JPH10219375A - Titanium alloy and hard tissular substitutive material using same - Google Patents

Titanium alloy and hard tissular substitutive material using same

Info

Publication number
JPH10219375A
JPH10219375A JP9020588A JP2058897A JPH10219375A JP H10219375 A JPH10219375 A JP H10219375A JP 9020588 A JP9020588 A JP 9020588A JP 2058897 A JP2058897 A JP 2058897A JP H10219375 A JPH10219375 A JP H10219375A
Authority
JP
Japan
Prior art keywords
titanium alloy
hard
tissular
bone
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9020588A
Other languages
Japanese (ja)
Other versions
JP3959770B2 (en
Inventor
Mitsuo Araya
光雄 新家
Masahiko Morinaga
正彦 森永
Daisuke Kuroda
大介 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP02058897A priority Critical patent/JP3959770B2/en
Publication of JPH10219375A publication Critical patent/JPH10219375A/en
Application granted granted Critical
Publication of JP3959770B2 publication Critical patent/JP3959770B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a new titanium alloy having strength particularly suitable for an organic hard tissular substitutive material for the such as bone, a part of the bone, prostheses for the bone, an artificial joint, a dental root, and an implant, and also having high elongation and low elastic modulus and also to provide a hard tissular substitutive material using this titanium alloy. SOLUTION: The titanium alloy has a composition consisting of, by weight, 20-60%, in total, of Nb and Ta and the balance Ti with inevitable impurities. It is desirable to regulate Nb content and Ta content to >15-50% and >6-20%, respectively. One or >=2 kinds among <=10% Mo, <=5% Zr, and <=5% Sn are further added to the above titanium alloy. The hard tissular substituting material is obtained by subjecting these titanium alloys to solution heat treatment or further to aging treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、新規なチタン(T
i)合金に関し、特に生体の人工骨材又はその一部、或
いはそれらの補助材のような硬質組織代替材に適したチ
タン合金と、このチタン合金を用いた硬質組織代替材に
関する。
The present invention relates to a novel titanium (T)
i) The present invention relates to an alloy, particularly a titanium alloy suitable for a hard tissue substitute such as an artificial bone of a living body or a part thereof, or an auxiliary material thereof, and a hard tissue substitute using the titanium alloy.

【0002】[0002]

【従来の技術】一般に、歯科用の人工歯根や医療用の人
工骨材には、Ti-6wt%Al-4wt%Vに代表されるチ
タン合金が適用又は検討されている。これは、チタンが
他の金属に比べ、生体内において高い適応性を有するこ
とによる。しかし、種々の研究によると、上記チタン合
金のうちV(ハナシ゛ウム)は、生体の細胞に対し、毒性を有す
ることが指摘されている。このため上記Vに替えてNb
やFeを添加したTi-6wt%Al-7wt%Nbや、Ti-
5wt%Al-2.5wt%Fe等の所謂α+β型のチタン合
金が提案されている。しかし乍ら、これらの合金中のA
l(アルミニウム)は、ある種の痴呆症を招くという指摘もなさ
れている。
2. Description of the Related Art In general, titanium alloys typified by Ti-6 wt% Al-4 wt% V are applied or studied to artificial dental roots and artificial aggregates for medical use. This is because titanium has higher adaptability in vivo than other metals. However, according to various studies, it has been pointed out that V (hanasidium) among the above titanium alloys has toxicity to living cells. Therefore, instead of V, Nb
Ti-6wt% Al-7wt% Nb and Ti-
A so-called α + β type titanium alloy such as 5 wt% Al-2.5 wt% Fe has been proposed. However, A in these alloys
It has also been pointed out that l (aluminum) causes some types of dementia.

