JPH10233370A - Heat treatment apparatus for semiconductor substrate - Google Patents

Heat treatment apparatus for semiconductor substrate

Info

Publication number
JPH10233370A
JPH10233370A JP5230797A JP5230797A JPH10233370A JP H10233370 A JPH10233370 A JP H10233370A JP 5230797 A JP5230797 A JP 5230797A JP 5230797 A JP5230797 A JP 5230797A JP H10233370 A JPH10233370 A JP H10233370A
Authority
JP
Japan
Prior art keywords
temperature
heat treatment
semiconductor substrate
lamp
treatment apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5230797A
Other languages
Japanese (ja)
Inventor
Masayuki Suzuki
雅行 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP5230797A priority Critical patent/JPH10233370A/en
Publication of JPH10233370A publication Critical patent/JPH10233370A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain the surface temperature of a container at a set value by a method wherein a lamp is housed inside a case and a cooling gas is circulated inside the case in a heat treatment apparatus, for a semiconductor substrate, by which the substrate is heated by means of the lamp. SOLUTION: By an optical fiber 23, light emitted from the surface of a vacuum container 1 is guided to a temperature sensor 22; the surface temperature of the vacuum container 1 is detected on the basis of the intensity of received light; and a detection result is input to a flow-rate controller 24. The flow-rate controller 24 is provided with a temperature setter; the speed of rotation of a variable-flow-rate blower 18 is controlled so as to be variable on the basis of a set temperature and on the basis of a detection temperature which is input from the temperature sensor 22; and the flow rate of a cooling gas inside a cooling-gas flow passage 21 is controlled. The temperature of the vacuum container 1 is raised by a heating operation in a state that a lamp is electrified, and the temperature is lowered when a wafer is carried into and out. Since the flow rate of the cooling gas inside the cooling-gas flow passage 21 is controlled, the surface temperature of the vacuum container 1 in every treatment can be maintained at a set value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体製造装置を構
成する装置の1つである半導体基板の熱処理装置、特に
基板表面に薄膜の生成、エッチング等の処理を行い半導
体を製造する半導体製造工程に於いて、基板を予熱する
半導体基板の熱処理装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor substrate heat treatment apparatus which is one of the apparatuses constituting a semiconductor production apparatus, and more particularly to a semiconductor production process for producing a semiconductor by performing processes such as thin film generation and etching on the substrate surface. The present invention relates to a semiconductor substrate heat treatment apparatus for preheating a substrate.

【0002】[0002]

【従来の技術】半導体製造装置はウェーハ、或はガラス
基板に種々の薄膜を生成し、或はエッチング等を行い基
板表面に多数の半導体素子を形成するものである。
2. Description of the Related Art A semiconductor manufacturing apparatus forms various thin films on a wafer or a glass substrate, or forms a large number of semiconductor elements on the surface of the substrate by etching or the like.

【0003】斯かる半導体製造装置の一連の処理工程に
於いて、薄膜生成工程、エッチング工程等の表面処理工
程では、被処理基板が急速加熱され、発生した熱応力に
より表面処理された結晶間で辷りが発生するのを防止す
る為、表面処理前の準備処理として、被処理基板を表面
処理温度迄予熱する工程がある。
[0003] In a series of processing steps of such a semiconductor manufacturing apparatus, in a surface processing step such as a thin film forming step and an etching step, a substrate to be processed is rapidly heated, and a crystal between the surface-treated crystals due to generated thermal stress is generated. In order to prevent the occurrence of slip, as a preparatory process before the surface treatment, there is a step of preheating the substrate to be treated to the surface treatment temperature.

【0004】斯かる予熱処理を行う装置の1つに半導体
基板の熱処理装置がある。
One of the apparatuses for performing such a pre-heat treatment is a heat treatment apparatus for a semiconductor substrate.

【0005】半導体製造装置には、多数の被処理基板を
一度に処理するバッチ式のものと、被処理基板を1枚ず
つ処理する枚葉式のものがある。図3は、従来の枚葉式
半導体製造装置に於ける半導体基板の熱処理装置を示し
ている。
Semiconductor manufacturing apparatuses include a batch type that processes a large number of substrates to be processed at once, and a single-wafer type that processes a plurality of substrates to be processed one by one. FIG. 3 shows a heat treatment apparatus for a semiconductor substrate in a conventional single-wafer semiconductor manufacturing apparatus.

【0006】図中1は、断面が偏平な矩形をした中空筒
状の石英ガラス製の真空容器であり、該真空容器1の両
端には図示しないゲートバルブが設けられ、前記真空容
器1内部は気密となっている。該真空容器1の内部底面
には4本のウェーハサポート2が立設され、該ウェーハ
サポート2の上端で被処理基板であるウェーハ3が支持
される。
In FIG. 1, reference numeral 1 denotes a hollow cylindrical quartz glass vacuum vessel having a flat rectangular cross section. Gate valves (not shown) are provided at both ends of the vacuum vessel 1, and the inside of the vacuum vessel 1 is It is airtight. Four wafer supports 2 are erected on the inner bottom surface of the vacuum vessel 1, and a wafer 3 as a substrate to be processed is supported on the upper end of the wafer support 2.

