JPH10221309A - Determining method of welded part, measuring method of unwelded part, and inspecting device of the welded part - Google Patents

Determining method of welded part, measuring method of unwelded part, and inspecting device of the welded part

Info

Publication number
JPH10221309A
JPH10221309A JP9027136A JP2713697A JPH10221309A JP H10221309 A JPH10221309 A JP H10221309A JP 9027136 A JP9027136 A JP 9027136A JP 2713697 A JP2713697 A JP 2713697A JP H10221309 A JPH10221309 A JP H10221309A
Authority
JP
Japan
Prior art keywords
weld
height
penetration
welded portion
echo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9027136A
Other languages
Japanese (ja)
Inventor
Koji Morita
耕次 森田
Yukio Hayashi
幸雄 林
Masahiro Nagata
匡宏 永田
Kenji Udagawa
建志 宇田川
Yasushi Ikegaya
靖 池ケ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON CHOONPA SHIKEN KK
Kajima Corp
Nippon Steel Corp
Original Assignee
NIPPON CHOONPA SHIKEN KK
Kajima Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON CHOONPA SHIKEN KK, Kajima Corp, Nippon Steel Corp filed Critical NIPPON CHOONPA SHIKEN KK
Priority to JP9027136A priority Critical patent/JPH10221309A/en
Publication of JPH10221309A publication Critical patent/JPH10221309A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver

Abstract

PROBLEM TO BE SOLVED: To determine the shape of a welded part in a wide application range regardless of differences in the thickness of a plate, the presence or absence of sagging, or the presence or absence of fireproof coatings. SOLUTION: A measurement plane 8 is formed on the open side at a distance L from a welded part in a steel skeleton. A probe 10 is pressed against the measurement plane 8 to transmit surface SH waves toward the welded part. Reflected waves receives at the measurement plane 8 are transferred from a flaw detector 12 to a PC 13. Waveforms 16a to 16c typical for every shape of welding (b, c, d,) of full penetration 4, partial penetration 5, and fillet 6 each are accumulated in the PC 13 by experiment in advance. A check waveform 15 is compared with the typical waveforms (a). By comparison, it is determined which the shape of the welded part belongs to full penetration, partial penetration, or fillet. The amplitude of an unwelded part is estimated from the echo amplitude of the check waveform 15.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、鉄骨構造物の溶
接部に適応する、溶接部の判別方法及び不溶着部の測定
方法並びに溶接部の検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for determining a welded portion, a method for measuring an unwelded portion, and an apparatus for inspecting a welded portion, which are adapted to a welded portion of a steel structure.

【0002】[0002]

【従来の技術】既存建物の鉄骨の耐震診断を行う場合、
溶接部が設計どおりに成されているか否かは重要な観点
である。この場合、溶接部が完全溶込み溶接部である
か、部分溶込み溶接部、すみ肉溶接部であるかを判別す
ることが重要となるが、開先形状と溶接部の外観とは一
致しないので、目視によって判断することは困難であっ
た。
2. Description of the Related Art When performing an earthquake-resistant diagnosis of a steel frame of an existing building,
It is an important point whether the weld is made as designed. In this case, it is important to determine whether the weld is a complete penetration weld, a partial penetration weld, or a fillet weld, but the groove shape does not match the appearance of the weld. Therefore, it was difficult to make a visual judgment.

【0003】そこで、かかる判別方法として、一般に実
際に溶接部の端部を切り削りし、マクロ試験によって溶
込み形状を現場で確認する方法が取られている。また、
他の方法では、SV波斜角探傷法により超音波による判
別方法も試みられている。
Therefore, as a method for such determination, a method is generally employed in which the end of a weld is actually cut off and the penetration shape is confirmed on site by a macro test. Also,
As another method, an ultrasonic wave discrimination method using the SV wave oblique flaw detection method has been attempted.

【0004】[0004]

【発明が解決しようとする課題】前記従来技術の内、前
者の場合では、溶込みを直接確認できるが、当該端部断
面を鏡面仕上げする必要から強酸性の腐食液を使用する
為、周囲に障害のない端部にしか適用できなかった。ま
た、溶接部端部の溶込みと溶接部中間部での溶込みとが
一致しない場合も多かった。従って、判別に要する時間
やコストがかかり、更に実際の建造物を傷つける為、そ
の修復などが煩雑となる問題点があった。
In the former case, the penetration can be directly confirmed. However, since the end section needs to be mirror-finished, a strongly acidic corrosive solution is used. Only applicable to unobstructed ends. Further, there were many cases where the penetration at the end of the welded portion did not coincide with the penetration at the intermediate portion of the welded portion. Therefore, there is a problem that it takes time and cost for the determination, and furthermore, the actual building is damaged, so that repairing the building becomes complicated.

【0005】また後者の場合では、完全溶込み溶接部
か、部分溶込み溶接部かの判別は比較的可能であるが、
板厚の条件によっては採用できない問題点があった。更
に、完全溶接部でもたれ込みからの妨害エコー等の為に
すみ肉及び部分溶込み溶接部と同様のエコーが検出され
る問題点があった。更に、不溶着部の高さの測定は一般
に困難であった。
In the latter case, it is relatively possible to discriminate between a full penetration weld and a partial penetration weld.
There is a problem that cannot be adopted depending on the conditions of the plate thickness. Further, there is a problem that the same echo as in the fillet and the partially penetrated weld is detected due to interference echo from the slack in the complete weld. Further, it has been generally difficult to measure the height of the unwelded portion.

【0006】[0006]

【課題を解決するための手段】然るに、この発明は、表
面SH波を利用して、溶接部の判断することにより、前
記問題点を解決した。
However, the present invention has solved the above-mentioned problem by making a judgment on a welded portion using a surface SH wave.

【0007】表面SH波は、板材の表面に沿って表面直
下を伝搬する為、表面に垂直な面の反射源を良く検出で
きる。また、エコー高さも図3(a)(d)に示すよう
に表面に垂直に製作されたスリット11の高さH0 と相
関関係がある。
[0007] Since the surface SH wave propagates directly below the surface of the plate material, a reflection source on a surface perpendicular to the surface can be detected well. The echo height also has a correlation with the height H 0 of the slit 11 manufactured perpendicular to the surface as shown in FIGS.

