JPH10223475A - Method for regulating capacitor capacitance - Google Patents

Method for regulating capacitor capacitance

Info

Publication number
JPH10223475A
JPH10223475A JP1907897A JP1907897A JPH10223475A JP H10223475 A JPH10223475 A JP H10223475A JP 1907897 A JP1907897 A JP 1907897A JP 1907897 A JP1907897 A JP 1907897A JP H10223475 A JPH10223475 A JP H10223475A
Authority
JP
Japan
Prior art keywords
capacitor
ceramic
voltage
capacitance
ferroelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1907897A
Other languages
Japanese (ja)
Inventor
Hiroyuki Iizuka
博之 飯塚
Takeshi Soe
武司 曽江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP1907897A priority Critical patent/JPH10223475A/en
Publication of JPH10223475A publication Critical patent/JPH10223475A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To regulate a small and low-cost capacitor to a desired capacitor capacitance by a method wherein a voltage which exceeds a rated voltage is applied to a ceramic capacitor which is made of a ferroelectric ceramic and the capacitance of the ceramic capacitor is regulated. SOLUTION: A ceramic capacitor 10 is formed of a ferroelectric ceramic 11 and of an electrode 12 and an electrode 13 which sandwich the ceramic, and a PZT-based material is used as a material for the ferroelectric ceramic 11. A voltage is applied, by a voltage generation device 14, across both electrodes 12, 13 at the ceramic capacitor 10, the permittivity of the ferroelectric ceramic 11 is changed, and a capacitor capacitance is changed. When the applied voltage is at Em or -Em, the capacitor capacitance becomes a maximum value, and, when it is at Ec or -Ec, the capacitor capacitance becomes a minimum value. Consequently, when the height and the direction of the applied voltage are regulated, the capacitor capacitance can be regulated between the maximum value and the minimum value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】電子機器の回路に用いられる
コンデンサの容量の調整方法に関する。
The present invention relates to a method for adjusting the capacitance of a capacitor used in a circuit of an electronic device.

【0002】[0002]

【従来の技術】近年の回路設計技術は著しい進歩を遂げ
ているが、設計された電子回路を実際に組み立てて性能
を検査すると、回路に用いられた電子部品を作製した時
の誤差等のために、できあがった電子回路が設計通りの
性能を発揮しない場合が多い。また、電子部品の精度を
向上させるためにはコストがかかる。このため従来より
トリマコンデンサと呼ばれる、静電容量を特定の範囲で
変化させることのできるコンデンサを使って、電子回路
の最終的な微調整を行う場合が多い。
2. Description of the Related Art In recent years, circuit design technology has made remarkable progress. However, when a designed electronic circuit is actually assembled and its performance is inspected, an error or the like at the time of producing an electronic component used in the circuit is caused. In many cases, the completed electronic circuit does not perform as designed. Further, cost is required to improve the accuracy of the electronic component. For this reason, the final fine adjustment of the electronic circuit is often performed using a capacitor called a trimmer capacitor that can change the capacitance in a specific range.

【0003】トリマコンデンサは一般に、誘電体層を介
して対向したステータ電極とロータ電極とからなる。ス
テータ電極は固定であり、ロータ電極をドライバで回転
させると、両者の重なり面積が変わり、これにより、ト
リマコンデンサの静電容量が変化する。一例として、長
さ×幅のサイズが3.2mm×2.5mmのトリマコン
デンサでは、静電容量を5pF〜20pFの範囲で調整
することができる。
[0003] A trimmer capacitor generally includes a stator electrode and a rotor electrode opposed to each other via a dielectric layer. The stator electrode is fixed, and when the rotor electrode is rotated by the driver, the overlapping area of the two changes, thereby changing the capacitance of the trimmer capacitor. As an example, in a trimmer capacitor having a length × width size of 3.2 mm × 2.5 mm, the capacitance can be adjusted in a range of 5 pF to 20 pF.

