JPS59145307A - Control system of bleeder condensing turbine in thermal and power generation plant - Google Patents

Control system of bleeder condensing turbine in thermal and power generation plant

Info

Publication number
JPS59145307A
JPS59145307A JP1857083A JP1857083A JPS59145307A JP S59145307 A JPS59145307 A JP S59145307A JP 1857083 A JP1857083 A JP 1857083A JP 1857083 A JP1857083 A JP 1857083A JP S59145307 A JPS59145307 A JP S59145307A
Authority
JP
Japan
Prior art keywords
steam
pressure
turbine
valve
process steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1857083A
Other languages
Japanese (ja)
Other versions
JPS6361484B2 (en
Inventor
Hideki Takano
英樹 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1857083A priority Critical patent/JPS59145307A/en
Publication of JPS59145307A publication Critical patent/JPS59145307A/en
Publication of JPS6361484B2 publication Critical patent/JPS6361484B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/345Control or safety-means particular thereto

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Abstract

PURPOSE:To enhance the application efficiency of process steam by controlling a pressure regulation valve as to maintain the process steam at a specified pressure via a pressure regulation setting means when the process steam is lean and as to make the steam at a turbine set pressure when the process signal is excess. CONSTITUTION:When a pressure gauge 12 detects any lean of pressure of process steam, a controller 25 opens a cut-off valve 21 and a steam pressure control valve 8 is controlled as to make a pressure regulation setting means maintain the pressure of the process steam at a specified value. On the other hand, when the process steam is excess, the controller 25 controls the steam pressure control valve 8 on the basis of the output signal of the pressure gauge 12 so that the steam pressure may become the set pressure of mixed pressure steam, with a generator's output gauge 24 monitoring the output of a generator 4.

Description

【発明の詳細な説明】 本発明は余剰のプロセス蒸気を回収できるようにした熱
併給発電所における抽気復水型タービンの制御システム
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control system for an extraction-condensation turbine in a combined heat and heat power plant that allows surplus process steam to be recovered.

ボイラーで発生した蒸気でタービン全回し、このタービ
ンの回転力で発電機を回して電力を得るプラントにおい
ては、工場の暖房等に用いるプロセス蒸気が不足した場
合、この不足に応じてタービンより蒸気を抽気すること
のできる抽気専用の抽気復水型タービンが用いられる。
In plants that generate electricity by using the steam generated by the boiler to rotate the turbine, and by using the rotational force of this turbine to rotate the generator, when there is a shortage of process steam used for heating the factory, steam is generated from the turbine in response to this shortage. An extraction condensation type turbine that can extract air and is dedicated to extraction is used.

第1図は従来の抽気復水型のタービンシステムを示すも
のであり、ボイラ(図示せず)よシの高温高圧蒸気が流
通する主蒸気管1と、核主蒸気管に接続されて後段に供
給する鼻気童を調整する主蒸気加減弁2と、該主蒸気加
減弁2より供給される蒸気のエネルギーを回転運動に変
えて連結される発電機4を駆動するタービン3と、該タ
ービン3より排出される蒸気を冷却凝縮する復水器5と
、り、−ビン3の途中(高圧段と低圧段の仕切部)に設
けられてタービン蒸気を抽気する抽気管6と、該抽気管
6に接続されてプロセス−気の夕〜ビンへの逆流を阻止
する逆止弁7と、該逆止弁7の出側に設けられてプロセ
ス蒸気の圧カ金所定値に調整する蒸気圧力調整弁8と、
抽出蒸気の流量を測定する蒸気流量計9と、廃熱ボイラ
1oの発生蒸気が供給される工場蒸気・管11における
プロセス蒸気圧を検出する圧力計12と、該圧力計12
の検出圧に基づいてプロセス蒸気の設定圧カTh一定に
保つように蒸気圧力調整弁8を制御する圧力調節設定器
13と、廃熱ボイラー1oの蒸気量が過剰になったとき
余剰分を大気に放散する蒸気放散弁14とより構成され
る。
Figure 1 shows a conventional extraction condensation type turbine system, in which there is a main steam pipe 1 through which high-temperature, high-pressure steam from a boiler (not shown) flows, and a main steam pipe connected to the nuclear main steam pipe to the downstream stage. A main steam control valve 2 that adjusts the supplied steam, a turbine 3 that converts the energy of the steam supplied from the main steam control valve 2 into rotational motion and drives a connected generator 4, and the turbine 3. a condenser 5 that cools and condenses steam discharged from the turbine; a check valve 7 that is connected to the valve 7 to prevent backflow of process steam to the bottle; and a steam pressure regulating valve provided on the outlet side of the check valve 7 to adjust the pressure of the process steam to a predetermined value. 8 and
A steam flow meter 9 that measures the flow rate of extracted steam, a pressure gauge 12 that detects the process steam pressure in the factory steam pipe 11 to which the steam generated from the waste heat boiler 1o is supplied, and the pressure gauge 12
A pressure adjustment setting device 13 controls the steam pressure adjustment valve 8 to keep the set pressure Th of the process steam constant based on the detected pressure of The steam dissipation valve 14 is configured to dissipate steam to the surrounding area.