【0003】そこで、上記毒性やアレルギー性の指摘が
ない金属元素を用い、α+β型チタン合金よりも高い伸
びと、優れた冷間加工性を有すると共に、弾性率を低く
して生体内の硬質組織に近付けるべくβ型チタン合金が
提案されるようになった。このβ型チタン合金には、例
えばTi-13wt%Nb-13wt%Zr、Ti-16wt%N
b-10wt%Hf、Ti-15wt%Mo、Ti-15wt%M
o-5wt%Zr-3wt%Al、Ti-12wt%Mo-6wt%
Zr-2wt%Fe、 Ti-15wt%Mo-2.8wt%Nb-
0.2wt%Si-0.26wt%O等が含まれている。しか
し乍ら、上記各β型チタン合金のうち、どのような成分
組成の合金が人工骨材等のような硬質組織代替材に適し
ているか、あまり研究されておらず、未だ不明確であっ
た。
[0003] Therefore, using a metal element that does not indicate the above-mentioned toxicity and allergenicity, it has higher elongation and better cold workability than α + β type titanium alloy, and has a low elastic modulus to reduce the hard tissue in vivo. Β-type titanium alloys have been proposed so as to be close to. This β-type titanium alloy includes, for example, Ti-13 wt% Nb-13 wt% Zr, Ti-16 wt% N
b-10wt% Hf, Ti-15wt% Mo, Ti-15wt% M
o-5wt% Zr-3wt% Al, Ti-12wt% Mo-6wt%
Zr-2wt% Fe, Ti-15wt% Mo-2.8wt% Nb-
It contains 0.2 wt% Si-0.26 wt% O and the like. However, among the above-mentioned β-type titanium alloys, what component composition is suitable for a hard tissue substitute such as an artificial aggregate has not been studied much, and it is still unclear. .

【0004】[0004]

【発明が解決すべき課題】本発明は、上記従来の技術に
鑑み、生体の硬質組織代替材に特に適し、生体に対し毒
性やアレルギーが少なく、適度な強度と高い伸び率、及
び低い弾性率を有すると共に、耐食性にも優れた生体の
活動にフィットする新たなチタン合金と、このチタン合
金を用いた硬質組織代替材を提供することを目的とす
る。
SUMMARY OF THE INVENTION In view of the above prior art, the present invention is particularly suitable as a substitute for a hard tissue of a living body, is less toxic or allergic to the living body, has a suitable strength, a high elongation, and a low elasticity. Another object of the present invention is to provide a new titanium alloy which has excellent corrosion resistance and fits the activity of a living body, and a hard tissue substitute using the titanium alloy.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決するため、β型チタン合金について発明者らが鋭意研
究した結果、チタンに対しNb(ニオフ゛)と共にTa(タンタル)
を併せて所定量ずつ添加することに着目することにより
得られたものである。即ち、本発明のチタン合金は、N
b及びTaを合計で20wt%〜60wt%含み、残部がT
iと不可避的不純物からなることを特徴とする。係る組
成の合金にすると、上記課題を解決することが可能とな
る。尚、上記NbとTaを合計する範囲の上限は、50
wt%とするのが望ましい。このチタン合金のうち、Nb
の含有量は、15wt%超〜50wt%以下の範囲内にある
ことが望ましい。Nbが15wt%以下では、金属組織中
にα相が析出し、一方、Nbが50wt%を超過すると、
伸びが不足し始めるためであり、Nbのより望ましい上
限は45wt%である。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have made intensive studies on β-type titanium alloys. As a result, titanium (Nb) and Ta (tantalum) were added to titanium.
Is also obtained by focusing on adding a predetermined amount at a time. That is, the titanium alloy of the present invention
b and Ta in total from 20 wt% to 60 wt%, and the balance
and i and unavoidable impurities. By using an alloy having such a composition, the above-described problem can be solved. The upper limit of the sum of the above Nb and Ta is 50
It is desirably set to wt%. Of this titanium alloy, Nb
Is desirably in the range of more than 15 wt% to 50 wt% or less. When Nb is 15 wt% or less, an α phase precipitates in the metal structure. On the other hand, when Nb exceeds 50 wt%,
This is because elongation starts to be insufficient, and a more desirable upper limit of Nb is 45% by weight.

