JP5272532B2 - β-type titanium alloy - Google Patents

β-type titanium alloy Download PDF

Info

Publication number
JP5272532B2
JP5272532B2 JP2008158811A JP2008158811A JP5272532B2 JP 5272532 B2 JP5272532 B2 JP 5272532B2 JP 2008158811 A JP2008158811 A JP 2008158811A JP 2008158811 A JP2008158811 A JP 2008158811A JP 5272532 B2 JP5272532 B2 JP 5272532B2
Authority
JP
Japan
Prior art keywords
titanium alloy
elastic modulus
type titanium
alloy
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008158811A
Other languages
Japanese (ja)
Other versions
JP2010001502A (en
Inventor
寛 宮脇
俊治 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2008158811A priority Critical patent/JP5272532B2/en
Publication of JP2010001502A publication Critical patent/JP2010001502A/en
Application granted granted Critical
Publication of JP5272532B2 publication Critical patent/JP5272532B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は生体用材料等として好適なチタン合金、特にβ型チタン合金に関する。   The present invention relates to a titanium alloy suitable as a biomaterial and the like, particularly to a β-type titanium alloy.

チタン合金は耐食性に優れ、生体との馴染み(生体適合性)の良い材料でしかも軽量、高強度であり、こうした特性により従来から生体用材料として用いられてきた。
その代表的な合金としてα+β型チタン合金であるTi-6Al-Vが挙げられるが、このものは弾性率(ヤング率)が生体用材料として、例えば人工骨材料や補助材料としては高過ぎるといった問題がある。
Titanium alloys are excellent in corrosion resistance, have good compatibility with living organisms (biocompatibility), are lightweight and have high strength, and have been conventionally used as biomaterials due to these properties.
A typical alloy is Ti-6Al-V, which is an α + β type titanium alloy, but this has the problem that its elastic modulus (Young's modulus) is too high as a biomaterial, for example, as an artificial bone material or an auxiliary material. There is.

例えばこの合金を骨折した個所に固定して使用した場合、生体の骨の有する弾性率に対し、チタン合金の有する弾性率が異なり且つ高過ぎるために(生体の骨の弾性率が20〜40GPaであるのに対し、上記チタン合金の弾性率は110GPa程度である)、外からの力に対して主としてチタン合金がこれを受けてしまって、生体の骨に対して力があまりかからなくなり、結果として骨への刺激が少なくなって骨が痩せ、細くなってしまうといった問題を生ずる。
またTi-6Al-4V合金は、そこに含有されるVが生体に対し毒性を有するとの指摘もなされている。
For example, when this alloy is fixed to a fractured part and used, the elastic modulus of the titanium alloy is different from the elastic modulus of the living bone and is too high (the elastic modulus of the living bone is 20 to 40 GPa). On the other hand, the elastic modulus of the titanium alloy is about 110 GPa), and the titanium alloy receives mainly the force from the outside, and the force is not so much applied to the bones of the living body. As a result, there is a problem that the stimulation to the bone is reduced and the bone becomes thin and thin.
It has also been pointed out that the Ti-6Al-4V alloy is toxic to the living body.

人工骨材等に好適な材料として、下記特許文献1にはNbを15〜50%,Taを6〜20%含有したチタン合金が開示されている。その代表的な合金組成はTi-29Nb-13Ta-4.6Zrである。
しかしながらこのチタン合金は、高融点のNb,Taを多量に含有していることから、合金自体が非常に高融点で製造性が悪く、また高価な原料であるNb,Taを多く含んでいるために合金のコストも高価となってしまう。
更にこの合金は溶体化処理状態で非常に強度が低いといった問題も有している。
As a material suitable for an artificial aggregate or the like, the following Patent Document 1 discloses a titanium alloy containing 15 to 50% Nb and 6 to 20% Ta. A typical alloy composition is Ti-29Nb-13Ta-4.6Zr.
However, since this titanium alloy contains a large amount of high melting point Nb and Ta, the alloy itself has a very high melting point and poor manufacturability, and also contains a lot of expensive raw materials Nb and Ta. In addition, the cost of the alloy becomes expensive.
Further, this alloy has a problem that its strength is very low in the solution treatment state.