以上の構成において、発電用ボイラより発生する主蒸気
によってタービン3は回転し、排蒸気は復水器5に送ら
れ冷却凝縮される。一方、工場等で必要とする蒸気は、
一般に廃熱ボイラーが主体であシ、このボイラーよシ供
給されるプロセス蒸気の不足をタービン3より抽気する
蒸気で補う。
In the above configuration, the turbine 3 is rotated by the main steam generated from the power generation boiler, and the exhaust steam is sent to the condenser 5 where it is cooled and condensed. On the other hand, the steam required in factories, etc.
Generally, a waste heat boiler is the main component, and the steam extracted from the turbine 3 makes up for the lack of process steam supplied from this boiler.

即ち、プロセス蒸気の不足を圧力計12で検出し、蒸気
圧力調整弁8を開方向に制御し、プロセス蒸気の圧力を
所定値に保持し、プロセス蒸気の変動を防止している。
That is, a shortage of process steam is detected by the pressure gauge 12, and the steam pressure regulating valve 8 is controlled in the opening direction to maintain the pressure of the process steam at a predetermined value and prevent fluctuations in the process steam.

しかし、従来の抽気復水型のタービンシステムでは、省
エネルギー化が進んで廃熱ボイラー10等よシ発生する
蒸気が増加して余剰となる傾向がろ9、タービン3よシ
の抽気を零にしても過剰となる場合がしばしば見られる
。このため蒸気放散弁14全開けて金魚プロセス蒸気を
大気に放散しておシ、省エネルギー化に逆行する形とな
っていた。
However, in conventional bleed condensation type turbine systems, as energy conservation progresses, the amount of steam generated by the waste heat boiler 10, etc., tends to increase and become surplus. is often found to be excessive. For this reason, the steam dissipation valve 14 is fully opened to dissipate the Goldfish process steam into the atmosphere, which goes against energy conservation.

本発明の目的は、プロセス蒸気の余剰分をタービンに導
入して回収するようにした熱併給発電所における抽気復
水型タービンの制御システムを提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a control system for an extraction-condensation turbine in a cogeneration power plant in which surplus process steam is introduced into the turbine and recovered.

本発明は、工場蒸気管と抽気管との間に、該抽気管側よ
り順次、蒸気圧力調整弁および遮断弁を配設し、プロセ
ス蒸気の不足が検出されたときに遮断弁を開いて抽気す
ると共に蒸気圧力調整弁を圧力調節設定器を介してプロ
セス蒸気を所定圧に維持し、一方、プロセス蒸気が余剰
のときに発電出力に応じて定められたタービン設定圧力
になるように蒸気圧力調整弁を制御しながらプロセス蒸
気全タービンに導入するようにしたものである。
In the present invention, a steam pressure regulating valve and a shutoff valve are arranged between a factory steam pipe and an air bleed pipe in order from the side of the air bleed pipe, and when a shortage of process steam is detected, the shutoff valve is opened to bleed air. At the same time, the steam pressure regulating valve maintains the process steam at a predetermined pressure via a pressure regulating setting device, and on the other hand, when there is surplus process steam, the steam pressure is adjusted so that the turbine set pressure is determined according to the power generation output. Process steam is introduced into all turbines while controlling valves.