【0007】前記真空容器1の上方には、複数の棒状赤
外ランプ4が前記真空容器1の上面に平行な面内に並列
に等間隔で設けられている。又、前記棒状赤外ランプ4
の上側には、反射板5が前記棒状赤外ランプ4と平行に
設けられ、該反射板5は平面的には矩形であり、該棒状
赤外ランプ4と相対する面には、該棒状赤外ランプ4を
収納し、該棒状赤外ランプ4からの赤外線を前記ウェー
ハ3に向けて反射する様に凹部6が前記棒状赤外ランプ
4と同数形成されている。又、前記真空容器1の下方に
は、棒状赤外ランプ7、反射板8、凹部9が前記真空容
器1に関して、前記棒状赤外ランプ4、前記反射板5、
前記凹部6と対称的に配設されている。
Above the vacuum vessel 1, a plurality of rod-shaped infrared lamps 4 are provided at regular intervals in a plane parallel to the upper surface of the vacuum vessel 1. The rod-shaped infrared lamp 4
On the upper side, a reflecting plate 5 is provided in parallel with the rod-shaped infrared lamp 4, and the reflecting plate 5 is rectangular in plan view. The same number of the concave lamps 6 as the rod-shaped infrared lamps 4 are formed so as to house the outer lamps 4 and reflect the infrared light from the rod-shaped infrared lamps 4 toward the wafer 3. Further, below the vacuum vessel 1, a rod-shaped infrared lamp 7, a reflection plate 8, and a concave portion 9 are provided for the vacuum vessel 1 with respect to the rod-shaped infrared lamp 4, the reflection plate 5,
It is arranged symmetrically with the recess 6.

【0008】ウェーハ3が前記真空容器1内に搬入さ
れ、該真空容器1内が真空引きされた後、前記棒状赤外
ランプ4に通電されると、前記ウェーハ3は前記棒状赤
外ランプ4の赤外照射光で輻射加熱されると共に、前記
棒状赤外ランプ4と相対する前記真空容器1の赤外線透
過部の多重反射により輻射加熱される。
When the wafer 3 is carried into the vacuum vessel 1 and the inside of the vacuum vessel 1 is evacuated, and then the rod-shaped infrared lamp 4 is energized, the wafer 3 is placed on the rod-shaped infrared lamp 4. The radiant heating is performed by the infrared irradiation light, and the radiant heating is performed by the multiple reflection of the infrared transmitting portion of the vacuum vessel 1 facing the rod-shaped infrared lamp 4.

【0009】ウェーハ3が基板表面処理温度迄加熱され
ると、前記棒状赤外ランプ4への通電が停止され、図示
しない基板処理室へ基板が搬出される。
When the wafer 3 is heated to the substrate surface processing temperature, the power supply to the rod-shaped infrared lamp 4 is stopped, and the substrate is carried out to a substrate processing chamber (not shown).

【0010】[0010]

【発明が解決しようとする課題】上記従来のものでは、
前記ウェーハ3の加熱を順次繰返すに従い、前記真空容
器1も前記棒状赤外ランプ4により加熱される。従っ
て、前記真空容器1は前記棒状赤外ランプ4通電状態で
は加熱により温度が上昇し、非通電状態の被処理基板の
搬入搬出時には温度が低下し、図4に示される様に前記
真空容器1の表面温度は上昇下降を繰返す。而も、従来
では前記真空容器1の上昇温度と下降温度について特に
配慮されていないので該真空容器1の表面温度が徐々に
上昇し、該真空容器1の最高表面温度は最終的には一定
となるが、一定となる迄には長時間を要していた。
SUMMARY OF THE INVENTION In the above prior art,
As the heating of the wafer 3 is repeated sequentially, the vacuum vessel 1 is also heated by the rod-shaped infrared lamp 4. Accordingly, the temperature of the vacuum vessel 1 rises by heating when the rod-shaped infrared lamp 4 is energized, and the temperature decreases when the substrate to be processed is carried in and out in the non-energized state. As shown in FIG. Surface temperature repeatedly rises and falls. Conventionally, the temperature of the vacuum vessel 1 is not particularly considered in terms of the rising temperature and the falling temperature. Therefore, the surface temperature of the vacuum vessel 1 gradually increases, and the maximum surface temperature of the vacuum vessel 1 is determined to be finally constant. It took a long time until it became constant.