【0008】一方、完全溶込み溶接部4では通常エコー
を発生させない(図3(b))、すみ肉溶接部の不溶着
部又は部分溶込み溶接部の不溶着部5a(高さH0
は、表面に対してほぼ垂直になる為にエコーを生じる
(図3(c))。従って、表面SH波の探傷法でエコー
高さから、すみ肉溶接部又は部分溶込み溶接部又は、完
全溶込み溶接部の判別ができる。また、エコー高さから
不溶着部のサイズ(高さ)を推定できる。
On the other hand, no echo is normally generated in the complete penetration weld 4 (FIG. 3B), and the unwelded portion of the fillet weld or the unwelded portion 5a of the partial penetration weld (height H 0 ).
Generates an echo because it is almost perpendicular to the surface (FIG. 3 (c)). Therefore, a fillet weld, a partial penetration weld, or a complete penetration weld can be determined from the echo height by the surface SH wave flaw detection method. In addition, the size (height) of the unwelded portion can be estimated from the echo height.

【0009】即ちこの発明は、鉄骨構造物の溶接部から
所定距離離れた地点を測定面とし、該測定面から溶接部
に向けて表面SH波を発信し、該部で受信した反射波
を、実験値による典型的な波形と比較し、溶接部の形状
を、完全溶込み溶接部、部分溶込み溶接部あるいはすみ
肉溶接部のいずれかを判別する溶接部の判別方法であ
る。ここで、表面SH波の発信は、測定面の全幅に亘
り、所定ピッチ毎に行うことが望ましい。
That is, according to the present invention, a point at a predetermined distance from a welded portion of a steel structure is set as a measurement surface, a surface SH wave is transmitted from the measurement surface toward the welded portion, and a reflected wave received at the portion is reflected. This is a method of discriminating a welded portion by comparing the waveform of the welded portion with a typical waveform based on experimental values to determine whether the shape of the welded portion is a complete penetration weld, a partial penetration weld, or a fillet weld. Here, it is desirable that the transmission of the surface SH wave is performed at a predetermined pitch over the entire width of the measurement surface.

【0010】また、この発明は、鉄骨構造物の溶接部か
ら所定距離離れた地点を測定面とし、該測定面から溶接
部に向けて表面SH波を発信し、該部で受信した反射波
の高さを計測し、該高さに基づき、実験値による不溶着
部の高さと反射波の高さとの関係から、不溶着部の高さ
を推定するすることを特徴とする不溶着部の測定方法で
ある。
Further, the present invention provides a measuring surface at a point separated from a welded portion of a steel structure by a predetermined distance, transmits a surface SH wave from the measured surface toward the welded portion, and transmits a reflected wave received by the portion. Measuring the height, and estimating the height of the unwelded portion from the relationship between the height of the unwelded portion and the height of the reflected wave based on experimental values based on the height, measuring the unwelded portion. Is the way.

【0011】また、この発明は、超音波探傷器に表面S
H波探触子を接続すると共に、該超音波探傷器と、超音
波探傷器のデータを取り込みかつ処理する機能を有する
コンピュータに接続したことを特徴とする溶接部の検査
装置である。ここで、実験値に基づく溶接部の形状の違
いによる典型的な反射波形を蓄積し、取り込んだ探傷器
のデータと、該典型的な反射波形とを比較する機能を有
するコンピュータを使用することが望ましい。
The present invention also provides an ultrasonic flaw detector with a surface S
An inspection device for a welded portion, wherein an H-wave probe is connected, and the ultrasonic flaw detector is connected to a computer having a function of taking in and processing data of the ultrasonic flaw detector. Here, it is possible to use a computer having a function of accumulating a typical reflection waveform due to a difference in the shape of the welded portion based on experimental values, and comparing the acquired flaw detector data with the typical reflection waveform. desirable.

【0012】また、表面SH波を使用するものであるか
ら、前記における検査対象の鉄骨構造物(溶接部)は、
耐火被膜や塗装などが施されている場合あるいは施され
ていない場合のいずれでも可能である。尚、耐火被膜等
が施されている場合には、測定面(探触子を当てる鉄骨
表面)では、耐火被膜などを一部除去し、表面を清掃す
る必要がある。また、耐火被膜などの除去は、鉄骨の幅
方向の全長に亘ることが望ましい。
Further, since the surface SH wave is used, the steel structure (weld portion) to be inspected in the above is
It is possible either in the case where the refractory coating or the coating is applied or in the case where it is not applied. When a refractory film or the like is provided, it is necessary to remove a part of the refractory film or the like on the measurement surface (the surface of the steel frame to which the probe is applied) and clean the surface. Further, it is desirable that the removal of the refractory coating or the like be performed over the entire length of the steel frame in the width direction.

【0013】また、前記において使用する表面SH波は
周波数0.5〜5MHz 程度、溶接部から測定面までの距
離は50〜500mm程度とすることが望ましい。
It is desirable that the surface SH wave used in the above method has a frequency of about 0.5 to 5 MHz, and the distance from the weld to the measurement surface is about 50 to 500 mm.

【0014】まず、以下の実験例により、発明の実施に
使用するデータの蓄積を図った。
First, data used for carrying out the present invention was accumulated by the following experimental examples.

【0015】[0015]

【実験例】図5〜図17に基づき表面SH波法によっ
て、非破壊的に開先形状を推定する実験例を説明する。
EXPERIMENTAL EXAMPLE An experimental example for non-destructively estimating a groove shape by the surface SH wave method will be described with reference to FIGS.

【0016】(1)試験方法 試験体 溶接試験体1(図5) TP−A(完全溶込み4+完全溶込み4)(図5
(b)) TP−B(完全溶込み4+部分溶込み5)(図5
(c)) TP−C(完全溶込み4+すみ肉6) (図5
(d)) TP−D(部分溶込み5+部分溶込み5)(図5
(e)) TP−E(すみ肉6+すみ肉6) (図5
(f))
(1) Test Method Specimen Weld specimen 1 (FIG. 5) TP-A (complete penetration 4 + complete penetration 4) (FIG. 5)
(B)) TP-B (complete penetration 4 + partial penetration 5) (FIG. 5)
(C)) TP-C (complete penetration 4 + fillet 6) (FIG. 5)
(D)) TP-D (partial penetration 5 + partial penetration 5) (FIG. 5)
(E)) TP-E (fillet 6 + fillet 6) (FIG. 5)
(F))

【0017】 使用装置等 (1) 斜角探触子:ジャパンプローブ製 表面SH波探触子:0.5Z20×20SH90 表面SH波探触子:2Z10×10SH90 (2) 超音波探傷器 クラウトクレーマー製 USD15 (3) 接触媒質:ソニコート SHN−95Equipment Used (1) Angle Probe: Japan Probe Surface SH Wave Probe: 0.5Z20 × 20SH90 Surface SH Wave Probe: 2Z10 × 10SH90 (2) Ultrasonic Flaw Detector Made by Kraut Kramer USD15 (3) Coupling medium: Sonicoat SHN-95