第2図は本発明の一実施例を示すものであり、第1図に
示したと同一物であるものには同一符号を用いたので重
複する説明は省略するが、蒸気圧力調整弁8の工場蒸気
管11側に設けた遮断弁21と、蒸気圧力調整弁8のタ
ービン側に設けられる混圧蒸気圧力計22および抽気管
6の通過流量を61++定する蒸気流量計23と、発電
機4の発電出力全測定する発電機出力計24と、該発電
機出力計24、蒸気流量計23および混圧蒸気圧力検出
計22の各出力信号に基いて蒸気圧力調節弁8を制御す
る制御装[25と、該制御装置25より出力される指令
に基いて遮断弁21を開閉制御する弁開閉装置26を設
けた構成において第1図の構成と相違する。
FIG. 2 shows one embodiment of the present invention, and the same reference numerals are used for the same parts as shown in FIG. 1, so redundant explanation will be omitted. A shutoff valve 21 provided on the steam pipe 11 side, a mixed pressure steam pressure gauge 22 provided on the turbine side of the steam pressure regulating valve 8, a steam flow meter 23 that determines the flow rate passing through the extraction pipe 6 by 61++, and a steam flow meter 23 provided on the turbine side of the steam pressure regulating valve 8. A control device [25 This differs from the configuration shown in FIG. 1 in that a valve opening/closing device 26 is provided for controlling the opening and closing of the cutoff valve 21 based on commands output from the control device 25.

以上の構成において、第3図のようにプロセス蒸気の圧
力が不足し、PL よシ低下したことを圧力計12が検
出すると、タービンよりの抽気を開始すべく制御装置2
5は遮断弁21を開き、一方、圧力調節設定器13は圧
力計12の検出値に基いてプロセス蒸気圧力が設定値を
維持するように蒸気圧力調整弁8をコントロールする。
In the above configuration, when the pressure gauge 12 detects that the process steam pressure is insufficient and the PL has decreased as shown in FIG. 3, the control device 12 starts extracting air from the turbine.
5 opens the shutoff valve 21, while the pressure adjustment setting device 13 controls the steam pressure adjustment valve 8 based on the detected value of the pressure gauge 12 so that the process steam pressure maintains the set value.

一方、プロセス蒸気が余剰の場合には、プロセス蒸気圧
は第3図のように設定値Ptk越える。
On the other hand, when there is surplus process steam, the process steam pressure exceeds the set value Ptk as shown in FIG.

これを検知した圧力計12の出力信号に基き制御装置2
5は蒸気圧力調整弁8をコントロールする。
Based on the output signal of the pressure gauge 12 that detected this, the control device 2
5 controls a steam pressure regulating valve 8.

この場合、発電機出力に対応したタービン圧力を予め設
定しておき、発11機出力計24で発電機4の出力を監
視しながら設定混圧蒸気圧力になるように蒸気圧力調整
弁8を制御装置25によって制御する。設定混圧蒸気圧
力に達したか否かは混圧蒸気圧力検出計22で監視する
。 ” 発*a出力に応じたタービン圧力の設定方法を示した説
明図が第4図であり、−例として、最高用カフ 5.0
00 KWのタービンを用いると共に、タービン能力の
点からプロセス蒸気の導入量の上限を30 T/Hに設
定した場合を例示している。
In this case, the turbine pressure corresponding to the generator output is set in advance, and the steam pressure regulating valve 8 is controlled so that the set mixed pressure steam pressure is achieved while monitoring the output of the generator 4 using the generator 11 output meter 24. Controlled by device 25. The mixed pressure steam pressure detector 22 monitors whether the set mixed pressure steam pressure has been reached. ” Figure 4 is an explanatory diagram showing how to set the turbine pressure according to the output power.
In this example, a 0.00 KW turbine is used, and the upper limit of the amount of process steam introduced is set to 30 T/H from the viewpoint of turbine capacity.