【0011】ウェーハは前記真空容器1の赤外線透過部
の表面温度の影響を強く受ける為、前記真空容器1の最
高温度が推移していく過程では熱処理温度の再現性が悪
化する。この為、熱処理されたウェーハ間で熱履歴差が
生じ、デバイスの熱履歴差による電気的特性差が大きく
なり、又、ウェーハの昇温速度、降温速度、及び最高温
度が一定せず、製品の歩留まりを低下させていた。又、
前記真空容器1の温度が安定する迄に無用の時間を費や
すこととなり、製品の生産性が低下するという問題があ
った。
Since the wafer is strongly affected by the surface temperature of the infrared transmitting portion of the vacuum vessel 1, the reproducibility of the heat treatment temperature deteriorates while the maximum temperature of the vacuum vessel 1 changes. For this reason, a thermal history difference occurs between the heat-treated wafers, and a difference in electrical characteristics due to the thermal history difference of the device increases.Moreover, the temperature rising rate, the temperature decreasing rate, and the maximum temperature of the wafer are not constant, and the product The yield was decreasing. or,
Unnecessary time is spent until the temperature of the vacuum vessel 1 is stabilized, and there is a problem that the productivity of the product is reduced.

【0012】本発明は斯かる実情に鑑み、熱処理温度の
再現性を向上させ、処理されたウェーハ間での熱履歴差
をなくすことにより、製品の歩留まりを高め、又、前記
真空容器1の温度が安定する迄の時間の短縮化により、
生産性の向上を図ろうとするものである。
In view of such circumstances, the present invention improves the reproducibility of the heat treatment temperature and eliminates the difference in the thermal history between the processed wafers, thereby increasing the product yield, and also improving the temperature of the vacuum vessel 1. By shortening the time until is stabilized,
The goal is to improve productivity.

【0013】[0013]

【課題を解決するための手段】本発明は、透明容器内に
収納された被処理基板をランプ加熱する半導体基板の熱
処理装置に於いて、ランプをケース内部に収納し、該ケ
ース内部に冷却用気体を流通させた半導体基板の熱処理
装置に係り、又、前記ケース内部を反射板により仕切
り、仕切られた空間のうち容器のうち容器側の空間にラ
ンプを設け、他の空間に冷却気体供給源を連通し、前記
反射板に孔を設けると共に前記ケースに他の空間に連通
する排気口を設けた半導体基板の熱処理装置に係り、
又、前記孔の開口位置を前記ランプに臨ませた半導体基
板の熱処理装置に係り、又、前記透明容器の検出する温
度検出器を設けると共に該温度検出器からの検出温度に
基づき前記冷却気体供給源からの流体流量を制御する流
量制御器を設けた半導体基板の熱処理装置に係り、更に
又、前記温度検出器が光を基に温度を検出する温度検出
器であり、透明容器の表面から発せられる光を前記温度
検出器に導く光ファイバを設けた半導体基板の熱処理装
置に係り、前記透明容器の表面を強制的に空冷し、又、
透明容器の表面温度を検出して冷却流体流量を制御し
て、該透明容器の表面温度を設定値に保持する。
SUMMARY OF THE INVENTION The present invention relates to a semiconductor substrate heat treatment apparatus for heating a substrate to be processed, which is accommodated in a transparent container, with a lamp. The present invention relates to a heat treatment apparatus for a semiconductor substrate through which a gas is circulated, the interior of the case is partitioned by a reflector, a lamp is provided in a space of the container in the partitioned space, and a cooling gas supply source is provided in another space. The present invention relates to a heat treatment apparatus for a semiconductor substrate provided with a hole in the reflector and an exhaust port communicating with another space in the case,
Further, the present invention relates to a heat treatment apparatus for a semiconductor substrate in which the opening position of the hole faces the lamp, further comprising a temperature detector for detecting the transparent container, and supplying the cooling gas based on a detected temperature from the temperature detector. The present invention relates to a semiconductor substrate heat treatment apparatus provided with a flow rate controller for controlling a fluid flow rate from a source, wherein the temperature detector is a temperature detector for detecting a temperature based on light, and is emitted from a surface of a transparent container. The present invention relates to a heat treatment apparatus for a semiconductor substrate provided with an optical fiber for guiding light to the temperature detector, forcibly air-cooling the surface of the transparent container,
The surface temperature of the transparent container is detected and the flow rate of the cooling fluid is controlled to maintain the surface temperature of the transparent container at a set value.

【0014】[0014]

【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態を説明する。図1中、図3中で示したものと
と同等のものには、同符号を付してある。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, the same components as those shown in FIG. 3 are denoted by the same reference numerals.

【0015】図中1は、断面が偏平な矩形をした筒状の
石英ガラス製の真空容器であり、該真空容器1の内部底
面には4本のウェーハサポート2が立設され、該ウェー
ハサポート2の上端で被処理基板であるウェーハ3が支
持される。前記真空容器1の上側には上部冷却ユニット
10が設けられ、前記真空容器1の下側には下部冷却ユ
ニット11が設けられ、前記上部冷却ユニット10と下
部冷却ユニット11は同構造で対称的に配設されてい
る。
In FIG. 1, reference numeral 1 denotes a cylindrical vacuum vessel made of quartz glass having a flat rectangular cross section, and four wafer supports 2 are erected on the inner bottom surface of the vacuum vessel 1; A wafer 3 as a substrate to be processed is supported on the upper end of the wafer 2. An upper cooling unit 10 is provided above the vacuum vessel 1, and a lower cooling unit 11 is provided below the vacuum vessel 1. The upper cooling unit 10 and the lower cooling unit 11 have the same structure and are symmetrical. It is arranged.