【0018】 実験方法 図4に示すように、試験体1の直交する部材2との溶接
部からY距離500mm・X方向20mmの位置の測定面8
の測定点Pに接触媒質(SHN−95)を塗布し、表面
SH波斜角探触子10を多少の前後・左右・首振り走査
を行い最大エコーを求め、再度探触子10の位置を確認
し、約2kgの荷重を加えエコー高さが安定した後、エコ
ーの測定を行った。その後、探触子位置を20mmピッチ
の各測定点で溶接線方向に移動し同様な測定を行った。
この測定を裏当て金3側及び開先側(表側)3aの各点
で実施した。
Experimental Method As shown in FIG. 4, a measurement surface 8 at a position of 500 mm in Y distance and 20 mm in X direction from a welded portion of the test piece 1 with the orthogonal member 2.
A couplant (SHN-95) is applied to the measurement point P, and the front surface SH wave oblique angle probe 10 is slightly moved back and forth, left and right, and swings to obtain a maximum echo, and the position of the probe 10 is determined again. After confirming and applying a load of about 2 kg to stabilize the echo height, the echo was measured. Thereafter, the probe position was moved in the direction of the welding line at each measurement point at a pitch of 20 mm, and the same measurement was performed.
This measurement was performed on each of the backing metal 3 side and the groove side (front side) 3a.

【0019】(2)実験結果及び考察 TP−A、TP−B、TP−C、TP−D、TP−Eの
各試験体において、表面SH波探触子(周波数0.5MH
z 及び2MHz )によって得られた超音波波形(Aスコー
プ波形)から、探触子の位置毎のエコー高さ及びビーム
路程を読みとり、3次元のグラフを作成した結果を図6
〜図15に示す。
(2) Experimental Results and Discussion In each of the specimens TP-A, TP-B, TP-C, TP-D, and TP-E, a surface SH wave probe (frequency 0.5 MHz) was used.
z and 2 MHz), the echo height and beam path at each probe position were read from the ultrasonic waveform (A-scope waveform) obtained, and the result of creating a three-dimensional graph is shown in FIG.
15 to FIG.

【0020】両側の溶接部とも完全溶込み溶接部の試験
体TP−Aにおいては、部分溶込み溶接やすみ肉溶接で
エコーの検出が期待される位置(ビーム路程500mm及
び520mm)では、エコーが検出されず、試験体端部の
エコー(ビーム路程620mm)が明瞭に検出された。ま
た、溶接部近傍での超音波の回折現象よると推定される
エコーがビーム路程540〜560mm程度の位置に検出
された。これは、それらの位置で大きな面状の反射源が
ないためエコーが検出されず、多くの超音波は試験体端
部まで到達するためと思われる。
In the test specimen TP-A in which both the welds on both sides are completely penetration welded, echoes are detected at positions where echo detection is expected in partial penetration welding or fillet welding (beam paths 500 mm and 520 mm). No echo (beam path 620 mm) at the end of the test specimen was clearly detected. Further, an echo presumed to be due to the diffraction phenomenon of the ultrasonic wave near the welded portion was detected at a position along the beam path of about 540 to 560 mm. This is presumably because no echo was detected because there was no large planar reflection source at those positions, and many ultrasonic waves reached the end of the specimen.

【0021】完全溶込み+部分溶込み溶接部の試験体T
P−Bにおいては、部分溶込みのためエコーの検出が期
待される位置(ビーム路程520mm)にエコーが検出さ
れた。また、2MHz では、その位置より遠方に到達する
超音波は少ないが、0.5MHz では回折により遠方に多
くの超音波が到達し、試験体の端部のエコーや回折によ
り発生した溶接部形状のエコーが検出された。また、探
触子の位置が溶接部ビードのある表側の場合の方がエコ
ー高さが高くなることから、表層直下の表面SH波も到
達距離が遠方になると表面より内部の方が音圧が大きく
なるためと思われる。
Specimen T of full penetration + partial penetration welding
In P-B, an echo was detected at a position where the detection of the echo was expected due to partial penetration (a beam path of 520 mm). At 2 MHz, a small amount of ultrasonic waves reach far from that position, but at 0.5 MHz, many ultrasonic waves reach far away due to diffraction. Echo was detected. Also, since the echo height is higher when the probe is located on the front side where the weld bead is located, the sound pressure inside the surface SH wave directly below the surface layer is lower than the surface when the reach is farther. It seems to be bigger.

【0022】完全溶込み+すみ肉溶接部の試験体TP−
Cにおいては、すみ肉のためエコーの検出が期待される
位置(ビーム路程520mm)にエコーが検出された。ま
た、2MHz では、その位置より遠方に超音波は到達せ
ず、0.5MHz では回折により遠方に多くの超音波が到
達し、試験体の端部や溶接部形状のエコーが検出され
た。
Complete penetration + TP- specimen of fillet weld
In C, the echo was detected at a position where the detection of the echo was expected due to the fillet (the beam path was 520 mm). At 2 MHz, the ultrasonic wave did not reach far from that position, and at 0.5 MHz, many ultrasonic waves reached far away by diffraction, and echoes in the shape of the end of the test piece and the welded portion were detected.

【0023】部分溶込み+部分溶込み溶接部の試験体T
P−Dにおいては、最初の部分溶込みのためエコーの検
出が期待される位置(ビーム路程500mm)にエコーが
検出された。また、2MHz では、その位置より遠方の超
音波は到達せず、最初の部分溶込み溶接部しか検出でき
なかったが、0.5MHz では回折により遠方に超音波が
到達し、より遠方の部分溶込み溶接部からのエコー(ビ
ーム路程520mm程度)も検出された。
Specimen T of partial penetration + partial penetration weld
In PD, the echo was detected at a position where the detection of the echo was expected due to the first partial penetration (beam path 500 mm). At 2 MHz, the ultrasonic waves farther than that position did not reach, and only the first partial penetration weld was detected. However, at 0.5 MHz, the ultrasonic waves reached farther due to diffraction, and the farther partial welds were detected. An echo (with a beam path of about 520 mm) from the welded joint was also detected.

【0024】すみ肉+すみ肉溶接部の試験体TP−Eに
おいては、すみ肉のためエコーの検出が期待される位置
(ビーム路程500mm)にエコーが検出された。また、
2MHz では、その位置より遠方に超音波は到達せず、
0.5MHz では回折により遠方に多くの超音波が到達し
試験体の端部のエコーが検出されたが、遠方のすみ肉溶
接部は検出されなかった。これは、手前のすみ肉溶接に
よる超音波の透過部分が狭く、遠方のすみ肉溶接まで距
離があまりないため超音波ビームが到達しなかったため
と思われる。
In the test piece TP-E of the fillet + fillet weld, an echo was detected at a position where the detection of the echo was expected due to the fillet (beam path distance 500 mm). Also,
At 2MHz, the ultrasonic wave does not reach far from that position,
At 0.5 MHz, many ultrasonic waves arrived at a distant place by diffraction, and an echo at the end of the specimen was detected, but a distant fillet weld was not detected. This is presumably because the ultrasonic wave transmitted by the front fillet welding was narrow and the distance to the far fillet welding was not so long that the ultrasonic beam did not reach.