コンピュータ等を用いて構成される制御装置25は、第
4図に示すような発電機出力に応じた混圧蒸気圧力特性
がプログラム設定されており、発電機出力計24による
出力値(KW)  から応当する混圧蒸気圧力(Kp/
m)k読み出し、該圧力値に一致する混圧蒸気を圧力計
22が検出するように蒸気圧力調整弁8をコントロール
する。抽気管6よりタービンに導入される蒸気量の増加
にともなって発電機出力も増大するが、本例の如くに導
入量の限界が30T/Hである場合には、最高出力の7
5.000 KW、混圧蒸気圧力30Ky7−に達した
状態に2いてもプロセス蒸気が余剰であれば、弁開閉装
置26に設けたインターロック回路(図示せず)により
、遮断弁21および蒸気圧力調整弁8が閉となり、この
余剰プロセス蒸気を他のタービンに供給して電力で回収
する。
The control device 25, which is configured using a computer or the like, is programmed with mixed pressure steam pressure characteristics according to the generator output as shown in FIG. The corresponding mixed pressure steam pressure (Kp/
m) Read k and control the steam pressure regulating valve 8 so that the pressure gauge 22 detects mixed pressure steam that matches the pressure value. As the amount of steam introduced into the turbine from the bleed pipe 6 increases, the generator output also increases, but when the limit of the amount introduced is 30T/H as in this example, the maximum output is 7.
5.000 KW, even if the mixed pressure steam pressure reaches 30Ky7-2, if there is excess process steam, an interlock circuit (not shown) provided in the valve opening/closing device 26 controls the shutoff valve 21 and the steam pressure. The regulating valve 8 is closed, and this excess process steam is supplied to other turbines and recovered using electric power.

なお、プロセス余剰蒸気をタービンに導入することによ
り、タービン能力を越える過大蒸気が生じてタービンを
破損するのを防止するため、インターロック回路2.7
t−設けて遮断弁21を直ちに閉じるように制御する。
Note that an interlock circuit 2.7 is installed to prevent excessive steam exceeding the turbine capacity from occurring and damaging the turbine by introducing process surplus steam into the turbine.
t- is provided and the shutoff valve 21 is controlled to close immediately.

発明者は次の条件および規格゛を有すると共に第2図に
示した構成の抽気復水タービンを運転して実施を試みた
ところ良好な結果が得られた。
The inventor attempted to operate an extraction condensate turbine having the following conditions and specifications and the configuration shown in FIG. 2, and obtained good results.

主蒸気圧力      127匂/− 主蒸気温度      538℃ 主蒸気流量      150 T/Hプロセス蒸気圧
CP、 Pり  16〜17Kg/ノ発電機最大出力 
   75.000KW発1r、機出力’1k50.0
00KWに整定したのち遮断弁21を全開にし、蒸気圧
力調整弁21を徐々に開き始める。この操作によシ流量
計23が10T/Hの混圧蒸気量を検知した時点で、第
4図に示すように発電機出力は50.000KWから5
3゜000 KWにまで上昇させることができた。更に
、蒸気圧力調整弁8を開く制御を行って混圧蒸気圧力3
0 T/Hまで増加させ、発電機出力′f:58.oo
OKWに整定した。このような操作過程における混圧蒸
気量の変化を示したのが第4図に示す部分負荷ラインで
ある。この50.000 KW〜58.000KWの発
電機出力変化に対し、混圧蒸気圧力は18Kg/ctI
〜23Kg/dに上昇できた。
Main steam pressure 127 odor/- Main steam temperature 538℃ Main steam flow rate 150 T/H Process steam pressure CP, Pri 16-17Kg/no Generator maximum output
75.000KW 1r, machine output '1k50.0
After setting to 00 KW, the shutoff valve 21 is fully opened and the steam pressure regulating valve 21 begins to gradually open. By this operation, when the flowmeter 23 detects a mixed pressure steam amount of 10T/H, the generator output changes from 50,000KW to 5KW as shown in Figure 4.
It was possible to increase the power to 3゜000 KW. Furthermore, control is performed to open the steam pressure regulating valve 8 to increase the mixed pressure steam pressure 3.
0 T/H, generator output 'f: 58. oo
It has been set to OKW. The partial load line shown in FIG. 4 shows the change in the amount of mixed pressure steam during such an operation process. For this generator output change of 50,000 KW to 58,000 KW, the mixed pressure steam pressure is 18 Kg/ctI
It was possible to increase the weight to ~23Kg/d.