【0016】以下は上部冷却ユニット10について説明
する。
Hereinafter, the upper cooling unit 10 will be described.

【0017】前記真空容器1の上側には、1つの面が開
放された弁当箱形状のケース12が連設され、該ケース
12の上面部中央には吸込口13が設けられ、前記ケー
ス12の周囲側面下部には吹出口14が設けられてい
る。前記ケース12の内部には平面が矩形で板状の反射
板5が設けられ、該反射板5により前記ケース12内部
は第1チャンバ15と第2チャンバ16とに仕切られ、
前記第1チャンバ15には前記吸込口13及び風導17
を介して可変流量ブロア18が連通されている。
On the upper side of the vacuum container 1, a lunch box-shaped case 12 having one open side is continuously provided, and a suction port 13 is provided at the center of the upper surface of the case 12. An outlet 14 is provided at the lower part of the peripheral side surface. A plate-like reflector 5 having a rectangular flat surface is provided inside the case 12, and the inside of the case 12 is partitioned into a first chamber 15 and a second chamber 16 by the reflector 5.
The first chamber 15 has the suction port 13 and the air conduction 17 therein.
The variable flow blower 18 is communicated via.

【0018】前記反射板5と前記真空容器1の間には、
該真空容器1の上面に平行な面内に並列に等間隔で、所
要本数、本実施の形態では5本の棒状赤外ランプ4が前
記反射板5に近接して設けられ、該反射板5には前記棒
状赤外ランプ4と相対する面に、該棒状赤外ランプ4を
収納し該棒状赤外ランプ4からの赤外線を前記ウェーハ
3に向けて反射する様に、凹部6が前記棒状赤外ランプ
4と同数形成され、前記反射板5の前記凹部6の薄肉部
分には前記棒状赤外ランプ4と同数の孔19が設けられ
ている。
Between the reflection plate 5 and the vacuum vessel 1,
In a plane parallel to the upper surface of the vacuum vessel 1, a required number, in this embodiment, five rod-shaped infrared lamps 4 are provided close to the reflector 5 at equal intervals in parallel, and the reflector 5 is provided. The recess 6 is provided with the rod-shaped red lamp 4 so that the rod-shaped infrared lamp 4 is housed on the surface facing the rod-shaped infrared lamp 4 and the infrared light from the rod-shaped infrared lamp 4 is reflected toward the wafer 3. The same number of outer lamps 4 are formed, and the same number of holes 19 as the rod-shaped infrared lamps 4 are provided in the thin portion of the concave portion 6 of the reflection plate 5.

【0019】前記真空容器1内には、前記吸込口13か
ら前記第1チャンバ15、孔19、前記凹部6と前記棒
状赤外ランプ4との間の隙間20及び前記第2チャンバ
16を経て、前記吹出口14に至るまでの冷却気体流通
路21が形成されている。
In the vacuum vessel 1, the first chamber 15, the hole 19, the gap 20 between the concave portion 6 and the rod-shaped infrared lamp 4 from the suction port 13 and the second chamber 16 are provided. A cooling gas flow passage 21 extending to the outlet 14 is formed.

【0020】更に、温度センサ22が、熱の影響を受け
ない様、前記ケース12の外部に設けられ、光ファイバ
23が前記ケース12を気密に貫通し、前記光ファイバ
23の先端は前記真空容器1の上面近傍非接触に位置
し、前記温度センサ22は前記ケース12の外部に設け
られている流量制御器24と電気的に接続され、又、該
流量制御器24は前記可変流量ブロア18と電気的に接
続されている。
Further, a temperature sensor 22 is provided outside the case 12 so as not to be affected by heat, an optical fiber 23 penetrates the case 12 in an airtight manner, and a tip of the optical fiber 23 is connected to the vacuum vessel. 1, the temperature sensor 22 is electrically connected to a flow controller 24 provided outside the case 12, and the flow controller 24 is connected to the variable flow blower 18. It is electrically connected.

【0021】以下、作動を説明する。The operation will be described below.