一方下記特許文献2には、生体適合性を有する、融点が低くて加工が容易なチタン合金が開示されている。
このものは質量%でNb:25〜35%,Zr:5〜20%を含有し、更にCr,Fe,Siから選択される少なくとも1種を0.5%以上含有し、残部がTi及び不可避的不純物から成る組成のβ型チタン合金である。
この特許文献2に開示のβ型チタン合金は高融点のTaの使用を避け、低融点化元素を添加した合金組成を有している。
しかしながらこの特許文献2に開示のチタン合金は、高融点のNbを多量に含有しており、これに起因して合金の融点がなお高融点であり、またコストも高い問題を有する。
On the other hand, Patent Document 2 below discloses a titanium alloy that has biocompatibility and has a low melting point and is easy to process.
This material contains Nb: 25 to 35% and Zr: 5 to 20% by mass, and further contains at least one selected from Cr, Fe, and Si at 0.5% or more, with the balance being Ti and inevitable impurities. A β-type titanium alloy having a composition comprising:
The β-type titanium alloy disclosed in Patent Document 2 avoids the use of Ta having a high melting point, and has an alloy composition to which a low melting point element is added.
However, the titanium alloy disclosed in Patent Document 2 contains a large amount of high-melting point Nb, resulting in a problem that the melting point of the alloy is still high and the cost is high.

特開平10−219375号公報Japanese Patent Laid-Open No. 10-219375 特開2005−29845号公報JP-A-2005-29845

本発明は以上のような事情を背景とし、高融点で高価なTaを使用することなく低弾性率を実現でき、また従来材と同等若しくは場合によってそれ以上の強度を有する生体適合性に優れたβ型チタン合金を提供することを目的としてなされたものである。   The present invention is based on the above circumstances, can achieve low elastic modulus without using expensive melting point and expensive Ta, and is excellent in biocompatibility with strength equal to or higher than that of conventional materials. The object is to provide a β-type titanium alloy.

而して請求項1のものは、質量%でNb:10.5〜25%未満,Zr:0.1〜10%及びCr:0.1〜8%,Mo:0.1〜10%,Mn:0.1〜5.8%,Fe:0.1〜4%のうちのCrを含む1種若しくは2種以上を下記式(1),式(2)を満たすように含有し、残部がTi及び不可避的不純物から成る、弾性率80GPa以下であることを特徴とする。
X=Mo+1.25Cr+1.7Mn+2.5Fe:4〜10・・・式(1)
(Nb/3.5)+X:11〜13 ・・・・・・・・・式(2)
(但し式中の元素記号は各元素の含有質量%を表す)
Thus, in claim 1, Nb: 10.5 to less than 25% by mass, Zr: 0.1 to 10% and Cr: 0.1 to 8%, Mo: 0.1 to 10%, Mn: 0.1 to 5.8%, Fe : One or two or more of Cr containing 0.1 to 4% is contained so as to satisfy the following formulas (1) and (2), and the balance is composed of Ti and inevitable impurities, with an elastic modulus of 80 GPa or less It is characterized by being.
X = Mo + 1.25Cr + 1.7Mn + 2.5Fe: 4-10 ... Formula (1)
(Nb / 3.5) + X: 11-13 ・ ・ ・ ・ ・ ・ ・ ・ ・ Formula (2)
(However, the element symbols in the formula represent the mass% of each element)

請求項2のものは、請求項1において、質量%でSn:0.1〜8%を、Zr+Sn:0.1〜10%且つZr≧Snとなる量で含有させてあることを特徴とする。   A second aspect of the present invention is characterized in that, in the first aspect, Sn: 0.1 to 8% by mass% is contained in an amount satisfying Zr + Sn: 0.1 to 10% and Zr ≧ Sn.

請求項3のものは、請求項1において、質量%でSn:0.1〜8%,Al:0.1〜6%の1種又は2種を、Zr+Sn+Al:0.1〜10%且つZr≧Snとなる量で含有させてあることを特徴とする。   A third aspect of the present invention is the same as in the first aspect, wherein one or two of Sn: 0.1 to 8% and Al: 0.1 to 6% by mass% are Zr + Sn + Al: 0.1 to 10% and Zr ≧ Sn. It is made to contain with the quantity used as follows.

請求項4のものは、請求項1〜3の何れかにおいて、O,C,Nの1種又は2種以上の元素を全体を合計した総和の質量%で0.01〜1%含有させてあることを特徴とする。   Claim 4 contains 0.01 to 1% by mass% of the total sum of one or more elements of O, C and N in any one of claims 1 to 3 It is characterized by.