【0025】各試験体の完全溶込み溶接部、部分溶込み
溶接部・すみ肉溶接部から検出された各測定点でのエコ
ーのグラフを図16(a)(b)に示す。図16で“−
B”は裏当て金側、“−F”は表側を表わす。
FIGS. 16 (a) and 16 (b) show graphs of echoes at each measurement point detected from the complete penetration weld, the partial penetration weld, and the fillet weld of each specimen. In FIG. 16, "-
"B" indicates a backing metal side, and "-F" indicates a front side.

【0026】完全溶込み溶接部の場合は、エコーが検出
されなかった。
In the case of the complete penetration weld, no echo was detected.

【0027】部分溶込み及びすみ肉溶接部の場合、とも
にエコーが検出された。また、部分溶込みとすみ肉溶接
のエコー高さを比較すると、すみ肉溶接は最大エコー高
さでも平均エコー高さでも部分溶込みよりエコー高さが
高くなり、特に裏当て金側から探傷した場合10dB程
度の差となった。
In the case of the partial penetration and the fillet weld, both echoes were detected. Also, comparing the echo heights of the partial penetration and the fillet weld, the fillet weld has a higher echo height than the partial penetration at both the maximum echo height and the average echo height. In this case, the difference was about 10 dB.

【0028】周波数について比較すると、2MHz の場合
すみ肉溶接部は、裏当て金側からの測定でも表側からの
測定でも同様に高いエコー高さが得られ、また、測定点
でのバラツキも小さかった。さらに、部分溶込み溶接部
では、裏当て金側から測定した場合エコー高さの低下が
著しくすみ肉溶接部から比べると平均値・最小値とも1
0〜15dB程度の差異となった。
Comparing the frequencies, in the case of 2 MHz, in the fillet welded portion, a high echo height was obtained similarly from the measurement from the backing metal side and the measurement from the front side, and the dispersion at the measurement points was small. . Further, in the partially penetration welded part, the echo height was significantly reduced when measured from the backing metal side, and both the average value and the minimum value were 1 compared to the fillet welded part.
The difference was about 0 to 15 dB.

【0029】それに比較すると、0.5MHz では、すみ
肉と部分溶込みの差異が小さく、全体としてはエコー高
さの差が5〜10dB程度あるが、ほとんど差異がでな
い場合もあった。
In comparison, at 0.5 MHz, the difference between the fillet and the partial penetration was small, and the difference in echo height was about 5 to 10 dB as a whole, but there were cases where there was almost no difference.

【0030】完全溶込み溶接部、部分溶込み溶接部、す
み肉溶接部の超音波波形例を図17(a)(b)(c)
に示す。
FIGS. 17 (a), 17 (b) and 17 (c) show examples of ultrasonic waveforms of a full penetration weld, a partial penetration weld and a fillet weld.
Shown in

【0031】(3)まとめ 溶接部から離れた位置から、溶接部の開先形状の推定を
行うことが可能である。開先形状の推定は、完全溶込み
溶接部、部分溶込み溶接部(開先深さ板厚の1/2)、
すみ肉溶接部の3タイプに分類できるものと推定され
る。
(3) Summary It is possible to estimate the groove shape of the welded portion from a position distant from the welded portion. Estimation of the groove shape can be performed with a full penetration weld, a partial penetration weld (1/2 of the groove depth plate thickness),
It is estimated that it can be classified into three types of fillet welds.

【0032】開先形状の推定方法は、溶接部位置のエコ
ーの消失によって完全溶込み溶接部を確認し、検出され
たエコー高さによって部分溶込み溶接部か完全溶込み溶
接部かを判定することになる。
In the method of estimating the groove shape, the complete penetration weld is confirmed by the disappearance of the echo at the position of the weld, and it is determined whether it is a partial penetration weld or a complete penetration weld based on the detected echo height. Will be.

【0033】また、この推定方法について以下のように
考えられる。 (1) 探触子は溶接線方向に20mmピッチで測定を行ない
その結果を探触子の位置毎のエコー高さ及びビーム路程
の3次元のグラフで整理する。 (2) 探触子の位置から最短距離の溶接部の開先形状のみ
を推定する場合は、探触子を推定する溶接部から500
mm位置に置き、周波数2MHz の表面SH波探触子を用い
る。 (3) 探触子の位置から最短距離の溶接部より遠方の溶接
部の開先形状を推定する場合は(コラム柱内のダイヤフ
ラム溶接部の開先形状を取り合いの梁フランジから推定
する場合)、探触子を推定する溶接部から500mm位置
に置き、周波数0.5MHz 程度の表面SH波探触子を用
いる。 (4) 推定精度は周波数2MHz の方が優れている。
Further, this estimation method is considered as follows. (1) The probe measures in the welding line direction at a pitch of 20 mm and arranges the results in a three-dimensional graph of the echo height and beam path for each probe position. (2) When estimating only the groove shape of the weld at the shortest distance from the position of the probe, 500
mm, and a surface SH wave probe with a frequency of 2 MHz is used. (3) When estimating the groove shape of the welded portion farthest from the welded portion at the shortest distance from the probe position (when estimating the groove shape of the diaphragm welded portion in the column column from the joint beam flange) The probe is placed at a position 500 mm from the weld to be estimated, and a surface SH wave probe having a frequency of about 0.5 MHz is used. (4) The estimation accuracy is better at a frequency of 2 MHz.

【0034】[0034]

【実施例】次に、この発明の実施例を説明する。Next, an embodiment of the present invention will be described.

【0035】(1)使用機器 斜角探触子10:ジャパンプローブ製 表面SH探触子 2Z10×10A90−SH 超音波探傷器12:クラウトクレーマー製 USD1
5 接触媒質:日合アセチレン株式会社製 ソニコート SHN−95 ノートパソコン13 データ転送ソフト(USD15−MATE)付き データーベースソフト付き
(1) Equipment used Bevel probe 10: Surface probe SH 2Z10 × 10A90-SH made by Japan Probe Ultrasonic flaw detector 12: USD1 made by Kraut Kramer
5 Coupling material: Sonicoat SHN-95 manufactured by Nichiai Acetylene Co., Ltd. Notebook PC 13 With data transfer software (USD15-MATE) With database software

【0036】 (2)探傷器の設定 設定範囲 1000mm 音速 3230m/sec D−DELAY 0.0mm P−DELAY 6.69μsec DAMPING 500Ω POWER 2000pF PRF−MOD aoutlow PRF−VAL 200Hz 周波数 2MHz REJECT 0% RESTIF full-w DUAL off (2) Setting of Flaw Detector Setting Range 1000 mm Sound Speed 3230 m / sec D-DELAY 0.0 mm P-DELAY 6.69 μsec DAMPING 500 Ω POWER 2000 pF PRF-MOD aoutlow PRF-VAL 200 Hz Frequency 2 MHz REJECT 0% RESTIF full-wD

【0037】(3)測定手順 測定部の形状を確認し、基準点A及び測定面8(測定
位置)を定める(図1(a))。
(3) Measuring Procedure The shape of the measuring part is confirmed, and the reference point A and the measuring surface 8 (measuring position) are determined (FIG. 1A).