【0004】[0004]

【発明が解決しようとする課題】携帯電話等の電子機器
が小型化されるのに伴って、電子部品も小型化が求めら
れている。代表的な電子部品である積層セラミックコン
デンサなどは長さ×幅のサイズが2.0mm×1.2m
mや1.0mm×0.5mmの小型のものが一般的であ
り、更なる小型化が求められている。
As electronic devices such as mobile phones are downsized, electronic components are also required to be downsized. A typical electronic component, such as a multilayer ceramic capacitor, has a size of length x width of 2.0 mm x 1.2 m.
m and 1.0 mm × 0.5 mm are generally small, and further miniaturization is required.

【0005】ところが、トリマコンデンサの一般的なサ
イズは3.2mm×2.5mmと大きく、他の電子部品
の小型化が進む中にあって、より小さいサイズが強く望
まれている。具体的にはサイズが2.0mm×1.2m
m以下であるコンデンサが求められている。ところで、
トリマコンデンサは電子回路の組立の最終段階で人間が
ドライバの先端等で微調整する部品であることから小さ
くするほど作業しにくくなるため、小型化するには限界
がある。また、製造工程から見るとトリマコンデンサ
は、金属部品とセラミックとが組みあげられて一体化さ
れるものであるので、それぞれの部材の高い寸法加工精
度とコンデンサ全体の組み立て精度が要求される。よっ
て、小型化するほど低コスト化が難しくなるという問題
がある。組み上げ後も、両者の接触面での遊びや機械的
な摩擦により静電容量のドリフトが発生するという問題
や、熱膨張係数の違いに起因するような信頼面での問題
が生じる場合もある。
However, the general size of the trimmer capacitor is as large as 3.2 mm × 2.5 mm, and as other electronic components are being miniaturized, a smaller size is strongly desired. Specifically, the size is 2.0 mm x 1.2 m
m is required. by the way,
Since the trimmer capacitor is a component that is finely adjusted by a human at the tip of a driver or the like at the final stage of assembling an electronic circuit, the smaller the size, the more difficult it becomes to work. Further, from the viewpoint of the manufacturing process, the trimmer capacitor is formed by assembling a metal component and a ceramic and is integrated. Therefore, high dimensional processing accuracy of each member and assembling accuracy of the entire capacitor are required. Therefore, there is a problem that it is difficult to reduce the cost as the size is reduced. Even after assembling, there may be a problem that capacitance drift occurs due to play at the contact surface of the two or mechanical friction, and a problem in reliability due to a difference in thermal expansion coefficient.

【0006】本発明は、上記の事情に鑑み、小型かつ低
コストのコンデンサを、所望のコンデンサ容量に調整す
る、コンデンサ容量の調整方法を提供することを目的と
する。
SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide a method for adjusting a capacitor capacity, which adjusts a small and low-cost capacitor to a desired capacitor capacity.

【0007】[0007]

【課題を解決するための手段】上記の目的に叶う本発明
のコンデンサ容量の調整方法は、強誘電性セラミックを
用いて作製されたセラミックコンデンサに定格電圧を越
える電圧を印加することにより該セラミックコンデンサ
の容量を調整することを特徴とするコンデンサ容量の調
整方法である。
A method of adjusting the capacity of a capacitor according to the present invention, which fulfills the above objects, is to apply a voltage exceeding a rated voltage to a ceramic capacitor manufactured using a ferroelectric ceramic. This is a method for adjusting the capacitance of a capacitor, characterized by adjusting the capacitance of the capacitor.

【0008】[0008]

【発明の実施の形態】本発明の実施形態を説明するにあ
たって、まず、強誘電性セラミックに電圧を印加した場
合の強誘電性セラミックの作用について説明し、その後
本発明の一実施形態について説明する。以下、強誘電性
セラミックに電圧を印加した場合の強誘電性セラミック
の作用について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In describing embodiments of the present invention, first, the operation of a ferroelectric ceramic when a voltage is applied to the ferroelectric ceramic will be described, and then an embodiment of the present invention will be described. . Hereinafter, the operation of the ferroelectric ceramic when a voltage is applied to the ferroelectric ceramic will be described.