請求項5のものは、請求項4において、引張強度が900MPa以上であることを特徴とする。   According to a fifth aspect of the present invention, in the fourth aspect, the tensile strength is 900 MPa or more.

発明の作用・効果Effects and effects of the invention

以上のように本発明は、Taを添加せず、且つNbの含有量を25%未満に低く抑えつつ、Zr並びにCr,Mo,Mn,FeのうちのCrを含む1種以上を適正量且つ適正なバランスで添加することによって、チタン合金をβ型チタン合金となし且つその弾性率を80GPa以下の低弾性率となした点を特徴としたものである。

The present invention as described above, without the addition of Ta, and while suppressing the content of Nb to less than 25%, the proper Cr, Mo, Mn, at least one containing Cr of Fe to Z r parallel beauty By adding in an appropriate amount and an appropriate balance, the titanium alloy is made into a β-type titanium alloy, and its elastic modulus is a low elastic modulus of 80 GPa or less.

Nb,Taはチタン合金の弾性率を低弾性率化する上で最も有用な元素であるが、これら元素を多量に添加すると上記のようにチタン合金が非常に高融点となって製造性が悪化し、またコストが高くなるといった問題を生ずる。   Nb and Ta are the most useful elements for lowering the modulus of elasticity of titanium alloys. However, if these elements are added in large quantities, the titanium alloy has a very high melting point as described above and the productivity deteriorates. In addition, there is a problem that the cost is increased.

ここにおいて本発明は、Nbの添加量を25%未満と低く抑え、これと併せてZr,Crを必須元素として添加するとともに、β安定化元素としてのMo,Cr,Mn,Fe等を上記の式(1),式(2)を満たすように所定量で且つ適正な質量比率となるように加え、チタン合金をβ型チタン合金となし且つその弾性率を低くなし得たものである。 Here, the present invention suppresses the addition amount of Nb as low as less than 25%, and together with this, Zr and Cr are added as essential elements, and Mo, Cr, Mn, Fe, and the like as β-stabilizing elements are added as described above The titanium alloy is made into a β-type titanium alloy and its elastic modulus can be made low by adding a predetermined amount and an appropriate mass ratio so as to satisfy the expressions (1) and (2).

尚、式(1)のXはMo当量を表しており、その値が4未満であると添加量不足によりチタン合金を十分にβ型チタン合金とした上でその弾性率を低くすることができない(Xが4未満の下で低弾性率化しようとするとNbの添加量を25%を超えて多く含有しなければならない)。
一方Xが10を越えて大となると、添加量過大となって合金の弾性率を高めてしまう。
X in the formula (1) represents Mo equivalent, and if the value is less than 4, the elastic modulus cannot be lowered after the titanium alloy is sufficiently made into a β-type titanium alloy due to insufficient addition amount. (If the elastic modulus is to be lowered when X is less than 4, the amount of Nb added must be more than 25%).
On the other hand, when X exceeds 10 and the addition amount is excessive, the elastic modulus of the alloy is increased.

他方式(2)の値は、弾性率が最も低くなる範囲(極小となる範囲)を表しており、式(2)の値が11未満であっても、或いは逆に13超であっても弾性率は高くなってしまう。   The value of other method (2) represents the range where the modulus of elasticity is lowest (the range where the modulus of elasticity is the smallest), and even if the value of equation (2) is less than 11 or vice versa The elastic modulus will be high.

かかる本発明によれば、合金を低融点化して製造性を高め得、またコストを安価に抑えつつチタン合金の弾性率を80GPa以下に有効に低弾性率化でき、また十分な強度を発現させることができる。   According to the present invention, the melting point of the alloy can be lowered to increase the manufacturability, and the elastic modulus of the titanium alloy can be effectively lowered to 80 GPa or less while keeping the cost low, and sufficient strength is exhibited. be able to.

本発明ではZrの一部を置換する形でSn:0.1〜8%をZr+Sn:0.1〜10%且つZr≧Snの範囲内となるように含有させることができる(請求項2)。   In the present invention, Sn: 0.1 to 8% can be contained so as to be in a range of Zr + Sn: 0.1 to 10% and Zr ≧ Sn by replacing a part of Zr (Claim 2).