【0022】ウェーハ3が前記真空容器1内に搬入さ
れ、該真空容器1内が真空引きされた後、前記棒状赤外
ランプ4に通電されると、前記ウェーハ3は前記棒状赤
外ランプ4の赤外照射光で輻射加熱されると共に、前記
棒状赤外ランプ4と相対する前記真空容器1の赤外線透
過部の多重反射により輻射加熱される。前記ウェーハ3
が基板表面処理温度迄加熱されると、前記棒状赤外ラン
プ4への通電が停止され、図示しない基板処理室へ基板
が搬出される。
When the wafer 3 is carried into the vacuum vessel 1 and the inside of the vacuum vessel 1 is evacuated, and then the bar-shaped infrared lamp 4 is energized, the wafer 3 The radiant heating is performed by the infrared irradiation light, and the radiant heating is performed by the multiple reflection of the infrared transmitting portion of the vacuum vessel 1 facing the rod-shaped infrared lamp 4. The wafer 3
When the substrate is heated to the substrate surface processing temperature, the power supply to the rod-shaped infrared lamp 4 is stopped, and the substrate is carried out to a substrate processing chamber (not shown).

【0023】前記ウェーハ3が加熱された後、次の該ウ
ェーハ3が前記真空容器1内に搬入される前、前記可変
流量ブロア18が駆動され送風が開始される。冷却気体
は前記風導17、前記吸込口13を経て、前記孔19よ
り前記棒状赤外ランプ4と前記凹部6との隙間20を流
通して前記第2チャンバ16に流入し、前記真空容器1
の表面を冷却した後、前記吹出口14より流出する。前
記冷却気体が前記隙間20を流通する道程で前記棒状ラ
ンプ4も冷却される。又、冷却は加熱時に行なってもよ
く、加熱時に冷却することで温度上昇特性を制御するこ
とが可能となる。
After the wafer 3 is heated and before the next wafer 3 is loaded into the vacuum vessel 1, the variable flow blower 18 is driven to start blowing. The cooling gas flows into the second chamber 16 from the hole 19 through the air guide 17, the suction port 13, the gap 20 between the rod-shaped infrared lamp 4 and the recess 6, and flows into the second chamber 16.
After cooling the surface, the air flows out from the outlet 14. The rod-shaped lamp 4 is also cooled while the cooling gas flows through the gap 20. In addition, cooling may be performed during heating, and by cooling during heating, the temperature rise characteristics can be controlled.

【0024】前記光ファイバ23は前記真空容器1上面
から発せられる光を前記温度センサ22に導き、該温度
センサ22は受光した光の強度等により前記真空容器1
の表面温度を検出し、検出結果は前記流量制御器24に
入力する。前記流量制御器24は温度設定器(図示せ
ず)を具備し、該温度設定器により、設定された温度と
前記温度センサ22から入力される検出温度とを基に前
記可変流量ブロア18の回転数を可変に制御し、前記冷
却気体流通路21内の冷却用気体の流量を制御する。前
記真空容器1は前記棒状赤外ランプ4通電状態では加熱
により温度が上昇し、非通電状態のウェーハの搬入搬出
時には温度が低下し、図2に示される様に前記真空容器
1の表面温度は上昇下降を繰返すが、前記冷却気体流通
路21内の冷却用気体の流量が制御される為、処理毎の
前記真空容器1表面の最高温度が設定値に保持される。
The optical fiber 23 guides light emitted from the upper surface of the vacuum vessel 1 to the temperature sensor 22. The temperature sensor 22 detects the intensity of the received light and the like.
Is detected, and the detection result is input to the flow controller 24. The flow controller 24 includes a temperature setting device (not shown). The temperature setting device rotates the variable flow blower 18 based on a set temperature and a detected temperature input from the temperature sensor 22. The number is variably controlled to control the flow rate of the cooling gas in the cooling gas flow passage 21. The temperature of the vacuum vessel 1 is increased by heating when the rod-shaped infrared lamp 4 is energized, and the temperature is decreased when a wafer in a non-energized state is loaded and unloaded, and the surface temperature of the vacuum vessel 1 is reduced as shown in FIG. Although the rise and fall are repeated, since the flow rate of the cooling gas in the cooling gas flow passage 21 is controlled, the maximum temperature of the surface of the vacuum vessel 1 for each process is maintained at a set value.

【0025】以上は前記上部冷却ユニット10について
説明したが、前記した様に、前記真空容器1下側には前
記下部冷却ユニット11が設けられ、該下部冷却ユニッ
ト11は前記上部冷却ユニット10と同様にケース2
5、吸込口26、吹出口27、第1チャンバ28、第2
チャンバ29、風導30、可変流量ブロア31、孔3
2、隙間33、冷却気体通路34、温度センサ35、光
ファイバ36、流量制御器37で構成され、前記上部冷
却ユニット10と対称的に配設されており、前記下部冷
却ユニット11は前記上部冷却ユニット10と同様に作
動する。
Although the upper cooling unit 10 has been described above, the lower cooling unit 11 is provided below the vacuum vessel 1 as described above, and the lower cooling unit 11 is similar to the upper cooling unit 10. Case 2
5, inlet 26, outlet 27, first chamber 28, second
Chamber 29, air guide 30, variable flow blower 31, hole 3
2, a gap 33, a cooling gas passage 34, a temperature sensor 35, an optical fiber 36, and a flow controller 37, which are arranged symmetrically with the upper cooling unit 10, and wherein the lower cooling unit 11 It operates similarly to the unit 10.