【0038】測定位置の耐火被覆9を、50mm〜10
0mm程度の範囲で鋼材(探傷部材)幅の全長に亘り剥離
する。この場合、梁の場合は下面のみ、柱の場合は外面
のみの耐火被覆9を剥離する(図1(a)、図18
(a))。
The refractory coating 9 at the measuring position is
Peeling over the entire length of the steel (flaw detection member) width in the range of about 0 mm. In this case, the fireproof coating 9 on only the lower surface of the beam and the outer surface of the pillar is stripped off (FIG. 1A, FIG. 18).
(A)).

【0039】耐火被覆9を剥離した範囲(測定面8)
の鋼材表面を清掃する。
Area where the refractory coating 9 was peeled off (measurement surface 8)
Clean the steel surface.

【0040】図18(b)に示すように、測定点Pを
20mmピッチで、鋼材の全幅に亘りマークする。
As shown in FIG. 18B, the measuring points P are marked at a pitch of 20 mm over the entire width of the steel material.

【0041】測定点Pに接触媒質を塗布して、探触子
10を多少首振り走査しながら、鋼材に押圧し、データ
ーが安定したら、探傷器12にデータを記憶させる。
The couplant is applied to the measurement point P, and the probe 10 is pressed against the steel material while slightly swinging and scanning. When the data is stabilized, the data is stored in the flaw detector 12.

【0042】ノートパソコン13を操作し、データ転
送ソフトで、探傷器12のデータをノートパソコン13
に取り込む。
The notebook computer 13 is operated, and data of the flaw detector 12 is transferred to the notebook computer 13 by data transfer software.
Take in.

【0043】ノートパソコン13に取り込んだ測定し
た超音波波形(Aスコープ波形)15と、既に保存して
ある(事前の実験により作成した)典型的な超音波波形
(Aスコープ波形)16a、16b、16cとを比較し
て溶接部の形状を推定する。この際、調査結果の超音波
波形15に並べて、典型的な超音波波形の内、完全溶込
み溶接部の波形16a、“完全溶込み+部分溶込み”溶
接部の波形16b、すみ肉溶接部の波形16cの各波形
とを、ノートパソコン13の画面14に同時に表示する
(図1(a)、図19)。ここで、波形の比較により溶
接部の形状が概略確認できる。
The measured ultrasonic waveform (A-scope waveform) 15 taken into the notebook personal computer 13 and typical ultrasonic waveforms (A-scope waveform) 16a, 16b already stored (prepared by an experiment). 16c to estimate the shape of the weld. At this time, along with the ultrasonic waveform 15 of the investigation result, among the typical ultrasonic waveforms, the waveform 16a of the full penetration weld, the waveform 16b of the "complete penetration + partial penetration" weld, the fillet weld Are simultaneously displayed on the screen 14 of the notebook computer 13 (FIG. 1A, FIG. 19). Here, the shape of the welded portion can be roughly confirmed by comparing the waveforms.

【0044】ここで、(1) 完全溶込み溶接部では、溶接
部からの低いエコーEが表れる(図2(a))。尚、実
験例では、低いエコーEに続き試験体の端部からの高い
エコーが波形に現れる(図19(a))。また、(2)
“完全溶込み+部分溶込み”溶接部では、不溶着部から
の高いエコーEに続き試験体の端部からの低いエコーが
現れる(図2(b)、図19(b))。また、(3) すみ
肉溶接部では、試験体に垂直に溶接された部材からの高
いエコーEのみが現れる(図2(c)、図19
(c))。
Here, (1) In the complete penetration weld, a low echo E from the weld appears (FIG. 2 (a)). In the experimental example, a high echo from the end of the test piece appears in the waveform following the low echo E (FIG. 19A). Also, (2)
In the “complete penetration + partial penetration” weld, a low echo from the end of the specimen appears after a high echo E from the unwelded part (FIG. 2 (b), FIG. 19 (b)). Also, (3) in the fillet weld, only a high echo E from the member perpendicularly welded to the specimen appears (FIG. 2 (c), FIG. 19).
(C)).

【0045】また、エコーEの高さhを測定すること
により(図2、図19)、図3(d)の関係から不完全
部の高さを推定する。
By measuring the height h of the echo E (FIGS. 2 and 19), the height of the incomplete portion is estimated from the relationship shown in FIG. 3D.

【0046】ノートパソコン13に取り込んだ超音波
波形(Aスコープ波形)から、探触子の位置毎のエコー
高さ及びビーム路程を読取り、X位置−ビーム路程−エ
コー高さの3次元グラフを作成する。このグラフと既に
保存してある典型的な超音波波形と比較して溶接部の形
状を溶接部の全長(X方向)に亘り推定する(図20〜
図21)。
From the ultrasonic waveform (A-scope waveform) taken into the notebook personal computer 13, the echo height and beam path at each probe position are read, and a three-dimensional graph of X position-beam path-echo height is created. I do. By comparing this graph with a typical ultrasonic waveform already stored, the shape of the welded portion is estimated over the entire length (X direction) of the welded portion (FIG. 20 to FIG. 20).
(FIG. 21).

【0047】測定結果の超音波波形(Aスコープ波形)
及び作成した3次元グラフを記録して保存する。
Ultrasonic waveform of measurement result (A scope waveform)
Then, the created three-dimensional graph is recorded and stored.

【0048】(4)尚、この方法による溶接部の検査
は、梁溶接部、柱溶接部、内ダイヤフラム溶接部、ブレ
ース溶接部等の部位が最適である。
(4) Inspection of the welded portion by this method is optimal for a beam welded portion, a column welded portion, an inner diaphragm welded portion, a brace welded portion, and the like.