【0009】セラミックコンデンサや圧電デバイスの材
料であるチタン酸バリウム系材料及び鉛系ペロブスカイ
ト材料の多くは、「強誘電体」に分類される結晶であ
る。強誘電体を材料とするセラミックを強誘電性セラミ
ックという。強誘電性セラミックは内部に多数の強誘電
体の微結晶を含み、強誘電体の結晶は自発分極をもつ。
焼成によりセラミックを製造した直後の強誘電体の各微
結晶が持つ自発分極の方向はランダムであり、その自発
分極の方向はセラミックに直流電界を印加することで変
化させることができる。これを一般に分極操作と呼ぶ。
セラミックに印加する電圧の高さや印加時間を調整する
ことで、セラミック全体の分極の総和(以下単に「分極
の総和」と呼ぶ)をコントロールすることができる。フ
ィルタやアクチュエータ用の圧電材料等、なるべく自発
分極の向きが揃っていた方がよい場合は、分極飽和の状
態になるような強い電圧をかけて分極操作を行う。
Many of the barium titanate-based materials and lead-based perovskite materials that are materials for ceramic capacitors and piezoelectric devices are crystals classified as “ferroelectrics”. A ceramic made of a ferroelectric material is called a ferroelectric ceramic. The ferroelectric ceramic contains a large number of ferroelectric crystallites therein, and the ferroelectric crystal has spontaneous polarization.
The direction of spontaneous polarization of each microcrystal of the ferroelectric immediately after producing the ceramic by firing is random, and the direction of the spontaneous polarization can be changed by applying a DC electric field to the ceramic. This is generally called a polarization operation.
By adjusting the height of the voltage applied to the ceramic and the application time, it is possible to control the sum of the polarizations of the entire ceramic (hereinafter simply referred to as “sum of the polarizations”). When it is desirable that the direction of spontaneous polarization is as uniform as possible, such as for a piezoelectric material for a filter or an actuator, the polarization operation is performed by applying a strong voltage that causes a state of polarization saturation.

【0010】セラミックに印加する電圧の高さを横軸に
とり、分極の総和を縦軸にとってグラフにすると図1の
ようないわゆるヒステリシスカーブとよばれるグラフと
なる。焼成によって製造された直後のセラミックは上記
のようにDsも電圧も0となっている状態aである。こ
の状態から徐々に印加電圧を増加していけば電圧の増加
に応じて分極の総和は増加し、電圧の絶対値が一定の大
きさ(以下「Em」と呼ぶ)に達すると、分極の総和が
最大値である分極飽和の状態bになる。このときセラミ
ック内部に存在する各微結晶が持つ自発分極の方向は、
電圧を印加した方向に対して最大限に揃っている。
When the height of the voltage applied to the ceramic is plotted on the horizontal axis and the sum of the polarizations is plotted on the vertical axis, a graph called a so-called hysteresis curve as shown in FIG. 1 is obtained. The ceramic immediately after being manufactured by firing is in the state a in which both Ds and voltage are 0 as described above. If the applied voltage is gradually increased from this state, the sum of the polarizations increases in accordance with the increase in the voltage. When the absolute value of the voltage reaches a certain value (hereinafter referred to as “Em”), the sum of the polarizations increases. Is the maximum value of the polarization saturation state b. At this time, the direction of spontaneous polarization of each microcrystal existing inside the ceramic is
They are aligned to the maximum in the direction in which the voltage is applied.

【0011】このような、分極飽和の状態に一旦達して
も、逆向きの直流電圧を印加することにより、Dsを減
少させることができる。逆向きの電圧の絶対値が一定の
大きさ(以下「Ec」と呼ぶ)に達するとDsが0であ
る状態cになる。このときセラミック内部にある各微結
晶が持つ自発分極の方向と、電圧を印加した方向との間
の角度は、結晶の対象性が許す範囲で最大限に90度に
近づいている。
Even when such a state of polarization saturation is reached, Ds can be reduced by applying a reverse DC voltage. When the absolute value of the reverse voltage reaches a certain value (hereinafter, referred to as “Ec”), the state becomes a state c where Ds is 0. At this time, the angle between the direction of the spontaneous polarization of each microcrystal in the ceramic and the direction in which the voltage is applied approaches 90 degrees at the maximum as long as the symmetry of the crystal allows.