【0026】尚、上記実施の形態に於いては、前記吸込
口13は前記ケース12の上面部中央に設けられ、前記
吹出口14が前記ケース12の周囲側面下部に設けられ
ているが、前記吸込口13が前記ケース12の1側面下
部に設けられ、前記吹出口14が前記ケース12の前記
吸込口13設置位置の反対側側面下部に設けられていて
もよい。又、前記可変流量ブロア18は、前記ケース1
2に空気を押込む側に設けられているが、前記ケース1
2内の空気を吸込む側に設けられていてもよい。更に、
前記可変流量ブロア18は、フィードバック制御により
可変に制御されているが、他の可変流量制御であっても
よい。更に又、冷却用気体は空気に代えて窒素ガス等で
あってもよい。
In the above embodiment, the suction port 13 is provided at the center of the upper surface of the case 12, and the outlet 14 is provided at the lower part of the peripheral side surface of the case 12. The suction port 13 may be provided at a lower portion of one side surface of the case 12, and the outlet 14 may be provided at a lower portion of a side surface of the case 12 on the side opposite to the installation position of the suction port 13. The variable flow blower 18 is provided in the case 1
2 is provided on the side where air is pushed into
2 may be provided on the side that sucks air. Furthermore,
The variable flow blower 18 is variably controlled by feedback control, but may be another variable flow control. Further, the cooling gas may be nitrogen gas or the like instead of air.

【0027】[0027]

【発明の効果】以上述べた如く本発明によれば、加熱処
理後の再現性が向上し、加熱処理されたウェーハ間での
熱履歴差が小さくなり、デバイスの熱履歴差による電気
特性差を小さくでき、製品の品質を安定させると共に、
歩留まりを向上させることができる。又、真空容器の表
面温度が安定する迄の時間を短縮化することにより、生
産性が向上し、更に加熱ランプも冷却されることによ
り、該加熱ランプの耐久性が向上する等、種々の優れた
効果を発揮する。
As described above, according to the present invention, the reproducibility after the heat treatment is improved, the difference in the heat history between the wafers subjected to the heat treatment is reduced, and the difference in the electrical characteristics due to the difference in the heat history of the device is reduced. It can be made smaller, stabilizing product quality,
The yield can be improved. Further, by shortening the time required for the surface temperature of the vacuum vessel to stabilize, productivity is improved, and by further cooling the heating lamp, the durability of the heating lamp is improved. It has the effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を示す概略説明断面図であ
る。
FIG. 1 is a schematic explanatory sectional view showing an embodiment of the present invention.

【図2】該実施の形態に於ける真空容器の表面温度の変
化を示した線図である。
FIG. 2 is a diagram showing a change in surface temperature of a vacuum vessel in the embodiment.

【図3】従来例の概略説明断面図である。FIG. 3 is a schematic explanatory sectional view of a conventional example.

【図4】従来例に於ける真空容器の表面温度の変化を示
した線図である。
FIG. 4 is a diagram showing a change in surface temperature of a vacuum vessel in a conventional example.

【符号の説明】[Explanation of symbols]

1 真空容器 4 棒状赤外ランプ 5 反射板 10 上部冷却ユニット 11 下部冷却ユニット 13 吸込口 14 吹出口 18 可変流量ブロア 22 温度センサ 24 流量制御器 DESCRIPTION OF SYMBOLS 1 Vacuum container 4 Rod-shaped infrared lamp 5 Reflector 10 Upper cooling unit 11 Lower cooling unit 13 Suction port 14 Outlet 18 Variable flow blower 22 Temperature sensor 24 Flow controller