【0049】[0049]

【発明の効果】この発明によれは、溶接部から所定距離
離れた測定面の清掃のみで、極めて容易に、溶接部の形
状を判別や不溶着部の測定ができる効果がある。また、
板厚の相違、たれ込み等があっても判断できるので、広
い適用範囲で溶接部の判定、不溶着部の測定ができる効
果がある。また、鉄骨構造物に耐火被膜や塗装が施され
ている場合であっても、測定面の耐火被膜等を除去して
清掃するのみで、測定が可能であり、測定前処理及び測
定後の現状修復も容易となる効果がある。
According to the present invention, the shape of the welded portion and the measurement of the non-welded portion can be very easily determined only by cleaning the measurement surface at a predetermined distance from the welded portion. Also,
Since the determination can be made even if there is a difference in plate thickness, sagging, or the like, there is an effect that determination of a welded portion and measurement of an unwelded portion can be performed in a wide application range. In addition, even when a fire-resistant coating or coating is applied to a steel structure, measurement is possible only by removing and cleaning the fire-resistant coating on the measurement surface. This has the effect of facilitating restoration.

【0050】従って、既存建物の耐震判断等に際して、
継手の性能により適正にかつ容易にこれを評価すること
が可能となる。
Therefore, when determining the seismic resistance of an existing building,
The performance of the joint makes it possible to appropriately and easily evaluate this.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)はこの発明の試験方法を説明する概略し
た正面図、(b)完全溶込み溶接部の断面図、(c)部
分溶込み溶接部の断面図、(d)すみ肉溶接部の断面図
である。
FIG. 1A is a schematic front view illustrating a test method of the present invention, FIG. 1B is a cross-sectional view of a full penetration weld, FIG. 1C is a cross-sectional view of a partial penetration weld, and FIG. It is sectional drawing of a welding part.

【図2】超音波探傷器の波形で、(a)は完全溶込み溶
接部、(b)は部分溶込み溶接部、(c)はすみ肉溶接
部を表す。
2A and 2B are waveforms of an ultrasonic flaw detector, where (a) represents a full penetration weld, (b) represents a partial penetration weld, and (c) represents a fillet weld.

【図3】(a)は表面SH波の反射を説明する概略した
縦断面図でスリットの場合、(b)は同じく完全溶込み
溶接部の場合、(c)はすみ肉・部分溶込み溶接部の場
合を表し、(c)はエコー高さとスリット深さの関係を
表すグラフである。
3A is a schematic longitudinal sectional view illustrating the reflection of surface SH waves, in the case of a slit, FIG. 3B is a case of a full penetration weld, and FIG. 3C is a fillet / partial penetration weld. (C) is a graph showing the relationship between the echo height and the slit depth.

【図4】実験例で、試験方法を説明する図で、(a)は
正面図、(b)は平面図である。
FIGS. 4A and 4B are diagrams illustrating a test method in an experimental example, in which FIG. 4A is a front view and FIG. 4B is a plan view.

【図5】実験例で、試験体を表す図で(a)は平面図、
(b)はTP-Aの正面図、(c)はTP-Bの正面図、(d)
はTP-Cの正面図、(e)はTP-Dの正面図、(f)はTP-E
の正面図である。
FIG. 5 is a view showing a test body in an experimental example, where (a) is a plan view,
(B) is a front view of TP-A, (c) is a front view of TP-B, (d)
Is a front view of TP-C, (e) is a front view of TP-D, and (f) is TP-E.
FIG.

【図6】実験例で、TP-Aの0.5MHz ・距離500mmの
X方向位置−ビーム路程−エコー高さの3次元グラフ
で、(a)は裏当て金側、(b)は表側、を夫々表す。
FIG. 6 shows a three-dimensional graph of X-direction position of TP-A at 0.5 MHz and distance of 500 mm—beam path—echo height in an experimental example, where (a) is the backing metal side, (b) is the front side, Respectively.

【図7】実験例で、TP-Aの2MHz ・距離500mmの同じ
く3次元グラフで、(a)は裏当て金側、(b)は表
側、を夫々表す。
FIG. 7 is an experimental example, also showing a three-dimensional graph of TP-A at 2 MHz and a distance of 500 mm, wherein (a) shows the backing metal side and (b) shows the front side, respectively.

【図8】実験例で、TP-Bの0.5MHz ・距離500mmの
同じく3次元グラフで、(a)は裏当て金側、(b)は
表側、を夫々表す。
FIG. 8 is an experimental example, also showing a three-dimensional graph of TP-B at 0.5 MHz and a distance of 500 mm, where (a) shows the backing metal side and (b) shows the front side.

【図9】実験例で、TP-Bの2MHz ・距離500mmの同じ
く3次元グラフで、(a)は裏当て金側、(b)は表
側、を夫々表す。
FIG. 9 is an experimental example, also showing a three-dimensional graph of TP-B at 2 MHz and a distance of 500 mm, where (a) shows the backing metal side and (b) shows the front side, respectively.

【図10】実験例で、TP-Cの0.5MHz ・距離500mm
の同じく3次元グラフで、(a)は裏当て金側、(b)
は表側、を夫々表す。
[FIG. 10] In an experimental example, the TP-C has a 0.5 MHz distance of 500 mm.
In the same three-dimensional graph, (a) is the backing side, (b)
Represents the front side, respectively.

【図11】実験例で、TP-Cの2MHz ・距離500mmの同
じく3次元グラフで、(a)は裏当て金側、(b)は表
側、を夫々表す。
11 is an experimental example, also showing a three-dimensional graph of TP-C at 2 MHz and a distance of 500 mm, wherein (a) shows the backing metal side and (b) shows the front side, respectively.

【図12】実験例で、TP-Dの0.5MHz ・距離500mm
の同じく3次元グラフで、(a)は裏当て金側、(b)
は表側、を夫々表す。
[FIG. 12] In an experimental example, TP-D has a 0.5 MHz distance of 500 mm.
In the same three-dimensional graph, (a) is the backing side, (b)
Represents the front side, respectively.

【図13】実験例で、TP-Dの2MHz ・距離500mmの同
じく3次元グラフで、(a)は裏当て金側、(b)は表
側、を夫々表す。
FIG. 13 is an experimental example, also showing a three-dimensional graph of TP-D at 2 MHz and a distance of 500 mm, wherein (a) shows the backing metal side and (b) shows the front side.

【図14】実験例で、TP-Eの0.5MHz ・距離500mm
の同じく3次元グラフで、(a)は裏当て金側、(b)
は表側、を夫々表す。
[FIG. 14] In an experimental example, the TP-E has a 0.5 MHz distance of 500 mm.
In the same three-dimensional graph, (a) is the backing side, (b)
Represents the front side, respectively.

【図15】実験例で、TP-Eの2MHz ・距離500mmの同
じく3次元グラフで、(a)は裏当て金側、(b)は表
側、を夫々表す。
FIG. 15 is an experimental example, also showing a three-dimensional graph of TP-E at 2 MHz and a distance of 500 mm, wherein (a) shows the backing metal side and (b) shows the front side.

【図16】実験例で、試験体毎のエコー高さを表した棒
グラフで、(a)は周波数0.5MHz 、(b)は周波数
2MHz を夫々表す。
FIGS. 16A and 16B are bar graphs showing the echo height of each test object in an experimental example, wherein FIG. 16A shows a frequency of 0.5 MHz and FIG. 16B shows a frequency of 2 MHz.

【図17】実験例で、周波数2MHz の場合のエコーで、
(a)はTP-A(完全溶込み部)、(b)はTP-B(完全溶
込み+部分溶込み)、(c)はTP-E(すみ肉+すみ肉)
を夫々表す。
FIG. 17 is an experimental example, showing an echo at a frequency of 2 MHz.
(A) TP-A (complete penetration), (b) TP-B (complete penetration + partial penetration), (c) TP-E (fillet + fillet)
Respectively.

【図18】この発明の実施例の測定方法を説明する図
で、(a)は一部正面図、(b)は一部平面図である。
18A and 18B are diagrams illustrating a measuring method according to an embodiment of the present invention, wherein FIG. 18A is a partial front view, and FIG. 18B is a partial plan view.

【図19】同じくエコーで、(a)は両側とも完全溶込
み部、(b)は“完全溶込み+部分溶込み”、(c)は
両側ともすみ肉、を夫々表す。
19 (a) and 19 (b) show echoes, in which (a) shows a complete penetration portion on both sides, (b) shows "complete penetration + partial penetration", and (c) shows a fillet on both sides.

【図20】同じく、X方向位置−ビーム路程−エコー高
さの3次元グラフで、両側とも完全溶込み部の場合で、
(a)は裏当て金側、(b)は表側、を夫々表す。
FIG. 20 is also a three-dimensional graph of the position in the X direction—the beam path—the echo height in the case where both sides are completely penetrated,
(A) represents the backing side, and (b) represents the front side.

【図21】同じく、X方向位置−ビーム路程−エコー高
さの3次元グラフで、“完全溶込み+部分溶込み”の場
合で、(a)は裏当て金側、(b)は表側、を夫々表
す。
FIG. 21 is also a three-dimensional graph of position in X direction—beam path—echo height in the case of “complete penetration + partial penetration”, where (a) is the backing metal side, (b) is the front side, Respectively.

【図22】同じく、X方向位置−ビーム路程−エコー高
さの3次元グラフで、“完全溶込み+すみ肉”の場合
で、(a)は裏当て金側、(b)は表側、を夫々表す。
FIG. 22 is also a three-dimensional graph of position in X direction—beam path—echo height in the case of “complete penetration + fillet”, where (a) shows the backing metal side and (b) shows the front side. Represent each.

【符号の説明】[Explanation of symbols]

1 試験体 4 完全溶け込み溶接部 5 部分溶け込み溶接部 5a 部分溶け込み溶接部の不溶着部分 6 すみ肉溶接部 6a すみ肉溶接部の不溶着部分 8 測定面 10 探触子 12 パソコン 14 画面 15 調査結果の超音波波形 16a、16b、16c 典型的な超音波波形 Reference Signs List 1 test piece 4 full penetration weld 5 partial penetration weld 5a unwelded part of partial penetration weld 6 fillet weld 6a unwelded part of fillet weld 8 measurement surface 10 probe 12 personal computer 14 screen 15 survey result Ultrasonic Waveforms 16a, 16b, 16c Typical Ultrasonic Waveforms

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年2月14日[Submission date] February 14, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図6[Correction target item name] Fig. 6

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図6】 FIG. 6

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林 幸雄 東京都港区元赤坂一丁目2番7号 鹿島建 設株式会社内 (72)発明者 永田 匡宏 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 (72)発明者 宇田川 建志 神奈川県相模原市渕野辺5−10−1 株式 会社日鐵テクノリサーチ内 (72)発明者 池ケ谷 靖 横浜市青葉区あざみ野南2−4−7 日本 超音波試験株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yukio Hayashi Kashima Construction Co., Ltd. 1-2-7 Moto-Akasaka, Minato-ku, Tokyo (72) Inventor Masahiro Nagata 2-6-3 Otemachi, Chiyoda-ku, Tokyo Within Nippon Steel Corporation (72) Inventor Takeshi Utagawa 5-10-1 Fuchinobe, Sagamihara-shi, Kanagawa Prefecture Within Nippon Steel Techno-Research Corporation (72) Inventor Yasushi Ikegaya 2-4-7, Azaminominami, Aoba-ku, Yokohama Japan Ultrasonic Testing Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 鉄骨構造物の溶接部から所定距離離れた
地点を測定面とし、該測定面から溶接部に向けて表面S
H波を発信し、該部で受信した反射波を、実験値による
典型的な波形と比較し、溶接部の形状を、完全溶込み溶
接部、部分溶込み溶接部あるいはすみ肉溶接部のいずれ
かを判別する溶接部の判別方法。
1. A point which is a predetermined distance away from a welded portion of a steel structure is defined as a measurement surface, and the surface S is directed from the measurement surface toward the welded portion.
The H wave is transmitted, and the reflected wave received at the part is compared with a typical waveform based on experimental values, and the shape of the welded part is selected from a full penetration weld, a partial penetration weld, and a fillet weld. The method of determining the welded part to determine whether or not.
【請求項2】 表面SH波の発信は、測定面の全幅に亘
り、所定ピッチ毎に行う請求項1記載の溶接部の判別方
法。
2. The method according to claim 1, wherein the transmission of the surface SH wave is performed at a predetermined pitch over the entire width of the measurement surface.
【請求項3】 鉄骨構造物の溶接部から所定距離離れた
地点を測定面とし、該測定面から溶接部に向けて表面S
H波を発信し、該部で受信した反射波の高さを計測し、
該高さに基づき、実験値による不溶着部の高さと反射波
の高さとの関係から、不溶着部の高さを推定することを
特徴とする不溶着部の測定方法。
3. A point at a predetermined distance from a welded portion of the steel structure is defined as a measurement surface, and the surface S is directed from the measurement surface toward the welded portion.
Transmit the H wave, measure the height of the reflected wave received by the part,
A method for measuring an unwelded portion, wherein the height of the unwelded portion is estimated from a relationship between the height of the unwelded portion and the height of a reflected wave based on an experimental value based on the height.
【請求項4】 超音波探傷器に表面SH波探触子を接続
すると共に、該超音波探傷器と、超音波探傷器のデータ
を取り込みかつ処理する機能を有するコンピュータに接
続したことを特徴とする溶接部の検査装置。
4. An ultrasonic flaw detector connected to a surface SH wave probe and connected to the ultrasonic flaw detector and a computer having a function of taking in and processing data of the ultrasonic flaw detector. Inspection equipment for welding.
【請求項5】 実験値に基づく溶接部の形状の違いによ
る典型的な反射波形を蓄積し、取り込んだ探傷器のデー
タと、該典型的な反射波形とを比較する機能を有するコ
ンピュータを使用した請求項4記載の溶接部の検査装
置。
5. A computer having a function of accumulating typical reflection waveforms due to differences in the shape of a weld based on experimental values and comparing the acquired flaw detector data with the typical reflection waveforms. The weld inspection device according to claim 4.
JP9027136A 1997-02-10 1997-02-10 Determining method of welded part, measuring method of unwelded part, and inspecting device of the welded part Withdrawn JPH10221309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9027136A JPH10221309A (en) 1997-02-10 1997-02-10 Determining method of welded part, measuring method of unwelded part, and inspecting device of the welded part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9027136A JPH10221309A (en) 1997-02-10 1997-02-10 Determining method of welded part, measuring method of unwelded part, and inspecting device of the welded part

Publications (1)

Publication Number Publication Date
JPH10221309A true JPH10221309A (en) 1998-08-21

Family

ID=12212646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9027136A Withdrawn JPH10221309A (en) 1997-02-10 1997-02-10 Determining method of welded part, measuring method of unwelded part, and inspecting device of the welded part

Country Status (1)

Country Link
JP (1) JPH10221309A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586889B1 (en) 2000-06-21 2003-07-01 Si Diamond Technology, Inc. MEMS field emission device
US6664728B2 (en) 2000-09-22 2003-12-16 Nano-Proprietary, Inc. Carbon nanotubes with nitrogen content
US6739932B2 (en) 2001-06-07 2004-05-25 Si Diamond Technology, Inc. Field emission display using carbon nanotubes and methods of making the same
JP2004325450A (en) * 2003-04-24 2004-11-18 General Electric Co <Ge> Method for preparing and ultrasonically testing thermal-spray coated article
US6885022B2 (en) 2000-12-08 2005-04-26 Si Diamond Technology, Inc. Low work function material
US8003165B2 (en) 2001-08-24 2011-08-23 Applied Nanotech Holdings, Inc. Catalyst for carbon nanotube growth
JP2012093093A (en) * 2010-10-22 2012-05-17 Chugoku Electric Power Co Inc:The Structural member inspection device, and structural member inspection method
WO2014020910A1 (en) * 2012-07-31 2014-02-06 株式会社Ihiインフラシステム Method for measuring degree of fusion, and ultrasound flaw detection device
CN104713949A (en) * 2015-04-03 2015-06-17 国核工程有限公司 Ultrasonic testing method for full penetration welds of rebars

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586889B1 (en) 2000-06-21 2003-07-01 Si Diamond Technology, Inc. MEMS field emission device
US6664728B2 (en) 2000-09-22 2003-12-16 Nano-Proprietary, Inc. Carbon nanotubes with nitrogen content
US6885022B2 (en) 2000-12-08 2005-04-26 Si Diamond Technology, Inc. Low work function material
US6739932B2 (en) 2001-06-07 2004-05-25 Si Diamond Technology, Inc. Field emission display using carbon nanotubes and methods of making the same
US8003165B2 (en) 2001-08-24 2011-08-23 Applied Nanotech Holdings, Inc. Catalyst for carbon nanotube growth
JP2004325450A (en) * 2003-04-24 2004-11-18 General Electric Co <Ge> Method for preparing and ultrasonically testing thermal-spray coated article
JP2012093093A (en) * 2010-10-22 2012-05-17 Chugoku Electric Power Co Inc:The Structural member inspection device, and structural member inspection method
WO2014020910A1 (en) * 2012-07-31 2014-02-06 株式会社Ihiインフラシステム Method for measuring degree of fusion, and ultrasound flaw detection device
JP5916864B2 (en) * 2012-07-31 2016-05-11 株式会社Ihiインフラシステム Method for measuring unwelded amount and ultrasonic flaw detector
US9612226B2 (en) 2012-07-31 2017-04-04 Ihi Infrastructure Systems Co., Ltd. Method for measuring height of lack of penetration and ultrasonic flaw detector
CN104713949A (en) * 2015-04-03 2015-06-17 国核工程有限公司 Ultrasonic testing method for full penetration welds of rebars
CN104713949B (en) * 2015-04-03 2018-04-20 国核工程有限公司 A kind of ultrasonic detection method for reinforcing bar full penetration weld

Similar Documents

Publication Publication Date Title
US7520172B2 (en) Inspection system for inspecting a structure and associated method
Titov et al. Pulse-echo NDT of adhesively bonded joints in automotive assemblies
Sargent Corrosion detection in welds and heat-affected zones using ultrasonic Lamb waves
JPH04265853A (en) Method and apparatus for identifying flaw depth in checking of tubular product
JP4116483B2 (en) Tubular ultrasonic inspection method and apparatus
Baskaran et al. TOFD imaging: Ultrasonic TOFD flaw sizing and imaging in thin plates using embedded signal identification technique (ESIT)
CA2258913C (en) Ultrasonic technique for inspection of weld and heat-affected zone for localized high temperature hydrogen attack
US9933397B2 (en) Method and system for assessing the quality of adhesively bonded joints using ultrasonic waves
JPH10221309A (en) Determining method of welded part, measuring method of unwelded part, and inspecting device of the welded part
JP5192939B2 (en) Defect height estimation method by ultrasonic flaw detection
CA2390712A1 (en) Method for inspecting clad pipe
US5404754A (en) Ultrasonic detection of high temperature hydrogen attack
JPS60104255A (en) Device and method for inspecting solid under nondestructive state
JP2008164396A (en) Flaw detection method and flaw detector used therefor
JP2008164397A (en) Flaw detection method and flaw detector used therein
US6158285A (en) EMAT inspection of welds in thin steel plates of dissimilar thicknesses
JP3858172B2 (en) Nondestructive inspection method for mechanical reinforcing steel joints and ultrasonic probe for inspection
JPH10221308A (en) Method and device of detecting ruptured part in metal and probe
Edwards et al. Detection of corrosion in offshore risers using guided ultrasonic waves
JP3531019B2 (en) Defect identification method by ultrasonic flaw detection
Chiou et al. Ultrasonic detection of cracks below bolts in aircraft skins
Puchot et al. Inspection technique for above ground storage tank floors using MsS technology
JP2000275224A (en) Ultrasonic flaw detecting device and ultrasonic flow detecting method for thin metal member
JPH07325070A (en) Ultrasonic method for measuring depth of defect
JPS6057250A (en) Discriminating method of welding defect

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040511