【0006】また、前記Taの含有量は、6wt%超〜2
0wt%以下の範囲内にあることが望ましい。Taが6wt
%以下になると伸びが不足し始め、一方、Taが20wt
%を超過すると、合金自体の融点が上がり過ぎるためで
あり、Taのより望ましい上限は15wt%である。更
に、上記の各チタン合金に対し、更に、10wt%以下の
Mo(モリフ゛テ゛ン)、5wt%以下のZr(シ゛ルコニウム)、又は、5w
t%以下のSn(錫)の一種又は二種以上を添加したもの
も含まれる。係る各元素を添加することにより、一層安
定した特性を有するチタン合金を得ることが可能とな
る。
The content of Ta is more than 6 wt% to 2%.
Desirably, it is within the range of 0 wt% or less. Ta is 6wt
% Or less, the elongation starts to be insufficient, while Ta is 20 wt.
%, The melting point of the alloy itself is too high, and a more desirable upper limit of Ta is 15% by weight. Further, for each of the above titanium alloys, Mo (molybdenum) of 10 wt% or less, Zr (siliconium) of 5 wt% or less, or 5 w% or less.
Also includes those to which one or more of Sn (tin) of t% or less is added. By adding such elements, a titanium alloy having more stable characteristics can be obtained.

【0007】また、本発明には、上記チタン合金を用
い、これらに溶体化処理を施して、その結晶粒を再結晶
させたことを特徴とする硬質組織代替材、及びその溶体
化処理の後に更に時効処理を施した硬質組織代替材も含
まれる。上記溶体化処理及び/又は時効処理を施すこと
により、β相における結晶粒が微細化され、強度を適正
に高め、且つ伸びと弾性率を適正化することができる。
係る硬質組織代替材によれば、骨、又は歯根として、或
いは、義歯、義肢、又は義足等の構成部材として用いる
ことで、生体の活動に馴染んだ特性及び効果を得ること
ができ、医療技術の向上に寄与することが可能となる。
Further, the present invention provides a hard tissue substitute material characterized by using the above-mentioned titanium alloys, subjecting them to a solution treatment, and recrystallizing the crystal grains thereof. Further, a hard tissue substitute which has been subjected to aging treatment is also included. By performing the solution treatment and / or the aging treatment, the crystal grains in the β phase are refined, the strength can be appropriately increased, and the elongation and the elastic modulus can be optimized.
According to such a hard tissue substitute, by using as a bone or a tooth root, or as a component such as a denture, a prosthesis, or a prosthesis, it is possible to obtain characteristics and effects adapted to the activity of a living body, It is possible to contribute to improvement.

【0008】[0008]

【発明の実施の形態】以下に本発明の実施に好適な形態
を実施例と共に説明する。Tiをベースとし、Tiと共
に生体への適応性の高いNb及びTaを組合せ、更にM
o、Zr、又はSnを付随的に添加した種々の成分組成
を有するチタン合金をそれぞれ溶解した。これらの合金
を鋳型中に鋳込んで一定サイズのインゴットをそれぞれ
得た。次いで、係る各インゴットに所定の冷間加工を施
した後、それらの各加工材から所要数の薄板を切り出し
た。次に、これらの薄板にそれぞれ所定の溶体化処理及
び/又は時効処理を施した(図1参照)後、所要形状の試
験片に仕上げて引張り試験等を行った。また、比較例と
して、前記従来の技術に示したα+β型及びβ型のチタ
ン合金を、上記図1と同じ溶解から熱処理までのプロセ
スを経させて試験片とし、これらについても同じ引張り
試験等を行った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below together with embodiments. Based on Ti, combined with Nb and Ta with high adaptability to living body with Ti
Titanium alloys having various component compositions to which o, Zr, or Sn were added incidentally were melted. These alloys were cast into molds to obtain ingots of a certain size. Next, after performing a predetermined cold working on each of the ingots, a required number of thin plates were cut out from each of the processed materials. Next, each of these thin plates was subjected to a predetermined solution treatment and / or aging treatment (see FIG. 1), and thereafter, a test piece having a required shape was finished and subjected to a tensile test and the like. As a comparative example, the α + β-type and β-type titanium alloys shown in the above-mentioned prior art were subjected to the same process from melting to heat treatment as in FIG. 1 to form test pieces, and the same tensile tests were performed on these test pieces. went.

【0009】[0009]

【実施例】以下において具体的な実施例を挙げて、比較
例と共に説明する。Tiに生体への適応性の高いNb及
びTaを種々組合せ、更にMo、Zr、又はSnを付随
的に添加した表1に示す各成分組成のチタン合金を溶解
した。一方、比較例として、表1に示すTi-6wt%A
l-4wt%V等(α+β型)と、Ti-13wt%Nb-13w
t%Zr等(β型)を溶解した。
EXAMPLES Hereinafter, specific examples will be described together with comparative examples. Various combinations of Nb and Ta highly adaptable to living bodies were added to Ti, and further, Mo, Zr, or Sn was added thereto, and titanium alloys having the respective component compositions shown in Table 1 were dissolved. On the other hand, as a comparative example, Ti-6wt% A shown in Table 1 was used.
l-4wt% V etc. (α + β type) and Ti-13wt% Nb-13w
t% Zr and the like (β type) were dissolved.

【0010】[0010]

【表1】[Table 1]

【0011】次いで、これらの各チタン合金を所定の鋳
型中において鋳造し、それぞれについて45gのボタン
インゴットを得た。係る各ボタンインゴットに対し冷間
圧延(圧下率75%)を行って、各合金組織内の結晶粒を
微細化させた延べ板を得た。次に、これらチタン合金の
各延べ板から、薄板を各合金についてそれぞれ10片ず
つ切り出した。更に、各薄板に対し、表1に示す条件の
溶体化処理(ST)を行って、それらの組織内に10〜5
0μm程度の結晶粒径に再結晶させると共に、そのうち
の5片ずつについては、その後、引き続いて時効処理
(STA)を施した(図1参照)。
Next, each of these titanium alloys was cast in a predetermined mold to obtain a button ingot of 45 g for each. Cold rolling (rolling reduction 75%) was performed on each of the button ingots to obtain a plate in which crystal grains in each alloy structure were refined. Next, from each of the titanium alloy plates, ten thin plates were cut out for each alloy. Further, each thin plate was subjected to a solution treatment (ST) under the conditions shown in Table 1, and 10 to 5
It is recrystallized to a crystal grain size of about 0 μm.
(STA) (see FIG. 1).

【0012】尚、前記表1中の時効処理(Aging)の処理
時間を3時間以上としたのは、図2のグラフに示すよう
に、3時間未満では硬度が不安定であるのに対し、これ
を越えると安定した硬度になるためである。上記各薄板
は、図3に示す引張り試験片1に仕上げ加工される。こ
れらの各試験1片についてJIS;Z2241に従って
引張り試験を行うことにより、引張り強さ(σB/MP
a)、0.2%耐力(σ0.2/MPa)、伸び率(%)、及び、
弾性率(GPa)をそれぞれ測定した。それらの測定結果
(平均値)を表2に示す。
The reason why the aging treatment time (Aging) in Table 1 is set to 3 hours or more is that as shown in the graph of FIG. 2, the hardness is less than 3 hours, whereas the hardness is unstable. If it exceeds this, the hardness becomes stable. Each of the above thin plates is finished into a tensile test piece 1 shown in FIG. By performing a tensile test on each of these test pieces in accordance with JIS; Z2241, the tensile strength (σ B / MP
a), 0.2% proof stress (σ 0.2 / MPa), elongation (%), and
The elastic modulus (GPa) was measured. Those measurement results
(Average value) is shown in Table 2.

【0013】[0013]

【表2】[Table 2]

【0014】前記表2の結果を分かり易くするため、実
施例No,4、5、18、19、22、23と比較例No,1〜6
の各引張り強さ、伸び率、及び、弾性率をそれぞれ図4
乃至図6にグラフとして示した。尚、0.2%耐力のグ
ラフは、図4の引張り強さと同様の傾向であったため、
省略した。これらの結果から、各実施例の溶体化処理の
みを施したST材(4,18,22)は、何れも伸び率が30%以
上と各比較例よりも高くなり(図5参照)、また、引張り
強さと弾性率は比較例よりも低い値を示した(図4,6
参照)。尚、比較例のように、引張り強さと弾性率が高
いと、それらが生体に適用された部位に接する骨等の表
面を磨耗させ、傷付け易くなる恐れがある。特に骨の弾
性率は、約30GPaであるため、これに近い程、生体
への適応性が高くなる。これらの結果から、各実施例の
チタン合金のST材は、優れた伸び特性を有すると共
に、強度や弾性率は比較例よりも低く、生体の硬質組織
に近似するので、例えば、骨折部の残存組織内に挿入さ
れると、その変形に対し一体となって追従して変化し、
骨の一部となって長く使用することが可能になる。
In order to make the results in Table 2 easy to understand, Examples Nos. 4, 5, 18, 18, 19, 22, and 23 and Comparative Examples Nos. 1 to 6
Fig. 4 shows the tensile strength, elongation and elastic modulus of
6 to FIG. The graph of 0.2% proof stress had the same tendency as the tensile strength in FIG.
Omitted. From these results, the ST materials (4, 18, 22) subjected to only the solution treatment of each example have an elongation of 30% or more, which is higher than each comparative example (see FIG. 5). , Tensile strength and modulus of elasticity were lower than those of the comparative example (FIGS. 4 and 6).
reference). When the tensile strength and the elastic modulus are high as in the comparative example, the surface of a bone or the like in contact with a site where the material is applied to a living body may be worn and easily damaged. In particular, since the elastic modulus of bone is about 30 GPa, the closer to this, the higher the adaptability to a living body. From these results, the ST material of the titanium alloy of each example has excellent elongation characteristics, and the strength and the elastic modulus are lower than those of the comparative example and approximates to the hard tissue of a living body. When inserted into the tissue, it changes to follow the deformation together,
It becomes a part of the bone and can be used for a long time.

【0015】一方、各実施例の時効処理も施したSTA
材(5,19,23)は、引張り強さが同じ組成のST材より高い
が、各比較例と同等か又はこれらよりやや低い(図4参
照)。また、伸び率は実施例5を除き同じ組成のST材
より低下するが、比較例と同等(10%超)以上のものも
認められる(図5参照)。更に、弾性率は実施例19を除
き比較例よりも低い値を示す(図6参照)。これらの結果
から、各実施例のチタン合金のSTA材は、上記ST材
とは別の比較的硬い硬質組織に対し、適応性が高いもの
と思われる。これらの結果から、本発明の前記各チタン
合金は、溶体化処理及び/又は時効処理を施すことで、
生体内における各種の硬質組織に馴染み易い種々の特性
が得られることが理解される。尚、前記溶体化処理は、
微細な再結晶粒を得るため、800〜1000℃に加熱
して30〜60分程度保持することが望ましい。また、
時効処理は、前記の強度や硬度を得るため、400〜5
00℃に加熱して少なくとも2時間以上保持することが
望ましく、最長では24時間保持する場合も含まれる。
[0015] On the other hand, the STA which has also been subjected to the aging treatment of each embodiment.
The material (5, 19, 23) has a higher tensile strength than the ST material having the same composition, but is equal to or slightly lower than each comparative example (see FIG. 4). Further, the elongation percentage is lower than that of the ST material having the same composition except for Example 5, but the elongation is equal to or higher than the comparative example (more than 10%) (see FIG. 5). Furthermore, the elastic modulus shows a lower value than the comparative example except for Example 19 (see FIG. 6). From these results, it is considered that the STA material of the titanium alloy of each example has high adaptability to a relatively hard hard structure different from the ST material. From these results, each of the titanium alloys of the present invention is subjected to a solution treatment and / or an aging treatment,
It is understood that various characteristics that are easily compatible with various hard tissues in a living body can be obtained. In addition, the solution treatment is
In order to obtain fine recrystallized grains, it is desirable to heat to 800 to 1000 ° C. and hold for about 30 to 60 minutes. Also,
The aging treatment is performed in a range of 400 to 5 to obtain the above strength and hardness.
It is desirable to heat to 00 ° C. and hold for at least 2 hours, including up to 24 hours.

【0016】本発明のチタン合金及び硬質組織代替材
は、前述した他に、インプラント材、人工関節、又は歯
列矯正材等の種々の硬質組織用の代替材、又はその一部
の補助材として使用することもできる。また、本発明の
チタン合金は、以上のような生体用に限らず、その優れ
た伸びと適度な強度、低い弾性率、及び優れた耐食性と
いう特性により、医療用以外の各種分野、例えば機械器
具材料、福祉器具材料、民生品材料等に適用することも
可能である。
The titanium alloy and the hard tissue substitute of the present invention can be used as substitutes for various hard tissues, such as implant materials, artificial joints, and orthodontic materials, or as auxiliary materials for some of them, in addition to those described above. Can also be used. In addition, the titanium alloy of the present invention is not limited to the above-mentioned biological applications, and is characterized by its excellent elongation and moderate strength, low elastic modulus, and excellent corrosion resistance, so that it can be used in various fields other than medical applications, for example, mechanical instruments It can be applied to materials, welfare equipment materials, consumer goods materials, and the like.

【0017】[0017]

【発明の効果】以上において説明した本発明のチタン合
金によれば、適度な強度と高い伸び及び低い弾性率を得
ることができる。また、このチタン合金を用いた硬質組
織代替材は、生体の硬質組織に適応した優れた特性を有
し、且つ毒性やアレルギーも少なく長期に渉り生体に馴
染み易い材料を提供することが可能となる。
According to the titanium alloy of the present invention described above, a suitable strength, a high elongation and a low elastic modulus can be obtained. In addition, the hard tissue substitute using the titanium alloy has excellent characteristics adapted to the hard tissue of a living body, and can provide a material which is less toxic and allergic and can be adapted to the living body for a long time. Become.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の硬質組織代替材を得るプロセスを示す
概略の流れ図である。
FIG. 1 is a schematic flow chart showing a process for obtaining a hard tissue substitute of the present invention.

【図2】本発明のチタン合金の時効処理における硬度と
処理時間の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between hardness and treatment time in the aging treatment of the titanium alloy of the present invention.

【図3】(A)と(B)は本発明のチタン合金等を用いた引
張り試験片の正面図と側面図である。
FIGS. 3A and 3B are a front view and a side view of a tensile test piece using a titanium alloy or the like of the present invention.

【図4】実施例と比較例の引張り強さを示すグラフであ
る。
FIG. 4 is a graph showing tensile strengths of Examples and Comparative Examples.

【図5】実施例と比較例の伸び率を示すグラフである。FIG. 5 is a graph showing elongation percentages of an example and a comparative example.

【図6】実施例と比較例の弾性率を示すグラフである。FIG. 6 is a graph showing the elastic modulus of an example and a comparative example.

【表1】 [Table 1]

【表2】 [Table 2]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // C22F 1/00 630 C22F 1/00 630C 675 675 686 686B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI // C22F 1/00 630 C22F 1/00 630C 675 675 686 686B

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】Nb及びTaを合計で20wt%〜60wt%
含み、残部がTiと不可避的不純物からなることを特徴
とするチタン合金。
1. A total of 20 wt% to 60 wt% of Nb and Ta.
A titanium alloy including, and the balance being Ti and unavoidable impurities.
【請求項2】前記Nbの含有量が15wt%超〜50wt%
以下であることを特徴とする請求項1に記載のチタン合
金。
2. The method according to claim 1, wherein the content of Nb is more than 15 wt% to 50 wt%.
The titanium alloy according to claim 1, wherein:
【請求項3】前記Taの含有量が6wt%超〜20wt%以
下であることを特徴とする請求項1又は2に記載のチタ
ン合金。
3. The titanium alloy according to claim 1, wherein the content of Ta is more than 6 wt% to 20 wt% or less.
【請求項4】前記チタン合金に、更に10wt%以下のM
o、5wt%以下のZr、又は、5wt%以下のSnの一種
又は二種以上を添加したことを特徴とする請求項1乃至
3に記載のチタン合金。
4. The titanium alloy according to claim 1, further comprising M
4. The titanium alloy according to claim 1, wherein one or two or more of Zr of 5 wt% or less and Sn of 5 wt% or less are added.
【請求項5】前記チタン合金に溶体化処理を施し、この
チタン合金の結晶粒を再結晶させたことを特徴とする請
求項1乃至4に記載の硬質組織代替材。
5. The hard tissue substitute according to claim 1, wherein the titanium alloy is subjected to a solution treatment, and crystal grains of the titanium alloy are recrystallized.
【請求項6】前記溶体化処理の後に、前記チタン合金に
時効処理を施したことを特徴とする請求項5に記載の硬
質組織代替材。
6. The hard tissue substitute according to claim 5, wherein after the solution treatment, the titanium alloy is subjected to an aging treatment.
JP02058897A 1997-02-03 1997-02-03 Titanium alloy for hard tissue substitute Expired - Lifetime JP3959770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02058897A JP3959770B2 (en) 1997-02-03 1997-02-03 Titanium alloy for hard tissue substitute

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02058897A JP3959770B2 (en) 1997-02-03 1997-02-03 Titanium alloy for hard tissue substitute

Publications (2)

Publication Number Publication Date
JPH10219375A true JPH10219375A (en) 1998-08-18
JP3959770B2 JP3959770B2 (en) 2007-08-15

Family

ID=12031405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02058897A Expired - Lifetime JP3959770B2 (en) 1997-02-03 1997-02-03 Titanium alloy for hard tissue substitute

Country Status (1)

Country Link
JP (1) JP3959770B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001083838A1 (en) * 2000-05-02 2001-11-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium alloy member
EP1206587A1 (en) * 1999-05-05 2002-05-22 Davitech, Inc. Nb-ti-zr-mo alloys for medical and dental devices
JP2002180168A (en) * 2000-12-19 2002-06-26 Daido Steel Co Ltd Ti ALLOY FOR LIVING BODY AND PRODUCTION METHOD THEREFOR
WO2002077305A1 (en) * 2001-03-26 2002-10-03 Kabushiki Kaisha Toyota Chuo Kenkyusho High strength titanium alloy and method for production thereof
EP1352978A1 (en) * 2000-12-20 2003-10-15 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium alloy having high elastic deformation capacity and method for production thereof
US6786984B1 (en) * 2000-05-18 2004-09-07 Tomy Incorporated Ternary alloy and apparatus thereof
JP2005036274A (en) * 2003-07-18 2005-02-10 Furukawa Techno Material Co Ltd Method of producing superelastic titanium alloy for living body, and superelastic titanium alloy for living body
WO2005064026A1 (en) * 2003-12-25 2005-07-14 Institute Of Metal Research Chinese Academy Of Sciences Super elasticity and low modulus ti alloy and its manufacture process
CN1298874C (en) * 2003-12-25 2007-02-07 中国科学院金属研究所 Super elasticity low modulus titanium alloy and preparing and processing method
JP2009024223A (en) * 2007-07-20 2009-02-05 Nec Tokin Corp Dental wire, and method for producing the same
JP2013028829A (en) * 2011-07-27 2013-02-07 Nippon Piston Ring Co Ltd Titanium alloy material for spectacle frame
US8512486B2 (en) 2006-04-04 2013-08-20 Daido Tokushuko Kabushiki Kaisha Beta-type titanium alloy and product thereof
CN104894433A (en) * 2015-07-06 2015-09-09 郭策 Tablet computer
JP2021515109A (en) * 2018-02-27 2021-06-17 アロイド リミテッド Biocompatible titanium alloy for laminated molding