或いはZrの一部を置換する形でSn:0.1〜8%,Al:0.1〜6%の1種又は2種をZr+Sn+Al:0.1〜10%且つZr≧Snの範囲内となるように含有させることができる(請求項3)。   Alternatively, one or two of Sn: 0.1 to 8% and Al: 0.1 to 6% should be in the range of Zr + Sn + Al: 0.1 to 10% and Zr ≧ Sn by replacing part of Zr. (Claim 3).

更に本発明ではO,C,Nの何れか1種以上の元素を合計で0.01〜1%含有させることができる(請求項4)。
これら元素の添加により、合金の引張強度を900MPa以上まで高めることも可能となる(請求項5)。
Furthermore, in the present invention, any one or more elements of O, C, and N can be contained in a total amount of 0.01 to 1% (Claim 4).
By adding these elements, the tensile strength of the alloy can be increased to 900 MPa or more (Claim 5).

次に本発明の各化学成分の限定理由を以下に詳述する。
Nb:10.5〜25%未満
Nbは細胞毒性がないと考えられている元素であり、マトリックスを低弾性率で冷間加工性の高いβ相にする働きがある。
その添加量が少ないと冷間加工性に乏しく、弾性率も十分に低下しない。また、その添加量が多くなると溶解性が著しく低下し、弾性率も高くなるため、本発明ではその添加量は10.5%以上25%未満に止める。好ましくは15%以上24%以下である。
Next, the reasons for limiting each chemical component of the present invention will be described in detail below.
Nb: Less than 10.5-25%
Nb is an element that is considered to be non-cytotoxic, and has a function of converting the matrix into a β phase having a low elastic modulus and high cold workability.
If the addition amount is small, the cold workability is poor and the elastic modulus is not sufficiently lowered. Further, when the amount added is increased, the solubility is remarkably lowered and the elastic modulus is also increased. Therefore, in the present invention, the amount added is limited to 10.5% or more and less than 25%. Preferably they are 15% or more and 24% or less.

Mo,Cr,Mn,Feはβ相を安定化させる働きがあり、低Nbの下で弾性率を低くする効果がある。但し過剰の添加は弾性率を上昇させ、加工性を悪化させるため、Mo:0.1〜10%,Cr:0.1〜8%,Mn:0.1〜5.8%,Fe:0.1〜4%とする。
好ましくは、Mo:1〜3%,Cr:3〜5%,Mn:0.5〜2%,Fe:0.1〜2.0%である。
Mo, Cr, Mn, and Fe have the effect of stabilizing the β phase, and have the effect of lowering the elastic modulus under low Nb. However, excessive addition increases elastic modulus and deteriorates workability, so Mo: 0.1 to 10%, Cr: 0.1 to 8%, Mn: 0.1 to 5.8%, Fe: 0.1 to 4%.
Preferably, Mo: 1-3%, Cr: 3-5%, Mn: 0.5-2%, Fe: 0.1-2.0%.

Zrは、硬質相であるω相の析出を抑制してω相の析出による弾性率上昇を抑え、またα相とβ相の両方に固溶して強化作用を示す合金元素で、その含有量が不足すると弾性率が十分に低下せず、強度も不充分となり、使用中に折損する可能性がある。逆に含有量が過剰になると熱間加工性や冷間加工性を大幅に低下させてしまうため、0.1〜10%の範囲内とする。好ましくは3〜8%である。   Zr is an alloy element that suppresses the precipitation of the ω phase, which is a hard phase, suppresses the increase in elastic modulus due to the precipitation of the ω phase, and also has a strengthening action by forming a solid solution in both the α and β phases. If the amount is insufficient, the elastic modulus will not be sufficiently lowered, the strength will be insufficient, and there is a possibility of breakage during use. On the other hand, if the content is excessive, hot workability and cold workability are significantly reduced. Therefore, the content is within the range of 0.1 to 10%. Preferably it is 3 to 8%.

Snは、α相とβ相の両方に固溶して強化作用を示す合金元素であり、ω相の析出を抑制し、弾性率をより一層低下させる働きもある。しかし過剰の添加は弾性率を上昇させるため、0.1〜8%とする。好ましくは0.5〜2%である。   Sn is an alloy element that dissolves in both the α phase and the β phase and exhibits a strengthening action, and also has the function of suppressing the precipitation of the ω phase and further reducing the elastic modulus. However, excessive addition increases the elastic modulus, so 0.1 to 8%. Preferably it is 0.5 to 2%.

Alはω相の析出を抑制し、弾性率をより一層低下させ、マトリックスに固溶して強化作用を示す合金元素である。但し多量の添加は延性を低下させるため0.1〜6%の範囲内とする。好ましくは0.1〜2.0%である。   Al is an alloy element that suppresses the precipitation of the ω phase, further reduces the elastic modulus, and dissolves in the matrix and exhibits a strengthening action. However, a large amount is added in a range of 0.1 to 6% in order to reduce ductility. Preferably it is 0.1 to 2.0%.

O,C,N:0.01〜1%
O,C,Nはマトリックス中に固溶して強化作用を示す合金であり、その効果は0.01%から現れ、1%を超えると材料の延性低下につながるため、0.01〜1%とする。好ましくは0.2〜0.4%である。
O, C, N: 0.01 to 1%
O, C, and N are alloys that exhibit a strengthening action by being dissolved in the matrix. The effect appears from 0.01%, and if it exceeds 1%, the ductility of the material is reduced, so 0.01 to 1%. Preferably it is 0.2 to 0.4%.

次に本発明の実施形態を以下に詳述する。
アルゴン雰囲気中にてアーク溶解法にて合金を溶解,鋳造し、高さ15mm×幅25mm×長さ85mm,重量150gのインゴットを得た。次に加熱温度1000℃で熱間プレスにより高さ15mmを高さ4mmまでプレスし、板材とした。
その後、800℃で1時間保持後、水冷して溶体化処理(ST)を施し、試験片加工を行い(試験片形状は弾性率測定用:2mm×8mm×60mm、引張試験用:2mm×20mm×80mm)、試験を実施した。
弾性率測定はJIS Z 2280に準拠し、室温にて試験片の共振周波数の測定結果(共振法)から求めた。また、弾性率については、溶体化処理後に50%冷間圧延を施した試験片についても測定を実施した。
Next, embodiments of the present invention will be described in detail below.
The alloy was melted and cast by an arc melting method in an argon atmosphere to obtain an ingot having a height of 15 mm, a width of 25 mm, a length of 85 mm, and a weight of 150 g. Next, 15 mm in height was pressed to 4 mm in height by hot pressing at a heating temperature of 1000 ° C. to obtain a plate material.
Thereafter, after holding at 800 ° C. for 1 hour, it is cooled with water and subjected to a solution treatment (ST), and a test piece is processed (the shape of the test piece is for elastic modulus measurement: 2 mm × 8 mm × 60 mm, for tensile test: 2 mm × 20 mm). × 80 mm), the test was carried out.
The elastic modulus was measured in accordance with JIS Z 2280 from the measurement result (resonance method) of the resonance frequency of the test piece at room temperature. Moreover, about the elasticity modulus, it measured also about the test piece which gave 50% cold rolling after the solution treatment.

結果が表1に示してある。   The results are shown in Table 1.

Figure 0005272532
Figure 0005272532

表1に示しているように実施例は全て、80GPa以下の弾性率が得られている。また実施例3,10,11に見られるようにO,C,N(浸入型元素)を添加した合金は引張強度が高くなっている。これはO,C,Nの固溶強化によるものであると考えられる。また、溶体化処理後に50%圧延を施した材料に関してもほぼ同等の弾性率が得られている。
これに対し比較例2,4はβ安定化元素(Nb及びX)の添加量が多く弾性率が高い。これはNb,Xの弾性率に近づいたため弾性率が高くなったと考えられる。
比較例3,5,6はβ相の安定度が不充分であるため、弾性率が高いと考えられる。
As shown in Table 1, all the examples have an elastic modulus of 80 GPa or less. Further, as can be seen in Examples 3 , 10 and 11, the alloy added with O, C, N (invasion type element) has high tensile strength. This is thought to be due to the solid solution strengthening of O, C, and N. Moreover, the substantially equivalent elasticity modulus is obtained also about the material which gave 50% rolling after the solution treatment.
On the other hand, Comparative Examples 2 and 4 have a large amount of added β-stabilizing elements (Nb and X) and a high elastic modulus. This is considered to be due to the fact that the modulus of elasticity increased because it approached the modulus of elasticity of Nb and X.
Comparative Examples 3, 5, and 6 are considered to have a high elastic modulus because the stability of the β phase is insufficient.

以上本発明の実施形態を詳述したが、これはあくまで一例示であり、本発明はその趣旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。   Although the embodiment of the present invention has been described in detail above, this is merely an example, and the present invention can be implemented in various modifications without departing from the spirit of the present invention.

Claims (5)

質量%で
Nb:10.5〜25%未満
Zr:0.1〜10%
及び
Cr:0.1〜8%
Mo:0.1〜10%
Mn:0.1〜5.8%
Fe:0.1〜4%
うちのCrを含む1種若しくは2種以上を下記式(1),式(2)を満たすように含有し、残部がTi及び不可避的不純物から成る、弾性率80GPa以下のβ型チタン合金。
X=Mo+1.25Cr+1.7Mn+2.5Fe:4〜10・・・式(1)
(Nb/3.5)+X:11〜13 ・・・・・・・・・式(2)
(但し式中の元素記号は各元素の含有質量%を表す)
In mass%
Nb: Less than 10.5-25%
Zr: 0.1-10%
as well as
Cr: 0.1-8%
Mo: 0.1-10%
Mn: 0.1-5.8%
Fe: 0.1-4%
A β-type titanium alloy having a modulus of elasticity of 80 GPa or less, containing one or more of Cr, so as to satisfy the following formulas (1) and (2), the balance being Ti and inevitable impurities.
X = Mo + 1.25Cr + 1.7Mn + 2.5Fe: 4-10 ... Formula (1)
(Nb / 3.5) + X: 11-13 ・ ・ ・ ・ ・ ・ ・ ・ ・ Formula (2)
(However, the element symbols in the formula represent the mass% of each element)
請求項1において、質量%でSn:0.1〜8%を、Zr+Sn:0.1〜10%且つZr≧Snとなる量で含有させてあるβ型チタン合金。   The β-type titanium alloy according to claim 1, wherein Sn: 0.1-8% by mass% is contained in an amount satisfying Zr + Sn: 0.1-10% and Zr ≧ Sn. 請求項1において、質量%でSn:0.1〜8%,Al:0.1〜6%の1種又は2種を、Zr+Sn+Al:0.1〜10%且つZr≧Snとなる量で含有させてあるβ型チタン合金。   In Claim 1, 1 type or 2 types by mass% Sn: 0.1-8%, Al: 0.1-6% are contained in the quantity used as Zr + Sn + Al: 0.1-10% and Zr> = Sn. A β-type titanium alloy. 請求項1〜3の何れかにおいて、O,C,Nの1種又は2種以上の元素を全体を合計した総和の質量%で0.01〜1%含有させてあるβ型チタン合金。   The β-type titanium alloy according to any one of claims 1 to 3, wherein one or more elements of O, C, and N are contained in an amount of 0.01 to 1% in total mass%. 請求項4において、引張強度が900MPa以上であるβ型チタン合金。   The β-type titanium alloy according to claim 4, having a tensile strength of 900 MPa or more.
JP2008158811A 2008-06-18 2008-06-18 β-type titanium alloy Active JP5272532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008158811A JP5272532B2 (en) 2008-06-18 2008-06-18 β-type titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008158811A JP5272532B2 (en) 2008-06-18 2008-06-18 β-type titanium alloy

Publications (2)

Publication Number Publication Date
JP2010001502A JP2010001502A (en) 2010-01-07
JP5272532B2 true JP5272532B2 (en) 2013-08-28

Family

ID=41583452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008158811A Active JP5272532B2 (en) 2008-06-18 2008-06-18 β-type titanium alloy

Country Status (1)

Country Link
JP (1) JP5272532B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5621571B2 (en) * 2010-12-14 2014-11-12 新日鐵住金株式会社 Α + β type titanium alloy having a low Young's modulus of less than 75 GPa and method for producing the same
JP5594244B2 (en) * 2011-07-15 2014-09-24 新日鐵住金株式会社 Α + β type titanium alloy having a low Young's modulus of less than 75 GPa and method for producing the same
CN103131896B (en) * 2011-12-01 2015-03-11 北京有色金属研究总院 Low-cost beta-close titanium alloy
KR101234505B1 (en) 2012-11-08 2013-02-20 한국기계연구원 Ultrahigh strength and ultralow elastic modulus titanium alloy with linear elastic deformation
CN103627929A (en) * 2013-12-12 2014-03-12 西北有色金属研究院 High-intensity low-modulus metastable beta titanium alloy tooth arch wire
CN106756238B (en) * 2017-01-11 2019-03-05 东南大学 A kind of bio-medical porous titanium alloy and preparation method
CN108130449A (en) * 2017-12-25 2018-06-08 大连三生科技发展有限公司 A kind of tooth implant titanium alloy and preparation method thereof
CN108103354A (en) * 2018-02-02 2018-06-01 贾红琴 A kind of medical titanium alloy bone implant and preparation method thereof
CN109266907B (en) * 2018-11-10 2020-07-31 北京工业大学 Low-cost high-strength Ti-Zr-Fe medical titanium alloy
CN114438370B (en) * 2021-12-31 2022-08-16 上海精科智能科技股份有限公司 Lightweight damping flip self-locking orthodontic device and near-net-shape preparation method thereof
CN115305385B (en) * 2022-08-17 2023-06-13 暨南大学 Low-cost low-modulus high-strength high-wear-resistance biological titanium alloy and preparation method and application thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857269A (en) * 1988-09-09 1989-08-15 Pfizer Hospital Products Group Inc. High strength, low modulus, ductile, biopcompatible titanium alloy
US5477864A (en) * 1989-12-21 1995-12-26 Smith & Nephew Richards, Inc. Cardiovascular guidewire of enhanced biocompatibility
JPH09215753A (en) * 1996-02-08 1997-08-19 Schneider Usa Inc Self-expanding stent made of titanium alloy
JP4257581B2 (en) * 2002-09-20 2009-04-22 株式会社豊田中央研究所 Titanium alloy and manufacturing method thereof
JP4350443B2 (en) * 2003-07-14 2009-10-21 山八歯材工業株式会社 Titanium alloy
JP4270443B2 (en) * 2003-10-09 2009-06-03 住友金属工業株式会社 β-type titanium alloy
JP2005248202A (en) * 2004-03-01 2005-09-15 Masaki Takashima Method for producing superelastic titanium alloy and spectacle frame
JP4302604B2 (en) * 2004-09-27 2009-07-29 株式会社古河テクノマテリアル Superelastic titanium alloy for living body
JP2006183104A (en) * 2004-12-28 2006-07-13 Aichi Steel Works Ltd High-strength titanium alloy having excellent cold workability
JP2008111185A (en) * 2006-10-04 2008-05-15 Daido Steel Co Ltd Cold crucible melting method and apparatus

Also Published As

Publication number Publication date
JP2010001502A (en) 2010-01-07

Similar Documents

Publication Publication Date Title
JP5272532B2 (en) β-type titanium alloy
EP2500443B1 (en) NI-TI semi-finished products and related methods
US7722805B2 (en) Titanium alloy with extra-low modulus and superelasticity and its producing method and processing thereof
JP3884316B2 (en) Superelastic titanium alloy for living body
US20110070121A1 (en) Beta-based titanium alloy with low elastic modulus
JP5272533B2 (en) β-type titanium alloy
Hsu et al. Mechanical properties and deformation behavior of as-cast Ti–Sn alloys
EP1842933B1 (en) Beta-type titanium alloy and product thereof
JP2010275606A (en) Titanium alloy
JP3959770B2 (en) Titanium alloy for hard tissue substitute
JP5045185B2 (en) Beta type titanium alloy
JP5107661B2 (en) Ti-based alloy
KR101837872B1 (en) Superelastic alloy
JP2009270163A (en) Titanium alloy
US20070044868A1 (en) Ti-based shape memory alloy article
JP2007231313A (en) beta-TYPE TITANIUM ALLOY
JP4528109B2 (en) Low elastic β-titanium alloy having an elastic modulus of 65 GPa or less and method for producing the same
WO2015064343A1 (en) Titanium alloy and artificial bone
JP4477297B2 (en) Ti-Mo base alloy spring material
JP2016141838A (en) β TYPE TITANIUM ALLOY
JP4892726B2 (en) Implant material for living body
JP4554250B2 (en) Ti-based alloy shape memory element
US20080193323A1 (en) Ti-Nb-Zr Alloy
JP5533352B2 (en) β-type titanium alloy
CN108774702A (en) A kind of high temperature oxidation resisting titanium alloy and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130429

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5272532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150