【0012】さらに印加電圧を増加させていくと、Ds
は印加電圧と同じ方向で増加し始め、印加電圧の絶対値
がEmに達すると、Dsの絶対値は再び最大値に達し
て、状態bとは逆の分極飽和の状態dになる。状態bか
ら状態dに至る過程と同様に、再び印加電圧の方向を逆
転させることにより、電圧の絶対値がEcでありDsが
0である状態eを経て状態bに再び戻すことができる。
なお、材料のキュリー点(組成にもよるが、一般に10
0℃〜400℃)以上の温度にセラミックの温度を上げ
ると、再び、自発分極がランダムな向きである状態aに
戻る。
As the applied voltage is further increased, Ds
Starts to increase in the same direction as the applied voltage, and when the absolute value of the applied voltage reaches Em, the absolute value of Ds reaches the maximum value again, and becomes the state d of polarization saturation opposite to the state b. Similarly to the process from the state b to the state d, by reversing the direction of the applied voltage again, the state can be returned to the state b via the state e where the absolute value of the voltage is Ec and Ds is 0.
The Curie point of the material (generally 10 depending on the composition,
When the temperature of the ceramic is raised to a temperature of 0 ° C. to 400 ° C. or more, the state returns to the state a in which spontaneous polarization is in a random direction again.

【0013】ところでセラミック内部にある微結晶の誘
電率は自発分極に対して平行な方向と直交する方向とで
は若干異なる。例えば、チタン酸バリウム系の材料で作
られた場合には、自発分極に対して平行な方向での誘電
率よりも直交する方向での誘電率の方が大きい。PZT
(ジルコン酸チタン酸鉛)系の材料で作られた場合はそ
の逆で自発分極に平行な方向での誘電率の方が直交する
方向での誘電率よりも大きい。このため、上記のような
分極操作によって自発分極の向きを変化させると材料組
成に特有な割合で、セラミック全体の印加電圧方向の誘
電率は減少又は増加する。本発明はこの原理を利用する
ものである。
Incidentally, the dielectric constant of the microcrystal in the ceramic is slightly different between the direction parallel to the spontaneous polarization and the direction perpendicular to the spontaneous polarization. For example, when made of a barium titanate-based material, the permittivity in the direction perpendicular to the direction parallel to the spontaneous polarization is larger than the permittivity in the direction perpendicular to the spontaneous polarization. PZT
On the other hand, when made of a (zirconate titanate) -based material, the dielectric constant in a direction parallel to the spontaneous polarization is larger than the dielectric constant in a direction orthogonal to the spontaneous polarization. Therefore, when the direction of spontaneous polarization is changed by the above-described polarization operation, the dielectric constant of the entire ceramic in the applied voltage direction decreases or increases at a rate specific to the material composition. The present invention utilizes this principle.

【0014】以下、本発明の一実施形態について説明す
る。図2は本発明の一実施形態を表す模式図である。セ
ラミックコンデンサ10は、強誘電性セラミック11と
それを挟む電極12,13とで形成されおり、強誘電性
セラミック11の材料としては例えばPZT系材料が用
いられている。セラミックコンデンサ10の両電極1
2,13間に電圧発生装置14により電圧を印加するこ
とで上記のように強誘電性セラミックの誘電率を変化さ
せる事ができ、その結果コンデンサ容量が変化する。横
軸に印加電圧をとり縦軸にコンデンサ容量をとれば図3
のグラフに示すような蝶々型のグラフが得られ、電圧が
Emまたは−Emのときコンデンサ容量が最大であり、
電圧がEcまたは−Ecのときコンデンサ容量が最小で
ある。従って、印加電圧の、高さや方向を調整すること
によって最大値から最小値までの間でコンデンサ容量を
調整することができる。
Hereinafter, an embodiment of the present invention will be described. FIG. 2 is a schematic diagram illustrating an embodiment of the present invention. The ceramic capacitor 10 is formed of a ferroelectric ceramic 11 and electrodes 12 and 13 sandwiching the ferroelectric ceramic 11. As a material of the ferroelectric ceramic 11, for example, a PZT-based material is used. Both electrodes 1 of ceramic capacitor 10
By applying a voltage between the terminals 2 and 13 by the voltage generator 14, the dielectric constant of the ferroelectric ceramic can be changed as described above, and as a result, the capacitance of the capacitor changes. Figure 3 shows the applied voltage on the horizontal axis and the capacitance on the vertical axis.
A butterfly-shaped graph as shown in the graph of is obtained, and when the voltage is Em or -Em, the capacitance of the capacitor is maximum,
When the voltage is Ec or -Ec, the capacitance of the capacitor is minimum. Therefore, by adjusting the height and direction of the applied voltage, the capacitance of the capacitor can be adjusted from the maximum value to the minimum value.