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1206587A1 (en) * 1999-05-05 2002-05-22 Davitech, Inc. Nb-ti-zr-mo alloys for medical and dental devices
EP1206587A4 (en) * 1999-05-05 2002-10-30 Davitech Inc Nb-ti-zr-mo alloys for medical and dental devices
WO2001083838A1 (en) * 2000-05-02 2001-11-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium alloy member
US6979375B2 (en) 2000-05-02 2005-12-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium alloy member
US6786984B1 (en) * 2000-05-18 2004-09-07 Tomy Incorporated Ternary alloy and apparatus thereof
JP2002180168A (en) * 2000-12-19 2002-06-26 Daido Steel Co Ltd Ti ALLOY FOR LIVING BODY AND PRODUCTION METHOD THEREFOR
JP4547797B2 (en) * 2000-12-19 2010-09-22 大同特殊鋼株式会社 Biomedical Ti alloy and method for producing the same
EP1352978A1 (en) * 2000-12-20 2003-10-15 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium alloy having high elastic deformation capacity and method for production thereof
EP1352978A4 (en) * 2000-12-20 2004-07-21 Toyoda Chuo Kenkyusho Kk Titanium alloy having high elastic deformation capacity and method for production thereof
US7261782B2 (en) 2000-12-20 2007-08-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium alloy having high elastic deformation capacity and method for production thereof
US7442266B2 (en) 2001-03-26 2008-10-28 Kabushiki Kaisha Toyota Chuo Kenkyusho High-strength titanium alloy and method for production thereof
WO2002077305A1 (en) * 2001-03-26 2002-10-03 Kabushiki Kaisha Toyota Chuo Kenkyusho High strength titanium alloy and method for production thereof
JP2005036274A (en) * 2003-07-18 2005-02-10 Furukawa Techno Material Co Ltd Method of producing superelastic titanium alloy for living body, and superelastic titanium alloy for living body
WO2005064026A1 (en) * 2003-12-25 2005-07-14 Institute Of Metal Research Chinese Academy Of Sciences Super elasticity and low modulus ti alloy and its manufacture process
CN1298874C (en) * 2003-12-25 2007-02-07 中国科学院金属研究所 Super elasticity low modulus titanium alloy and preparing and processing method
US7722805B2 (en) 2003-12-25 2010-05-25 Institute Of Metal Research Chinese Academy Of Sciences Titanium alloy with extra-low modulus and superelasticity and its producing method and processing thereof
US8512486B2 (en) 2006-04-04 2013-08-20 Daido Tokushuko Kabushiki Kaisha Beta-type titanium alloy and product thereof
JP2009024223A (en) * 2007-07-20 2009-02-05 Nec Tokin Corp Dental wire, and method for producing the same
JP2013028829A (en) * 2011-07-27 2013-02-07 Nippon Piston Ring Co Ltd Titanium alloy material for spectacle frame
CN104894433A (en) * 2015-07-06 2015-09-09 郭策 Tablet computer
JP2021515109A (en) * 2018-02-27 2021-06-17 アロイド リミテッド Biocompatible titanium alloy for laminated molding

Also Published As

Publication number Publication date
JP3959770B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
Roach Base metal alloys used for dental restorations and implants
EP2297370B1 (en) Beta-based titanium alloy with low elastic modulus
JP5272532B2 (en) β-type titanium alloy
JPH10219375A (en) Titanium alloy and hard tissular substitutive material using same
EP0765142A1 (en) Biocompatible low modulus dental devices
JPS6018744B2 (en) Heat treatment method for cast alloys
WO2002036080A1 (en) High expansion dental alloys
JPS60228636A (en) Nickel base casting alloy
JP4152050B2 (en) Ti-Zr alloy
Slokar et al. Metallic materials for use in dentistry
JP2000102602A (en) Substitute material for hard tissue
CN107541632A (en) A kind of bio-medical Mg Zn Zr magnesium alloys and preparation method thereof
JP5272533B2 (en) β-type titanium alloy
JP5045185B2 (en) Beta type titanium alloy
JP4547797B2 (en) Biomedical Ti alloy and method for producing the same
JP2669004B2 (en) Β-type titanium alloy with excellent cold workability
JP2016141838A (en) β TYPE TITANIUM ALLOY
JP6945370B2 (en) Titanium-based ceramic reinforced alloy
JP2004197112A (en) Method of producing biological superelastic titanium alloy
EP0080074B1 (en) Use of a cobalt-chromium alloy as a base material for prosthetic constructions to be coated by a dental ceramic
JPH09302429A (en) Titanium alloy for living body
JP2000087160A (en) Titanium alloy for living body
JP4617451B2 (en) Ti alloy for living body
JP4487062B2 (en) Ti alloy and its castings
CN116829746A (en) Super elastic alloy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term