第4図に示す最高負荷ラインは、タービン能力上限近傍
で前述の発電機出力変化と同様の操作を行った例である
が、当初に整定しだ通りの出力増加と混圧蒸気の得られ
ることがわかる。
The maximum load line shown in Figure 4 is an example of performing the same operation as the generator output change described above near the upper limit of turbine capacity, but it is possible to obtain the output increase and mixed pressure steam as originally set. I understand.

以上より明らかなように本発明によれば、プロセス蒸気
(工場蒸気)の不足時にはタービ/より抽気すると共に
、プロセス蒸気の余剰時には余剰プロセス蒸気をタービ
ンに導入して電力として回収することができるため、プ
ロセス蒸気の効率的な運用が可能となり1.省エネルギ
ー化を図ることができる。
As is clear from the above, according to the present invention, when there is a shortage of process steam (factory steam), air can be extracted from the turbine, and when there is a surplus of process steam, the surplus process steam can be introduced into the turbine and recovered as electricity. 1. Efficient operation of process steam becomes possible. Energy saving can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の抽気復水型のタービンシステムの系統図
、第2図は太澄明の一実施例を示す系統図、第3図はプ
ロセス蒸気圧設定説明図、第1図は本発明に係る発電機
出力に対するタービン圧力設定説明図である。 2・・・主蒸気加減弁、3・・・タービン、4・・・発
電機、5・・・復水器、6・・・抽気管、8・・・蒸気
圧力調整弁、10・・・廃熱ボイラー、13・・・圧力
調節設定器、21・・・遮断弁、22・・・混圧蒸気圧
力計、23・・・蒸気流量計、24・・・発電機出力計
、25・・・制御装置、26・・・弁開閉装置、27・
・・インターロック回路。 代理人 鵜  沼  辰  之 (ほか2名)
Fig. 1 is a system diagram of a conventional extraction condensation type turbine system, Fig. 2 is a system diagram showing an embodiment of Taichoming, Fig. 3 is an explanatory diagram of process steam pressure setting, and Fig. 1 is a system diagram of the present invention. It is an explanatory diagram of turbine pressure setting with respect to the generator output. 2... Main steam control valve, 3... Turbine, 4... Generator, 5... Condenser, 6... Bleed pipe, 8... Steam pressure regulating valve, 10... Waste heat boiler, 13... Pressure adjustment setting device, 21... Shutoff valve, 22... Mixed pressure steam pressure gauge, 23... Steam flow meter, 24... Generator output meter, 25...・Control device, 26...Valve opening/closing device, 27・
...Interlock circuit. Agent Tatsuyuki Unuma (and 2 others)

Claims (1)

【特許請求の範囲】[Claims] (1)蒸気発生源より高圧蒸気の供給を受けて回転し発
14を機を駆動すると共にプロセス蒸気の不足時にター
ビンの途中段に設けた抽気管よりタービン蒸気を抽気し
てプロセス蒸気に補充する抽気復水型タービンにおいて
、前記抽気管に接続されて馳抽気管金流通する蒸気tを
調節する蒸気圧カー整弁と、駈蒸気圧力w4灸弁とプロ
セス蒸気配管系との間に接続される辿障r弁と、前記タ
ービンによって駆動される発電様の電力出力に応じたタ
ービン圧力を予め設定しておき、プロセス蒸気の過剰時
に前記遮断弁を開けると共に電力出力値に応じて前記設
定タービン圧力になるよりに前記蒸気圧力!1に4整弁
t−th御する制御部とを設けたこと金1#徴とする熱
併給発電所における抽気復水型タービンの制御システム
。 (2、特許請求の範囲第1項において、前記抽気管を介
して前記タービンに導入される混圧蒸気が設定圧を越え
るとき前記遮断弁を閉じる指令を発するインターロック
回路を設けたことを特徴とする熱併給発電所における抽
気復水型タービンの制御システム。
(1) The generator 14 rotates when supplied with high-pressure steam from a steam generation source, and when there is a shortage of process steam, extracts turbine steam from a bleed pipe installed in the middle of the turbine to replenish the process steam. In the bleed condensation type turbine, a steam pressure control valve is connected to the bleed pipe and is connected between the steam pressure control valve that adjusts the steam flowing through the bleed pipe, the steam pressure w4 moxibustion valve, and the process steam piping system. A turbine pressure is set in advance according to the power output of power generation driven by the turbine and the cutoff valve is opened when process steam is excessive, and the set turbine pressure is set according to the power output value. The steam pressure will be more than that! 1. A control system for an extraction condensation turbine in a combined heat and heat power plant, comprising: 1 and a control section for controlling 4 valves t-th. (2. Claim 1 is characterized in that an interlock circuit is provided that issues a command to close the shutoff valve when the mixed pressure steam introduced into the turbine via the bleed pipe exceeds a set pressure. A control system for an extraction condensation turbine in a cogeneration power plant.
JP1857083A 1983-02-07 1983-02-07 Control system of bleeder condensing turbine in thermal and power generation plant Granted JPS59145307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1857083A JPS59145307A (en) 1983-02-07 1983-02-07 Control system of bleeder condensing turbine in thermal and power generation plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1857083A JPS59145307A (en) 1983-02-07 1983-02-07 Control system of bleeder condensing turbine in thermal and power generation plant