【0015】強誘電性セラミック11の材料として例え
ばチタン酸バリウム系の材料を用いた場合は、上記とは
逆に電圧がEmまたは−Emのときコンデンサ容量が最
小であり、電圧がEcまたは−Ecのときコンデンサ容
量が最大である。この場合にも印加電圧の高さや印加す
る方向を調整することによってコンデンサ容量を調整す
ることができる。
When a barium titanate-based material is used as the material of the ferroelectric ceramic 11, for example, on the contrary, when the voltage is Em or -Em, the capacitance of the capacitor is minimum and the voltage is Ec or -Ec. When, the capacitance of the capacitor is maximum. Also in this case, the capacitance of the capacitor can be adjusted by adjusting the height of the applied voltage and the direction of application.

【0016】上記のセラミックコンデンサは上記の方法
で容量が調整された後、電子回路に組み込まれて使用さ
れるが、使用時にはセラミックコンデンサの容量の変化
が実用上十分に小さい電圧である定格電圧が設定され、
それ以下の電圧で使用される。定格電圧は例えば20ボ
ルトに設定される。このような定格電圧を設定すること
で、調整により得られた所望のコンデンサ容量を維持し
たままでセラミックコンデンサを使用することができ
る。
The above-mentioned ceramic capacitor is used by being incorporated in an electronic circuit after the capacitance is adjusted by the above-described method. When the ceramic capacitor is used, a rated voltage at which a change in the capacitance of the ceramic capacitor is a voltage sufficiently small for practical use is obtained. Is set,
Used at voltages below that. The rated voltage is set to, for example, 20 volts. By setting such a rated voltage, a ceramic capacitor can be used while maintaining the desired capacitor capacity obtained by the adjustment.

【0017】[0017]

【実施例】強誘電性セラミックの材料として酸化鉛、酸
化ジルコニウム、および酸化チタンを用い、Pb:Z
r:Tiの比が1.02:0.53:0.47の組成比
になるように秤量し、秤量した材料を水およびジルコニ
アボールとともにポットに入れ、ボールミルで4時間混
合した。この混合により得られた混合物を、乾燥させた
後にアルミナのさやに入れて850℃で2時間仮焼し
た。仮焼したものを再びボールミルスケールで4時間粉
砕し再度乾燥させて仮焼粉を得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Lead oxide, zirconium oxide and titanium oxide were used as ferroelectric ceramic materials, and Pb: Z
The mixture was weighed so that the ratio of r: Ti became a composition ratio of 1.02: 0.53: 0.47, and the weighed material was put into a pot together with water and zirconia balls, and mixed for 4 hours by a ball mill. The mixture obtained by this mixing was dried and then calcined at 850 ° C. for 2 hours in an alumina sheath. The calcined product was again ground for 4 hours on a ball mill scale and dried again to obtain a calcined powder.

【0018】この仮焼粉にバインダを混合して造粒粉を
得、その造粒粉を金型とプレス機により約直径1mm×
厚み1mmの円板状に成型した。この成形物をマグネシ
アのさやに入れ、600℃に温度を2時間維持してバイ
ンダを蒸発させ(脱脂)、その後1250℃に温度を上
げて2時間焼成し強誘電性セラミックを得た。
A granulated powder is obtained by mixing a binder with the calcined powder, and the granulated powder is about 1 mm in diameter by a mold and a pressing machine.
It was molded into a 1 mm thick disk. The molded product was placed in a magnesia sheath, the temperature was maintained at 600 ° C. for 2 hours to evaporate the binder (degreasing), and then the temperature was increased to 1250 ° C. and baked for 2 hours to obtain a ferroelectric ceramic.

