気系統へ供給する系統を備え
た複数の排熱回収ボイラと、蒸気を発生しその蒸気を前
記補助蒸気系統へ供給する補助ボイラと、を有し、前記
複数の排熱回収ボイラの何れか1つの排熱回収ボイラの
ドラム圧力を検知してその信号により前記補助蒸気系統
へ蒸気を供給する排熱回収ボイラと前記補助ボイラを選
択する排熱回収ボイラの補助蒸気抽気方法。 2、前記ドラム圧力の信号に代えて、蒸気又は給水の配
管内流量あるいは配管内流速の信号とする請求項1に記
載の排熱回収ボイラの補助蒸気抽気方法。 3、前記ドラム圧力の信号に代えて、脱硝装置入口ガス
温度の信号とする請求項1に記載の排熱回収ボイラの補
助蒸気抽気方法。 4、前記ドラム圧力の信号に代えて、蒸気タービン入口
圧力の信号とする請求項1に記載の排熱回収ボイラの補
助蒸気抽気方法。
[Claims] 1. A plurality of exhaust heat recovery boilers equipped with a system that denitrates and recovers heat from exhaust gas to generate steam and supplies the steam to a steam turbine and an auxiliary steam system; an auxiliary boiler for supplying steam to the auxiliary steam system, detecting the drum pressure of any one of the plurality of exhaust heat recovery boilers and supplying steam to the auxiliary steam system based on the signal thereof; A method for extracting auxiliary steam from an exhaust heat recovery boiler by selecting the exhaust heat recovery boiler to be supplied and the auxiliary boiler. 2. The auxiliary steam extraction method for an exhaust heat recovery boiler according to claim 1, wherein a signal of the flow rate or flow velocity in the pipe of steam or feed water is used instead of the signal of the drum pressure. 3. The auxiliary steam extraction method for an exhaust heat recovery boiler according to claim 1, wherein a signal of gas temperature at the inlet of the denitrification device is used instead of the signal of the drum pressure. 4. The auxiliary steam extraction method for an exhaust heat recovery boiler according to claim 1, wherein the drum pressure signal is replaced with a steam turbine inlet pressure signal.
JP63250370A 1988-10-04 1988-10-04 Auxiliary steam extraction method for waste heat recovery boiler Expired - Fee Related JP2949287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63250370A JP2949287B2 (en) 1988-10-04 1988-10-04 Auxiliary steam extraction method for waste heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63250370A JP2949287B2 (en) 1988-10-04 1988-10-04 Auxiliary steam extraction method for waste heat recovery boiler

Publications (2)

Publication Number Publication Date
JPH0297801A true JPH0297801A (en) 1990-04-10
JP2949287B2 JP2949287B2 (en) 1999-09-13

Family

ID=17206913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63250370A Expired - Fee Related JP2949287B2 (en) 1988-10-04 1988-10-04 Auxiliary steam extraction method for waste heat recovery boiler

Country Status (1)

Country Link
JP (1) JP2949287B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255389A (en) * 2006-03-24 2007-10-04 Chugoku Electric Power Co Inc:The Auxiliary steam supply device
WO2015104464A1 (en) 2014-01-07 2015-07-16 Novasep Process Process for purifying aromatic amino acids

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179310A (en) * 1981-04-28 1982-11-04 Mitsubishi Heavy Ind Ltd Boiler change-over system for additional switching-in and disconnection in combined plant
JPS5840506U (en) * 1981-09-11 1983-03-17 株式会社東芝 Combined cycle power plant

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840506B2 (en) * 1977-11-08 1983-09-06 松下電器産業株式会社 Inkjet recording method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179310A (en) * 1981-04-28 1982-11-04 Mitsubishi Heavy Ind Ltd Boiler change-over system for additional switching-in and disconnection in combined plant
JPS5840506U (en) * 1981-09-11 1983-03-17 株式会社東芝 Combined cycle power plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255389A (en) * 2006-03-24 2007-10-04 Chugoku Electric Power Co Inc:The Auxiliary steam supply device
WO2015104464A1 (en) 2014-01-07 2015-07-16 Novasep Process Process for purifying aromatic amino acids

Also Published As

Publication number Publication date
JP2949287B2 (en) 1999-09-13

Similar Documents

Publication Publication Date Title
JP3780884B2 (en) Steam turbine power plant
US8463445B2 (en) Method and system for safe drum water level determination in a combined cycle operation
US8887747B2 (en) System and method for drum level control
US10167743B2 (en) Method for controlling a steam generator and control circuit for a steam generator
US4576124A (en) Apparatus and method for fluidly connecting a boiler into pressurized steam feed line and combined-cycle steam generator power plant embodying the same
JP2001108201A (en) Multiple pressure waste heat boiler
JPH0297801A (en) Method for bleeding auxiliary steam from exhaust heat recovery boiler
JP4905941B2 (en) Waste heat recovery boiler and its steam pressure control method
JP2006063886A (en) Thermal power plant
JPH10266812A (en) Electric power control method of steam supply power generating gas turbine combined plant
JP3222035B2 (en) Double pressure type waste heat recovery boiler feeder
JP3745419B2 (en) Waste heat recovery boiler
EP0978636B1 (en) Combined cycle power plant
JPH11148603A (en) Controller for coal/residual oil gassifying combined power generation plant
JPS61213401A (en) Waste-heat recovery boiler
JP3133183B2 (en) Combined cycle power plant
JP3068972B2 (en) Combined cycle power plant
JPH0335562B2 (en)
JP2637194B2 (en) Combined plant startup bypass system and its operation method
JPH1193618A (en) Steam pressure control method for gas turbine steam cooling system
JPS63253105A (en) Compound generating plant
JPH06221504A (en) Waste heat recovery heat exchanger
JPH02195101A (en) Supplementary steam supply device
JP2951294B2 (en) How to stop the waste heat recovery boiler
JPS62162808A (en) Fuel-economizer steaming preventive device for thermal powerboiler system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees