JP2836572B2 - High output pressure ceramic composition and method for producing the same - Google Patents

High output pressure ceramic composition and method for producing the same

Info

Publication number
JP2836572B2
JP2836572B2 JP7998696A JP7998696A JP2836572B2 JP 2836572 B2 JP2836572 B2 JP 2836572B2 JP 7998696 A JP7998696 A JP 7998696A JP 7998696 A JP7998696 A JP 7998696A JP 2836572 B2 JP2836572 B2 JP 2836572B2
Authority
JP
Japan
Prior art keywords
composition
pbtio
vibration level
vibration
high output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7998696A
Other languages
Japanese (ja)
Other versions
JPH09268057A (en
Inventor
英正 河合
康弘 佐々木
貞行 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP7998696A priority Critical patent/JP2836572B2/en
Publication of JPH09268057A publication Critical patent/JPH09268057A/en
Application granted granted Critical
Publication of JP2836572B2 publication Critical patent/JP2836572B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】高範囲な振動レベルで高効率
な電気機械変換特性を有する圧電磁器組成物及びその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric ceramic composition having high efficiency electromechanical conversion characteristics in a wide range of vibration levels and a method for producing the same.

【0002】[0002]

【従来の技術】電気エネルギーを機械的振動ネルギーに
変換することのできる圧電材料は圧電トランス、圧電ア
クチュエータや超音波モータなど、動力分野への応用が
なされている。これらの応用に対して圧電材料は、その
用途に応じて小さい機械的出力から極めて大きな機械的
出力まで広範囲に渡り高効率で電気−機械エネルギー変
換がおこなわれることが求められる。従って、これらの
応用に対し、圧電材料には電気エネルギーの機械的な振
動エネルギーへの変換の際のエネルギー損失の抑制され
ることが求められる。
2. Description of the Related Art Piezoelectric materials capable of converting electric energy into mechanical vibration energy have been applied to power fields such as piezoelectric transformers, piezoelectric actuators and ultrasonic motors. For these applications, piezoelectric materials are required to perform electro-mechanical energy conversion with high efficiency over a wide range from a small mechanical output to an extremely large mechanical output depending on the application. Therefore, for these applications, the piezoelectric material is required to suppress energy loss when converting electric energy to mechanical vibration energy.

【0003】従来、圧電磁器組成物として鉛系複合ペロ
ブスカイト化合物が広く知られ、一部の組成で実用化が
なされている。その中でも大振幅駆動に適した代表的な
組成材料に、マンガン・アンチモン酸鉛[Pb(Mn
1/3 Sb2/3 )O3 ]、ジルコン酸鉛[PbZrO3
とチタン酸[PbTiO3 ]を配合した3成分組成物
(特開昭46−8549号公報)および、その組成物の
構成元素であるPbの1部をCa、Sr、Baで置換し
て得られる組成物(特開昭46−35472号公報)等
がある。
Heretofore, lead-based composite perovskite compounds have been widely known as piezoelectric ceramic compositions, and some compositions have been put to practical use. Among them, a typical composition material suitable for large-amplitude driving is manganese / lead antimonate [Pb (Mn).
1/3 Sb 2/3 ) O 3 ], lead zirconate [PbZrO 3 ]
It is a titanate [PbTiO 3] 3-component composition containing (JP 46-8549 JP) and obtained by substituting a part of Pb as an element of the composition Ca, Sr, with Ba Compositions (JP-A-46-35472) and the like.

【0004】昨今、圧電材料を応用した動力デバイスが
実用化されるなか、その機械的出力のさらなる増大が求
められている。この要求に対し、これらの材料は動作振
動振幅もしくは振動レベルが高くなるのにともない、内
部エネルギー損失による発熱がおこるため、やがて励起
できる振動振幅は限界値、すなわち振動レベル限界値に
達し、さらには材料の絶縁破壊をひきおこす。従って、
機械的出力の増大が求められる中、高い振動レベル限界
を有する材料が求められている。ここで言う振動レベル
とは、すでに報告されているように(広瀬清二、信学技
報 US92−3 圧電振動子のハイパワー特性の自動
測定)、振動レベルを、光学式変位測定器から得られる
振動子の最大先端振動振幅ξmと振動子の共振周波数f
0 の測定から算出できる実効的振動速度v0 とし、振動
レベルの増加に伴い振動子の内部エネルギー損失による
発熱が室温+20℃となる振動速度を振動レベル限界と
定義している。
[0004] In recent years, as a power device using a piezoelectric material has been put to practical use, a further increase in its mechanical output is required. In response to this requirement, these materials generate heat due to internal energy loss as the operating vibration amplitude or vibration level increases, so that the vibration amplitude that can be excited eventually reaches the limit value, that is, the vibration level limit value, and Causes dielectric breakdown of the material. Therefore,
With the demand for increased mechanical power, there is a need for materials with high vibration level limits. The vibration level referred to here is, as already reported (Seiji Hirose, IEICE Technical Report US92-3 Automatic measurement of high power characteristics of piezoelectric vibrator), the vibration level can be obtained from an optical displacement measuring instrument. Maximum tip vibration amplitude ξm of oscillator and resonance frequency f of oscillator
The effective vibration speed v 0 can be calculated from the measurement of 0 , and the vibration speed at which the heat generated by the internal energy loss of the vibrator becomes room temperature + 20 ° C. as the vibration level increases is defined as the vibration level limit.

【0005】このように振動レベルを振動速度で表現し
た場合、従来材料は安定して使用できる振動レベル(速
度)の限界が0.6m/sが達成されている。
[0005] When the vibration level is expressed by the vibration speed in this way, the limit of the vibration level (speed) that can be used stably for the conventional material is 0.6 m / s.

【0006】この材料を用いて例えば特開平7−193
293号公報に提案されているような圧電トランスに適
用した場合、数Wの出力エネルギーが得られている。
[0006] Using this material, for example,
When applied to a piezoelectric transformer as proposed in Japanese Patent No. 293, an output energy of several W is obtained.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来材
料では上記振動レベル限界を有する焼成体を製造するた
めには1200℃以上で焼成する必要があった。すなわ
ち、従来材料は1200℃未満の焼成では0.6m/s
以上の振動レベル限界を有することはできず大きな機械
的出力が要求される動力デバイスへの応用は困難であっ
た。
However, in the case of the conventional materials, it was necessary to fire at 1200 ° C. or higher in order to produce a fired body having the above vibration level limit. That is, the conventional material is 0.6 m / s when fired at less than 1200 ° C.
It was impossible to have the above-mentioned vibration level limit, and it was difficult to apply it to a power device requiring a large mechanical output.

【0008】一方、デバイスには内部に銀パラジウム電
極を形成しておいて材料の焼成と同時に電極焼成を行う
ケースもあり、その場合の焼成温度は1100℃が限界
であり、従来材料では適応することが困難であった。1
200℃未満の焼成において従来材料の高出力化のため
数々の手段がとられたが、その材料性能を向上させる効
果はみられなかった。
On the other hand, there is a case where a silver palladium electrode is formed in the device and the electrode is fired at the same time as the firing of the material. In this case, the firing temperature is limited to 1100 ° C., which is suitable for the conventional material. It was difficult. 1
Although various measures have been taken to increase the output of conventional materials in firing at less than 200 ° C., no effect of improving the material performance was found.

【0009】本発明の目的は、焼成後の組成物の組成比
と平均粒径を制御することにより、従来困難であった、
振動レベル限界v0max≧0.6m/sの特性を有する圧
電磁器組成を低温の焼成温度にて得る方法を提供するこ
とである。
The object of the present invention has been conventionally difficult by controlling the composition ratio and average particle size of the composition after firing.
An object of the present invention is to provide a method for obtaining a piezoelectric ceramic composition having a characteristic of a vibration level limit v 0max ≧ 0.6 m / s at a low firing temperature.

【0010】[0010]

【課題を解決するための手段】本発明は、マンガン・ア
ンチモン酸鉛[Pb(Mn1/3 Sb2/3 )O3 ]、ジル
コン酸[PbZrO3 ]およびチタン酸鉛[PbTiO
3 ]からなる3成分組成物を[Pb(Mn1/3
2/3 )O3 ]x[PbZrO3 ]y[PbTiO3
z(ただしx+y+z=1)と表現したとき、3成分組
成図において以下の組成 (x=0.08, y=0.35, z=0.57)・・・(a) (x=0.08, y=0.50, z=0.42)・・・(b) (x=0.12, y=0.35, z=0.53)・・・(c) (x=0.12, y=0.50, z=0.38)・・・(d) 各点を結ぶ線上、およびこの4点に囲まれた領域であら
わされ、かつ焼成体の平均粒径が0.8〜2μm である
高出力圧電磁器組成物である。図1はこの領域を示した
ものであり、(a)〜(d)は各組成点を表し、本発明
の組成範囲は、図の斜線で示す範囲およびその境界線上
の組成領域である。このような材料であれば、0.6m
/s以上という高い振動レベル限界を有し、かつ安定し
て駆動することができる。
SUMMARY OF THE INVENTION The present invention provides lead manganese antimonate [Pb (Mn 1/3 Sb 2/3 ) O 3 ], zirconic acid [PbZrO 3 ] and lead titanate [PbTiO 3 ].
The ternary composition consisting of 3] [Pb (Mn 1/3 S
b 2/3 ) O 3 ] x [PbZrO 3 ] y [PbTiO 3 ]
When expressed as z (where x + y + z = 1), the following composition (x = 0.08, y = 0.35, z = 0.57) in the three-component composition diagram (a) (x = 0. 08, y = 0.50, z = 0.42) (b) (x = 0.12, y = 0.35, z = 0.53) (c) (x = 0. 12, y = 0.50, z = 0.38) (d) Represented on the line connecting the points and the area surrounded by the four points, and the average particle size of the fired body is 0.8 It is a high-output piezoelectric ceramic composition having a thickness of about 2 μm. FIG. 1 shows this region, wherein (a) to (d) represent each composition point, and the composition range of the present invention is a range indicated by oblique lines in the figure and a composition region on a boundary line thereof. 0.6m for such material
/ S or higher and a stable driving can be achieved.

【0011】なお、この組成物は、前記領域となるよう
な原料粉末を仮焼し、これを粉砕、造粒、成形の工程を
経て1050℃以上1200℃未満の温度で焼成するこ
とによって得ることが出来る。
The composition can be obtained by calcining a raw material powder to be in the above-mentioned region, and sintering it at a temperature of 1050 ° C. or more and less than 1200 ° C. through a pulverization, granulation and molding step. Can be done.

【0012】[0012]

【発明の実施の形態】以下、本発明を実施例に従い説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments.

【0013】本発明の材料を得る出発原料として酸化鉛
(PbO)、酸化ジルコニウム(ZrO2 )酸化チタン
(TiO2 )、炭酸マンガン(MnCO3 )、酸化アン
チモン(Sb2 3 )および炭酸カルシウム(CaCO
3 )、炭酸ストロンチウム(SrCO3 )、炭酸バリウ
ム(BaCO3 )の各粉末を用いた。ここでMnC
3 、CaCO3 、SrCO3 、BaCO3 は各々、M
nO、CaO、SrO、BaOに換算して必要量得るよ
うにした。
As starting materials for obtaining the material of the present invention, lead oxide (PbO), zirconium oxide (ZrO 2 ) titanium oxide (TiO 2 ), manganese carbonate (MnCO 3 ), antimony oxide (Sb 2 O 3 ) and calcium carbonate ( CaCO
3 ) Powders of strontium carbonate (SrCO 3 ) and barium carbonate (BaCO 3 ) were used. Where MnC
O 3 , CaCO 3 , SrCO 3 and BaCO 3 are each M
The required amount was obtained in terms of nO, CaO, SrO, and BaO.

【0014】各原料粉末を所定量秤量し、ジルコニアボ
ールを用いたボールミルによる湿式混合後、混合粉末を
850℃、2h、大気中で仮焼した。仮焼粉をジルコニ
アボールによる粉砕後、造粒、成形し、1100℃、2
時間、大気中で焼成をおこない、長さ60mm、幅30m
m、厚さ10mmの焼結ブロックを得た。このブロックを
切断、研磨により43×7×1mmt の矩形板に加工した
後、相対向する両主面に銀電極を焼き付け、100℃の
絶縁油中で4kV/mmの直流電界を1時間印加して分極
処理を施した。24時間室温放置した後、定電流駆動回
路により圧電横効果長さ縦振動の基本モードを励振さ
せ、振動レベル限界の測定をおこなった。振動レベルは
光学式変位測定器から得られる振動子の最大先端振動振
幅ξmと振動子の共振周波数f0 の測定から算出できる
実効的振動速度v0 であらわした。
A predetermined amount of each raw material powder was weighed and wet-mixed by a ball mill using zirconia balls, and the mixed powder was calcined at 850 ° C. for 2 hours in the air. After the calcined powder is pulverized with zirconia balls, it is granulated, molded,
Baking in the air for hours, length 60mm, width 30m
m, a sintered block having a thickness of 10 mm was obtained. This block is cut and polished to form a 43 × 7 × 1 mm t rectangular plate, and then silver electrodes are baked on both opposing main surfaces, and a DC electric field of 4 kV / mm is applied for 1 hour in an insulating oil at 100 ° C. Then, a polarization treatment was performed. After standing at room temperature for 24 hours, the fundamental mode of the piezoelectric transverse effect length longitudinal vibration was excited by the constant current drive circuit, and the vibration level limit was measured. The vibration level was represented by an effective vibration velocity v 0 which can be calculated from the measurement of the maximum tip vibration amplitude Δm of the vibrator obtained from the optical displacement measuring instrument and the resonance frequency f 0 of the vibrator.

【0015】 v0 =√2πf0 ξm・・・・・・・(1) 振動レベル(速度)限界は圧電振動子の振動の節点に設
けられた熱電対の温度測定により、その振動子の内部エ
ネルギー損失により誘起される温度上昇(振動子の温度
と室温の差)ΔTが20℃になる振動速度をv0maxとあ
らわし、これを振動レベル限界とした。
V 0 = {2πf 0 } m (1) The vibration level (speed) limit is determined by measuring the temperature of the thermocouple provided at the node of the vibration of the piezoelectric vibrator. The vibration speed at which the temperature rise (difference between the temperature of the vibrator and room temperature) ΔT caused by the energy loss becomes 20 ° C. is represented as v 0max, and this is defined as the vibration level limit.

【0016】表1〜表4は[Pb(Mn1/3 Sb2/3
3 ]x[PbZrO3 ]y[PbTiO3 ]z(x+
y+z=1)の配合比、焼成体の平均粒径及び振動レベ
ル限界の相関を示している。ここでPMS、PZ、PT
はそれぞれ、マンガン・アンチモン酸鉛[Pb(Mn
1/3 Sb2/3 )O3 ]、ジルコン酸[PbZrO3 ]お
よびチタン酸鉛[PbTiO3 ]を、また試料番号の右
に記された(*)は本発明の権利範囲外の試料であるこ
とを示す。
Tables 1 to 4 show [Pb (Mn 1/3 Sb 2/3 )
O 3 ] x [PbZrO 3 ] y [PbTiO 3 ] z (x +
It shows the correlation between the mixing ratio of y + z = 1), the average particle size of the fired body, and the vibration level limit. Where PMS, PZ, PT
Are manganese lead antimonate [Pb (Mn
1/3 Sb 2/3 ) O 3 ], zirconic acid [PbZrO 3 ] and lead titanate [PbTiO 3 ], and (*) to the right of the sample number are samples outside the scope of the present invention. Indicates that there is.

【0017】第一にPMSの組成範囲を限定した理由は
配合比率が8mol%未満であると、強誘電体分域壁の
運動にともなう内部摩擦による損失が大きいため、振動
レベル限界は低い。また12mol%を越えるとパイロ
クロア等の異相が生成し、したがって弾性的な損失をひ
きおこす。またPZの配合比率を請求外の比率にすると
電気エネルギーを機械的なエネルギーに変換する能力が
極端に下がるため、振動レベル限界は低くなる。PTの
配合比率はPMS、PZ、PTの配合比が決まれば必然
的に決まる。従って振動レベル限界が0.5m/s以上
となるのは請求した組成範囲内に限定される。
First, the reason for limiting the composition range of the PMS is that if the blending ratio is less than 8 mol%, the loss due to internal friction accompanying the movement of the ferroelectric domain wall is large, and the vibration level limit is low. On the other hand, when the content exceeds 12 mol%, a hetero phase such as pyrochlore is formed, and therefore, an elastic loss is caused. Further, if the blending ratio of PZ is set to a ratio not claimed, the ability to convert electric energy into mechanical energy is extremely reduced, and the vibration level limit is lowered. The mixing ratio of PT is inevitably determined if the mixing ratio of PMS, PZ and PT is determined. Therefore, the vibration level limit of 0.5 m / s or more is limited within the claimed composition range.

【0018】次に各化合物の焼成体の平均粒径を限定し
た理由について表1〜表4に準じて述べる。焼成体の平
均粒径を0.8〜2μm 限定した理由は焼成体の平均粒
径を0.8μm 未満に調整するには粉砕後に粒径の細か
い粉末を用いる必要がありこの微粉末を造粒及び成形す
ると焼成時にクラック等が入り緻密な焼成体を得ること
は困難であり、その振動レベル限界も低い。また焼成体
の平均粒径が2μm を越えるように調整すると焼成温度
が1200℃以上必要となり、また振動レベル限界も
0.5m/sを越えることができない。従って振動レベ
ル限界が0.5m/s以上となるのは請求した組成範囲
内に限定される。
Next, the reasons for limiting the average particle size of the fired body of each compound will be described with reference to Tables 1 to 4. The reason for limiting the average particle diameter of the fired body to 0.8 to 2 μm is that in order to adjust the average particle diameter of the fired body to less than 0.8 μm, it is necessary to use a powder having a fine particle diameter after pulverization. Also, when formed, it is difficult to obtain cracks and the like during firing and obtain a dense fired body, and its vibration level limit is also low. If the average particle size of the fired body is adjusted to exceed 2 μm, the firing temperature must be 1200 ° C. or higher, and the vibration level limit cannot exceed 0.5 m / s. Therefore, the vibration level limit of 0.5 m / s or more is limited within the claimed composition range.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【表4】 [Table 4]

【0023】[0023]

【発明の効果】以上の実施例から明かなように本発明に
よる組成物は高い振動レベル限界を有し、従って高振動
レベルまたは大振幅で駆動させる圧電デバイスへの応用
が可能となり、工業的価値は多大である。
As is clear from the above examples, the composition according to the present invention has a high vibration level limit, so that it can be applied to a piezoelectric device driven at a high vibration level or at a large amplitude, and has an industrial value. Is enormous.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る組成物の3成分組成
図である。
FIG. 1 is a three-component composition diagram of a composition according to an embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−164432(JP,A) 特開 平9−59060(JP,A) 特公 昭47−43513(JP,B1) 特公 昭46−8549(JP,B1) (58)調査した分野(Int.Cl.6,DB名) C04B 35/42 - 35/49 H01L 41/18 - 41/187 H01B 3/00 - 3/14──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-164432 (JP, A) JP-A-9-59060 (JP, A) JP-B-47-43513 (JP, B1) JP-B-46 8549 (JP, B1) (58) Field surveyed (Int. Cl. 6 , DB name) C04B 35/42-35/49 H01L 41/18-41/187 H01B 3/00-3/14

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】マンガン・アンチモン酸鉛[Pb(Mn
1/3 Sb2/3 )O3 ]、ジルコン酸[PbZrO3 ]お
よびチタン酸鉛[PbTiO3 ]からなる3成分組成物
を[Pb(Mn1/3 Sb2/3 )O3 ]x[PbZr
3 ]y[PbTiO3 ]z(ただしx+y+z=1)
と表現したとき、この3成分組成図において以下の組成 (x=0.08, y=0.35, z=0.57)・・・(a) (x=0.08, y=0.50, z=0.42)・・・(b) (x=0.12, y=0.35, z=0.53)・・・(c) (x=0.12, y=0.50, z=0.38)・・・(d) 各点を結ぶ線上,およびこの4点に囲まれた領域であら
わされ、かつ焼成体の平均粒径が0.8〜2μm である
ことを特徴とする高出力圧電磁器組成物。
1. A manganese lead antimonate [Pb (Mn)
1/3 Sb 2/3) O 3], a 3-component composition comprising a zirconate [PbZrO 3] and lead titanate [PbTiO 3] [Pb (Mn 1/3 Sb 2/3) O 3] x [ PbZr
O 3 ] y [PbTiO 3 ] z (where x + y + z = 1)
In this three-component composition diagram, the following composition (x = 0.08, y = 0.35, z = 0.57) (a) (x = 0.08, y = 0. 50, z = 0.42) (b) (x = 0.12, y = 0.35, z = 0.53) (c) (x = 0.12, y = 0. 50, z = 0.38) (d) It is expressed on the line connecting each point and the area surrounded by these four points, and the average particle diameter of the fired body is 0.8 to 2 μm. High output pressure ceramic composition characterized.
【請求項2】マンガン・アンチモン酸鉛[Pb(Mn
1/3 Sb2/3 )O3 ]、ジルコン酸[PbZrO3 ]お
よびチタン酸鉛[PbTiO3 ]からなる3成分組成物
を[Pb(Mn1/3 Sb2/3 )O3 ]x[PbZr
3 ]y[PbTiO3 ]z(ただしx+y+z=1)
と表現したとき、この3成分組成図において以下の組成 (x=0.08, y=0.35, z=0.57)・・・(a) (x=0.08, y=0.50, z=0.42)・・・(b) (x=0.12, y=0.35, z=0.53)・・・(c) (x=0.12, y=0.50, z=0.38)・・・(d) 各点を結ぶ線上,およびこの4点に囲まれた領域となる
ような原料粉末を仮焼し、これを粉砕、造粒、成形の工
程を経て1050℃以上1200℃未満の温度で焼成す
ることを特徴とする高出力圧電磁器組成物の製造方法。
2. A manganese lead antimonate [Pb (Mn)
1/3 Sb 2/3) O 3], a 3-component composition comprising a zirconate [PbZrO 3] and lead titanate [PbTiO 3] [Pb (Mn 1/3 Sb 2/3) O 3] x [ PbZr
O 3 ] y [PbTiO 3 ] z (where x + y + z = 1)
In this three-component composition diagram, the following composition (x = 0.08, y = 0.35, z = 0.57) (a) (x = 0.08, y = 0. 50, z = 0.42) (b) (x = 0.12, y = 0.35, z = 0.53) (c) (x = 0.12, y = 0. (50, z = 0.38) (d) The raw material powder is calcined on a line connecting each point and in a region surrounded by these four points, and this is ground, granulated, and molded. And firing at a temperature of 1050 ° C. or more and less than 1200 ° C. after the heat treatment.
JP7998696A 1996-04-02 1996-04-02 High output pressure ceramic composition and method for producing the same Expired - Lifetime JP2836572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7998696A JP2836572B2 (en) 1996-04-02 1996-04-02 High output pressure ceramic composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7998696A JP2836572B2 (en) 1996-04-02 1996-04-02 High output pressure ceramic composition and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09268057A JPH09268057A (en) 1997-10-14
JP2836572B2 true JP2836572B2 (en) 1998-12-14

Family

ID=13705644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7998696A Expired - Lifetime JP2836572B2 (en) 1996-04-02 1996-04-02 High output pressure ceramic composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP2836572B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005068394A1 (en) * 2004-01-20 2005-07-28 Iai Corporation Piezoelectric porcelain composition
JP4756629B2 (en) * 2005-01-19 2011-08-24 Necトーキン株式会社 Piezoelectric ceramic composition
JP2007204346A (en) * 2006-02-06 2007-08-16 Iai:Kk Piezoelectric porcelain composition and piezoelectric resonator
JP5137127B2 (en) * 2008-06-26 2013-02-06 Necトーキン株式会社 Piezoelectric ceramic composition

Also Published As

Publication number Publication date
JPH09268057A (en) 1997-10-14

Similar Documents

Publication Publication Date Title
US6426018B1 (en) Piezoelectric ceramic compositions
JP4674405B2 (en) Piezoelectric ceramic
JP2005047745A (en) Piezoelectric ceramic
JP2674576B2 (en) Piezoelectric ceramic composition
JP2836572B2 (en) High output pressure ceramic composition and method for producing the same
JP2003277145A (en) Piezoelectric porcelain
JP4779243B2 (en) Piezoelectric ceramic
JP4070967B2 (en) Piezoelectric ceramic
JP4569062B2 (en) Piezoelectric ceramic
JP4432280B2 (en) Piezoelectric ceramic
JP2005082422A (en) Piezoelectric ceramic
JPH0558729A (en) Piezoelectric ceramic composition
JP2002226266A (en) Piezoelectric ceramic composition
JP2856147B2 (en) Piezoelectric ceramic composition
JPH0788252B2 (en) Oxide piezoelectric material
JPH11322423A (en) Piezoelectric percelain composition
JP2000239064A (en) Piezoelectric porcelain composition
JP4509481B2 (en) Piezoelectric ceramics
JP2001302348A (en) Piezoelectric ceramic composition
JP2005082424A (en) Piezoelectric porcelain composition
JP2004051417A (en) Piezoelectric ceramic formulation
JPH11310457A (en) Piezoelectric porcelain material
JPH08151264A (en) Porcelain composition
KR920001408B1 (en) Piezo-ceramic composition
JP4009417B2 (en) Piezoelectric and piezoelectric devices

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980908

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071009

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 15

EXPY Cancellation because of completion of term