【0019】このセラミックの両面に、銀ペーストを塗
布し650℃で5分間焼付けて電極を形成し、セラミッ
クコンデンサを得た。このようにして得られたセラミッ
クコンデンサの両端に、セラミックにかかる電界強度が
0.25kV/mmとなるような直流電圧を5分間印加
し、セラミックコンデンサの容量を測定した。同様に電
界強度が0.5kV/mm、1.0kV/mm、および
1.5kV/mmとなるような電圧をそれぞれ5分間コ
ンデンサに印加し、電圧印加後のコンデンサ容量の測定
をそれぞれ行った。その測定結果を、横軸を分極操作に
用いた電界強度とし縦軸を製造直後のコンデンサの容量
に対するコンデンサ容量の変化率としてグラフにする
と、図4に示すような右上がりのグラフが得られ、1.
5kV/mmの電界強度のときにはコンデンサ容量の変
化率は18%を越えることが確認された。従って、本発
明によればサイズが約直径1mm×厚み1mmであるコ
ンデンサの容量を中心値±約9%の範囲で調整できるこ
とが示された。回路の設計技術が進歩していることから
コンデンサ容量を調整する範囲としては、中心地±数%
程度あれば十分であり、本発明の調整方法は実用性を有
することが確認された。
A silver paste was applied to both sides of the ceramic and baked at 650 ° C. for 5 minutes to form electrodes, thereby obtaining a ceramic capacitor. A DC voltage was applied to both ends of the thus obtained ceramic capacitor so that the electric field applied to the ceramic became 0.25 kV / mm for 5 minutes, and the capacitance of the ceramic capacitor was measured. Similarly, voltages at which the electric field strength was 0.5 kV / mm, 1.0 kV / mm, and 1.5 kV / mm were respectively applied to the capacitors for 5 minutes, and the capacitances of the capacitors after the voltage application were measured. When the measurement result is graphed as the electric field intensity used for the polarization operation on the horizontal axis and the change rate of the capacitance of the capacitor with respect to the capacitance of the capacitor immediately after production, a graph ascending rightward as shown in FIG. 4 is obtained. 1.
When the electric field strength was 5 kV / mm, it was confirmed that the rate of change of the capacitor capacity exceeded 18%. Therefore, according to the present invention, it was shown that the capacitance of a capacitor having a size of about 1 mm in diameter × 1 mm in thickness can be adjusted within a range of the center value ± about 9%. Due to the advancement of circuit design technology, the range for adjusting the capacitor capacity is the center ± several%
The degree is sufficient, and it has been confirmed that the adjustment method of the present invention has practicality.

【0020】なお、本発明は実施例で示された数値や電
圧の印加方法等に限定されるものではない。材料の組成
により、分極に必要な電圧の高さおよび印加時間は異な
り、コンデンサ容量の変化率も異なるので、材料組成に
応じた電圧の高さ及び印加時間でコンデンサ容量を調整
すればよい。
The present invention is not limited to the numerical values and voltage application methods shown in the embodiments. Depending on the composition of the material, the voltage required for polarization and the application time are different, and the rate of change of the capacitor capacity is also different. Therefore, the capacitor capacity may be adjusted by the voltage height and the application time according to the material composition.

【0021】[0021]

【発明の効果】以上説明したように、本発明によれば、
電気的手段のみによってコンデンサ容量を調整すること
ができるため、コンデンサにはロータ等の機械的な可動
部は不要である。従って小型化が容易であり、かつコス
トを低減できる。
As described above, according to the present invention,
Since the capacitance of the capacitor can be adjusted only by electrical means, the capacitor does not require a mechanically movable part such as a rotor. Therefore, size reduction is easy and cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】強誘電性セラミックに印加する電圧と強誘電性
セラミックの分極の総和との関係を表すグラフである。
FIG. 1 is a graph showing a relationship between a voltage applied to a ferroelectric ceramic and a sum of polarizations of the ferroelectric ceramic.

【図2】本発明の一実施形態を示す図である。FIG. 2 is a diagram showing one embodiment of the present invention.

【図3】セラミックコンデンサに印加する電圧とセラミ
ックコンデンサの容量との関係を表すグラフである。
FIG. 3 is a graph showing a relationship between a voltage applied to a ceramic capacitor and a capacitance of the ceramic capacitor.

【図4】分極操作に用いた電界強度とコンデンサ容量の
変化率との関係を表すグラフである。
FIG. 4 is a graph showing the relationship between the electric field intensity used for the polarization operation and the rate of change of the capacitance of the capacitor.

【符号の説明】[Explanation of symbols]

10 セラミックコンデンサ 11 強誘電性セラミック 12,13 電極 14 電圧発生装置 Reference Signs List 10 ceramic capacitor 11 ferroelectric ceramic 12, 13 electrode 14 voltage generator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 強誘電性セラミックを用いて作製された
セラミックコンデンサに定格電圧を越える電圧を印加す
ることにより該セラミックコンデンサの容量を調整する
ことを特徴とするコンデンサ容量の調整方法。
1. A method for adjusting a capacitance of a ceramic capacitor, comprising applying a voltage exceeding a rated voltage to a ceramic capacitor manufactured using a ferroelectric ceramic, thereby adjusting the capacitance of the ceramic capacitor.
JP1907897A 1997-01-31 1997-01-31 Method for regulating capacitor capacitance Withdrawn JPH10223475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1907897A JPH10223475A (en) 1997-01-31 1997-01-31 Method for regulating capacitor capacitance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1907897A JPH10223475A (en) 1997-01-31 1997-01-31 Method for regulating capacitor capacitance

Publications (1)

Publication Number Publication Date
JPH10223475A true JPH10223475A (en) 1998-08-21

Family

ID=11989415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1907897A Withdrawn JPH10223475A (en) 1997-01-31 1997-01-31 Method for regulating capacitor capacitance

Country Status (1)