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 透明容器内に収納された被処理基板をラ
ンプ加熱する半導体基板の熱処理装置に於いて、ランプ
をケース内部に収納し、該ケース内部に冷却用気体を流
通させたことを特徴とする半導体基板の熱処理装置。
In a semiconductor substrate heat treatment apparatus for heating a substrate to be processed, which is housed in a transparent container, with a lamp, the lamp is housed inside a case, and a cooling gas is circulated inside the case. Heat treatment apparatus for a semiconductor substrate.
【請求項2】 ケース内部を反射板により仕切り、仕切
られた空間のうち容器側の空間にランプを設け、他の空
間に冷却気体供給源を連通し、前記反射板に孔を設ける
と共に前記ケースに他の空間に連通する排気口を設けた
請求項1の半導体基板の熱処理装置。
2. The interior of the case is partitioned by a reflector, a lamp is provided in a space on the container side of the partitioned space, a cooling gas supply source is communicated with another space, and a hole is provided in the reflector and the case is provided. 2. The heat treatment apparatus for a semiconductor substrate according to claim 1, further comprising an exhaust port communicating with another space.
【請求項3】 孔の開口位置をランプに臨ませた請求項
2の半導体基板の熱処理装置。
3. The heat treatment apparatus for a semiconductor substrate according to claim 2, wherein the opening position of the hole faces the lamp.
【請求項4】 透明容器の表面温度を検出する温度検出
器を設けると共に該温度検出器からの検出温度に基づき
冷却気体供給源からの流体流量を制御する流体制御器を
設けた請求項1、請求項2及び請求項3の半導体基板の
熱処理装置。
4. The apparatus according to claim 1, further comprising a temperature detector for detecting a surface temperature of the transparent container, and a fluid controller for controlling a flow rate of a fluid from a cooling gas supply source based on the temperature detected by the temperature detector. The heat treatment apparatus for a semiconductor substrate according to claim 2.
【請求項5】 温度検出器が光を基に温度を検出する温
度検出器であり、透明容器の表面から発せられる光を前
記温度検出器に導く光ファイバを設けた請求項4の半導
体基板の熱処理装置。
5. The semiconductor substrate according to claim 4, wherein the temperature detector is a temperature detector for detecting a temperature based on light, and an optical fiber for guiding light emitted from the surface of the transparent container to the temperature detector is provided. Heat treatment equipment.
JP5230797A 1997-02-20 1997-02-20 Heat treatment apparatus for semiconductor substrate Pending JPH10233370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5230797A JPH10233370A (en) 1997-02-20 1997-02-20 Heat treatment apparatus for semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5230797A JPH10233370A (en) 1997-02-20 1997-02-20 Heat treatment apparatus for semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH10233370A true JPH10233370A (en) 1998-09-02

Family

ID=12911139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5230797A Pending JPH10233370A (en) 1997-02-20 1997-02-20 Heat treatment apparatus for semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH10233370A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004930A3 (en) * 1999-07-12 2001-08-09 Fsi Int Inc Thermal processing chamber for heating and cooling wafer-like objects
US6838115B2 (en) 2000-07-12 2005-01-04 Fsi International, Inc. Thermal processing system and methods for forming low-k dielectric films suitable for incorporation into microelectronic devices
US6884066B2 (en) 2002-09-10 2005-04-26 Fsi International, Inc. Thermal process station with heated lid
EP1559135A1 (en) * 2002-11-01 2005-08-03 Kornic Systems Corp. Heater module of rapid thermal processing apparatus
JP2008141099A (en) * 2006-12-05 2008-06-19 Dainippon Screen Mfg Co Ltd Heat treatment equipment
JP2009081239A (en) * 2007-09-26 2009-04-16 Ushio Inc Light illumination type heat treatment device
JP2009260025A (en) * 2008-04-16 2009-11-05 Dainippon Screen Mfg Co Ltd Thermal treatment apparatus
US7935913B2 (en) 2003-09-18 2011-05-03 Dainippon Screen Mfg. Co., Ltd. Apparatus and method for thermal processing of substrate
US7973266B2 (en) 2006-11-22 2011-07-05 Dainippon Screen Mfg. Co., Ltd. Heat treatment apparatus which emits flash of light
KR20110120963A (en) * 2009-02-25 2011-11-04 크리스탈솔라,인코포레이티드 High throughput multi-wafer epitaxial reactor
US9920451B2 (en) 2009-02-25 2018-03-20 Crystal Solar Incorporated High throughput multi-wafer epitaxial reactor
US9982363B2 (en) 2011-05-27 2018-05-29 Crystal Solar, Incorporated Silicon wafers by epitaxial deposition
CN110504187A (en) * 2018-05-18 2019-11-26 Ap***股份有限公司 Heater block and Equipment for Heating Processing and method
JP2020057802A (en) * 2015-04-30 2020-04-09 芝浦メカトロニクス株式会社 Substrate processing apparatus and substrate processing method
KR102102202B1 (en) * 2018-11-07 2020-04-21 세메스 주식회사 Apparatus and system for treating substrate
CN116698197A (en) * 2023-08-04 2023-09-05 盛吉盛半导体科技(北京)有限公司 Temperature measuring device with reflecting component applied to integrated circuit equipment