Publications (2)

Publication Number Publication Date
JPS59145307A true JPS59145307A (en) 1984-08-20
JPS6361484B2 JPS6361484B2 (en) 1988-11-29

Family

ID=11975277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1857083A Granted JPS59145307A (en) 1983-02-07 1983-02-07 Control system of bleeder condensing turbine in thermal and power generation plant

Country Status (1)

Country Link
JP (1) JPS59145307A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145303A (en) * 1983-02-08 1984-08-20 Mitsui Eng & Shipbuild Co Ltd Bleeder turbine equipment
JPS63106303A (en) * 1986-10-24 1988-05-11 Hitachi Ltd Drain inflow preventive device for mixed-pressure/ bleeding turbine
JP2007309194A (en) * 2006-05-18 2007-11-29 Hitachi Ltd Steam turbine plant
JP2019007391A (en) * 2017-06-22 2019-01-17 住友金属鉱山株式会社 Steam extraction control method for steam turbine generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145303A (en) * 1983-02-08 1984-08-20 Mitsui Eng & Shipbuild Co Ltd Bleeder turbine equipment
JPS63106303A (en) * 1986-10-24 1988-05-11 Hitachi Ltd Drain inflow preventive device for mixed-pressure/ bleeding turbine
JP2007309194A (en) * 2006-05-18 2007-11-29 Hitachi Ltd Steam turbine plant
JP2019007391A (en) * 2017-06-22 2019-01-17 住友金属鉱山株式会社 Steam extraction control method for steam turbine generator

Also Published As

Publication number Publication date
JPS6361484B2 (en) 1988-11-29

Similar Documents

Publication Publication Date Title
JP3800384B2 (en) Combined power generation equipment
JP2000161014A5 (en)
JPH0454802B2 (en)
CN113638776B (en) Steam extraction back pressure type steam turbine thermodynamic system and control method thereof
CN113107828B (en) Energy-saving control strategy applicable to condensate pump of thermal power plant
JP4937822B2 (en) Condenser vacuum degree control system and power plant including the system
JPS59145307A (en) Control system of bleeder condensing turbine in thermal and power generation plant
JPS60222511A (en) Thermal power generating equipment
CA2364125C (en) Steam cooling apparatus for gas turbine
JP2578328B2 (en) Output control method for back pressure turbine generator
JP2737884B2 (en) Steam turbine generator
JP5656754B2 (en) Power generation facility for waste incinerator and control method thereof
JPS61187503A (en) Temperature decreasing controller of turbine gland sealing steam
JPS5965507A (en) Operation of complex cycle power generating plant
JPH0932512A (en) Steam supply device of steam turbine gland seal
JPS59221410A (en) Starting method of combined plant
JPH0454204A (en) Control device for gas-extraction and condensation type turbine
JPH10141006A (en) Control device for city gas line energy recovery turbine
JPH06330706A (en) Back pressure steam turbine system
GB2176248A (en) Turbine control
JP2554099B2 (en) Control device for combined cycle power plant
JPH04140405A (en) Steam turbine type power generation facility
JPH11294105A (en) Steam turbine plant
JPS6260906A (en) Control system for extracted steam and exhaust pressure of steam supply and power generation facility
JPH02163402A (en) Compound electric power plant and its operation