Country Link
JP (1) JPH10223475A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077437A (en) * 1999-09-01 2001-03-23 Tdk Corp Variable capacitance element and voltage-controlled oscillator
WO2009107488A1 (en) 2008-02-29 2009-09-03 ソニー株式会社 Variable-capacitance element, method for controlling variable-capacitance element, electronic device and communication mobile apparatus
WO2010035879A1 (en) * 2008-09-26 2010-04-01 ソニー株式会社 Capacitance element and resonance circuit
JP2014207627A (en) * 2013-04-16 2014-10-30 株式会社村田製作所 Communication circuit and communication device
WO2015030170A1 (en) * 2013-09-02 2015-03-05 株式会社村田製作所 Variable capacitance element
WO2016136772A1 (en) * 2015-02-27 2016-09-01 株式会社村田製作所 Variable capacitance element
WO2016136771A1 (en) * 2015-02-27 2016-09-01 株式会社村田製作所 Variable capacitance element
CN109119248A (en) * 2017-06-23 2019-01-01 北京北方华创微电子装备有限公司 Tunable capacitor and impedance-matching device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077437A (en) * 1999-09-01 2001-03-23 Tdk Corp Variable capacitance element and voltage-controlled oscillator
US8385045B2 (en) 2008-02-29 2013-02-26 Sony Corporation Variable capacitor, control method thereof, electronic device and communication mobile device
WO2009107488A1 (en) 2008-02-29 2009-09-03 ソニー株式会社 Variable-capacitance element, method for controlling variable-capacitance element, electronic device and communication mobile apparatus
US9337796B2 (en) 2008-09-26 2016-05-10 Dexerials Corporation Capacitance device and resonance circuit
CN103123868A (en) * 2008-09-26 2013-05-29 迪睿合电子材料有限公司 Capacitance device and resonance circuit
US8736401B2 (en) 2008-09-26 2014-05-27 Dexerials Corporation Capacitance device and resonance circuit
WO2010035879A1 (en) * 2008-09-26 2010-04-01 ソニー株式会社 Capacitance element and resonance circuit
JP2010258402A (en) * 2008-09-26 2010-11-11 Sony Corp Capacitance element and resonance circuit
JP2014207627A (en) * 2013-04-16 2014-10-30 株式会社村田製作所 Communication circuit and communication device
JPWO2015030170A1 (en) * 2013-09-02 2017-03-02 株式会社村田製作所 Variable capacitance element
WO2015030170A1 (en) * 2013-09-02 2015-03-05 株式会社村田製作所 Variable capacitance element
CN105493211A (en) * 2013-09-02 2016-04-13 株式会社村田制作所 Variable capacitance element
US10128051B2 (en) 2013-09-02 2018-11-13 Murata Manufacturing Co., Ltd. Variable capacitance component
WO2016136771A1 (en) * 2015-02-27 2016-09-01 株式会社村田製作所 Variable capacitance element
CN107251178A (en) * 2015-02-27 2017-10-13 株式会社村田制作所 Variable-capacitance element
JPWO2016136771A1 (en) * 2015-02-27 2017-11-24 株式会社村田製作所 Variable capacitance element
JPWO2016136772A1 (en) * 2015-02-27 2017-11-24 株式会社村田製作所 Variable capacitance element
CN107408459A (en) * 2015-02-27 2017-11-28 株式会社村田制作所 Variable-capacitance element
WO2016136772A1 (en) * 2015-02-27 2016-09-01 株式会社村田製作所 Variable capacitance element
US10204742B2 (en) 2015-02-27 2019-02-12 Murata Manufacturing Co., Ltd. Variable capacitance element
US10262805B2 (en) 2015-02-27 2019-04-16 Murata Manufacturing Co., Ltd. Variable capacitance element
CN109119248A (en) * 2017-06-23 2019-01-01 北京北方华创微电子装备有限公司 Tunable capacitor and impedance-matching device

Similar Documents

Publication Publication Date Title
JP5586621B2 (en) Ceramic material, method for producing the ceramic material, and apparatus comprising the ceramic material
EP2178131A2 (en) Piezoelectric ceramic, vibrator and ultrasonic motor
WO2005061413A1 (en) Piezoelectric porcelain and method for production thereof
JP4524558B2 (en) Piezoelectric ceramic and manufacturing method thereof
JP4001362B2 (en) Piezoelectric ceramic and manufacturing method thereof
JP5192737B2 (en) Sintering aid for lead-free piezoelectric ceramics, lead-free piezoelectric ceramics, and method for producing lead-free piezoelectric ceramics
JPH10223475A (en) Method for regulating capacitor capacitance
JP4432969B2 (en) Piezoelectric ceramic composition and piezoelectric element
JP4039871B2 (en) Piezoelectric ceramic
KR20150042075A (en) Piezoelectric materials for low sintering
KR20030096505A (en) Piezoelectric ceramic composition for ceramic actuators and Method of fabricating the piezoelectric ceramics
JP4779243B2 (en) Piezoelectric ceramic
JP4432280B2 (en) Piezoelectric ceramic
JP4001366B2 (en) Piezoelectric ceramic
KR20030083009A (en) Ceramic capacitor and method of manufacturing the same
JP3106365B2 (en) Functionally graded piezoelectric
JP2003206179A (en) Piezoelectric ceramic
KR101012143B1 (en) Composition of lead-free piezoelectric ceramics for sensor and actuator and making method for the same
JP2836572B2 (en) High output pressure ceramic composition and method for producing the same
KR20190116690A (en) Lead-free piezoelectric ceramic composition, and preparation method thereof
JP2921724B2 (en) Ferroelectric piezoelectric ceramic composition
JP4001363B2 (en) Piezoelectric ceramic
JPH06224486A (en) Polarizing method for piezoelectric ceramics
JPH10270290A (en) Trimmer capacitor
JP2567914B2 (en) Ferroelectric ceramics

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040406