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6307184B1 (en) 1999-07-12 2001-10-23 Fsi International, Inc. Thermal processing chamber for heating and cooling wafer-like objects
US6423947B2 (en) 1999-07-12 2002-07-23 Fsi International, Inc. Thermal processing chamber for heating and cooling wafer-like objects
WO2001004930A3 (en) * 1999-07-12 2001-08-09 Fsi Int Inc Thermal processing chamber for heating and cooling wafer-like objects
US6838115B2 (en) 2000-07-12 2005-01-04 Fsi International, Inc. Thermal processing system and methods for forming low-k dielectric films suitable for incorporation into microelectronic devices
US6884066B2 (en) 2002-09-10 2005-04-26 Fsi International, Inc. Thermal process station with heated lid
EP1559135A1 (en) * 2002-11-01 2005-08-03 Kornic Systems Corp. Heater module of rapid thermal processing apparatus
JP2006505123A (en) * 2002-11-01 2006-02-09 コルニック システムズ コーポレーション Heating module for rapid thermal processing equipment
EP1559135A4 (en) * 2002-11-01 2007-12-12 Kornic Systems Corp Heater module of rapid thermal processing apparatus
US7935913B2 (en) 2003-09-18 2011-05-03 Dainippon Screen Mfg. Co., Ltd. Apparatus and method for thermal processing of substrate
US7973266B2 (en) 2006-11-22 2011-07-05 Dainippon Screen Mfg. Co., Ltd. Heat treatment apparatus which emits flash of light
JP2008141099A (en) * 2006-12-05 2008-06-19 Dainippon Screen Mfg Co Ltd Heat treatment equipment
JP2009081239A (en) * 2007-09-26 2009-04-16 Ushio Inc Light illumination type heat treatment device
JP2009260025A (en) * 2008-04-16 2009-11-05 Dainippon Screen Mfg Co Ltd Thermal treatment apparatus
US9920451B2 (en) 2009-02-25 2018-03-20 Crystal Solar Incorporated High throughput multi-wafer epitaxial reactor
JP2012518917A (en) * 2009-02-25 2012-08-16 クリスタル・ソーラー・インコーポレーテッド High throughput multi-wafer epitaxial reactor
CN104164704A (en) * 2009-02-25 2014-11-26 晶阳股份有限公司 High throughput multi-wafer epitaxial reactor
JP2015015479A (en) * 2009-02-25 2015-01-22 クリスタル・ソーラー・インコーポレーテッド Reactor for simultaneously processing multiple wafers
US9556522B2 (en) 2009-02-25 2017-01-31 Crystal Solar Incorporated High throughput multi-wafer epitaxial reactor
KR20110120963A (en) * 2009-02-25 2011-11-04 크리스탈솔라,인코포레이티드 High throughput multi-wafer epitaxial reactor
US9982363B2 (en) 2011-05-27 2018-05-29 Crystal Solar, Incorporated Silicon wafers by epitaxial deposition
JP2020057802A (en) * 2015-04-30 2020-04-09 芝浦メカトロニクス株式会社 Substrate processing apparatus and substrate processing method
CN110504187A (en) * 2018-05-18 2019-11-26 Ap***股份有限公司 Heater block and Equipment for Heating Processing and method
KR20190131916A (en) * 2018-05-18 2019-11-27 에이피시스템 주식회사 Heater block, apparatus and method for heating processing
KR102102202B1 (en) * 2018-11-07 2020-04-21 세메스 주식회사 Apparatus and system for treating substrate
CN116698197A (en) * 2023-08-04 2023-09-05 盛吉盛半导体科技(北京)有限公司 Temperature measuring device with reflecting component applied to integrated circuit equipment
CN116698197B (en) * 2023-08-04 2024-05-03 盛吉盛半导体科技(北京)有限公司 Temperature measuring device with reflecting component applied to integrated circuit equipment

Similar Documents

Publication Publication Date Title
JPH10233370A (en) Heat treatment apparatus for semiconductor substrate
US7432475B2 (en) Vertical heat treatment device and method controlling the same
EP1770758B1 (en) Heating process of the light irradiation type
US6964751B2 (en) Method and device for heat treating substrates
JPH0214514A (en) Quick heating furnace for semiconductor treatment
WO2018167846A1 (en) Substrate processing device, method for manufacturing semiconductor device, and program
JPH10107018A (en) Semiconductor wafer heat treatment apparatus
KR20180134769A (en) Heat treatment method
CN111095517A (en) Substrate processing apparatus, method of manufacturing semiconductor device, and program
JPH09232297A (en) Heat treatment apparatus
US20210074518A1 (en) Plasma processing apparatus and temperature control method
JP2002299328A (en) Heat treatment apparatus and heat treatment method
JP3869499B2 (en) Substrate processing method
JPH0737833A (en) Light emission system heat treater for substrate
JPH0796170A (en) Temperature controlling method of heat treating device
JP2000173946A (en) Substrate heat treating device and method therefor
JP3177722B2 (en) Temperature control equipment for high-speed heat treatment furnace
JPH1097999A (en) Heating device, processing device, heating method and processing method
KR20200005356A (en) Rapid Thermal Processing Apparatus using passive element
KR100620444B1 (en) Heat Conditioning Process
KR100239405B1 (en) Semiconductor fabricating system
KR20200074307A (en) Liquid supply unit and substrate processing apparatus
WO2002065521A1 (en) Sheet-type treating device
JPH0729843A (en) Heat treatment system
JPWO2019180966A1 (en) Substrate processing equipment, semiconductor equipment manufacturing methods and programs

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A02 Decision of refusal

Effective date: 20040928

Free format text: JAPANESE INTERMEDIATE CODE: A02