JP4547797B2 - Biomedical Ti alloy and method for producing the same - Google Patents

Biomedical Ti alloy and method for producing the same Download PDF

Info

Publication number
JP4547797B2
JP4547797B2 JP2000384738A JP2000384738A JP4547797B2 JP 4547797 B2 JP4547797 B2 JP 4547797B2 JP 2000384738 A JP2000384738 A JP 2000384738A JP 2000384738 A JP2000384738 A JP 2000384738A JP 4547797 B2 JP4547797 B2 JP 4547797B2
Authority
JP
Japan
Prior art keywords
alloy
modulus
tensile strength
less
young
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000384738A
Other languages
Japanese (ja)
Other versions
JP2002180168A (en
Inventor
昭弘 鈴木
和巳 山本
俊治 野田
光雄 新家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2000384738A priority Critical patent/JP4547797B2/en
Publication of JP2002180168A publication Critical patent/JP2002180168A/en
Application granted granted Critical
Publication of JP4547797B2 publication Critical patent/JP4547797B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高強度低弾性率の生体用Ti合金およびその製造方法に関する。
【0002】
【従来の技術】
人工股関節、膝関節、骨折時の固定プレートなどの生体用材料としては、生体適合性に優れ、軽量で、引張強さが高く、かつヤング率が骨(20〜40GPa)に近いものが望まれている。
従来、この生体用材料としてSUS316L、純Ti、Ti−6%Al−4%Vが用いられていた。しかし、これらの合金は、生体用として開発されたものではないため、SUS316Lは、引張強さが高いが、ヤング率が165GPaと高く、またアレルギーを指摘されているNiを含んでいる。さらに純Tiは、生体適合性に優れているが、引張強さが約500MPaであって低強度である。またTi−6%Al−4%VのTi合金は、毒性が指摘されているVを含んでいるという問題がある。
【0003】
このTi−6%Al−4%VのVに替えてNbまたはFeを含有させたTi−6%Al−7%NbやTi−5Al−2.5%Feなどのα+β型Ti合金が提案されているが、合金中のAlはある種の痴呆症を招くという報告もある。
【0004】
また、上記毒性およびアレルギー性が指摘されている金属元素以外の元素を用い、α+β型Ti合金より高い伸びと、優れた冷間加工性を有すると共に、弾性率を低くしたβ型Ti合金が提案されるようになってきた。このβ型Ti合金には、例えばTi−13%Nb−13%Zr、Ti−13%Nb−10%Hf、Ti−15%Mo、Ti−12%Mo−5%Zr−2%Fe、Ti−15%Mo−6%Zr−2.8%Nb−0.2%Si−0.2%Oなどがある。
しかし、これらのβ型Ti合金は、毒性およびアレルギー性には問題がないが、引張強さが十分高く、かつ弾性率が十分低いものではなかった。
【0005】
そこで、本出願人は、毒性およびアレルギー性に問題がある元素を含まず、適度な引張強さと高い伸びおよび低い弾性率のNbおよびTaを合計で20〜60%を含み、必要に応じてさらにMoを10%以下、Zrを5%以下、およびSnを5%以下の1種または2種を含有し、残部がTiおよび不可避的不純物からなるTi合金を開発して特願平9−20588号(特開平10─219375号)として特許出願した。
しかし、この特許出願のTi合金は、従来のTi合金より引張強さが高く、かつ弾性率も低いが、引張強さが高いものは弾性率も高く、弾性率が低いものは引張強さも低く、引張強さが1050MPa以上で、かつヤング率が80GPa以下のものは得られなかった。
【0006】
【発明が解決しようとする課題】
本発明は、毒性およびアレルギー性に問題がある元素を含まず、引張強さが1050MPa以上で、かつヤング率が80GPa以下の高強度かつ低弾性率の生体用Ti合金およびその製造方法を提供することを課題としている。
【0007】
【課題を解決するための手段】
上記課題を解決するため、本発明者らは、引張強さが1050MPa以上で、かつヤング率が80GPa以下のTi合金について鋭意研究していたところ、成分組成をNb:25〜35%、Ta:Nb+0.8Taで36〜45%、Zr:3〜6%、O+N+C:O+1.6N+0.9Cで0.40%以下、残部Tiおよび不可避的不純物からなるTi合金加工率が50%以上の冷間加工をし、さらに0.5〜5時間の時効処理を施すことによって、引張強さが1050MPa以上で、かつヤング率が80GPa以下のTi合金を得ることができることなどの知見を得た。
【0008】
すなわち、本発明の生体用Ti合金においては、成分組成をNb:25〜35%、Ta:Nb+0.8Taで36〜45%((36−Nb%)/0.8〜45%−Nb%)/0.8)、Zr:3〜6%、O+N+C:O+1.6N+0.9Cで0.40%以下、残部Tiおよび不可避的不純物からなるものとし、引張強さが1050MPa以上で、かつヤング率が80GPa以下のものとすることである。
【0009】
また、本発明の生体用Ti合金の製造方法においては、成分組成をNb:25〜35%、Ta:Nb+0.8Taで36〜45%((36−Nb%)/0.8〜45%−Nb%)/0.8)、Zr:3〜6%、O+N+C:O+1.6N+0.9Cで0.40%以下、残部Tiおよび不可避的不純物からなるTi合金50%以上の冷間加工および0.5〜5時間の時効処理を施すことである。
【0010】
【発明の実施の形態】
以下、本発明の生体用Ti合金およびその製造方法について詳細に説明する。
先ず、本発明の生体用Ti合金の成分組成を上記のように特定した理由を説明する。
Nb:25〜35%、Ta:Nb+0.8Taで36〜45%
NbおよびTaは、細胞毒性の指摘のない全率固溶型のβ型安定化元素であって、マトリックス相を低弾性率で、かつ冷間加工性の良好なβ相にするので、それらのために含有させる元素である。ただ、TaはNbに比較して高密度であるため、製造性が良くない(偏析などを作り易い)ので、Nbを主体にして含有させる。冷間加工性がよく、かつ低ヤング率のβ単相を確保するためにはNbを25%以上、好ましくは27%以上、Taを(36−Nb%)/0.8%以上、好ましくは(38−Nb%)/0.8%以上含有させる必要がある。
【0011】
しかし、Nbを35%、好ましくは31%、Taを(45−Nb%)/0.8%、好ましくは(42−Nb%)/0.8%を超えると製造性を低下(NbおよびTaは、Tiに比較して高融点、高密度であるため、偏析などを作り易い)させるので、その含有量を上記のNbでは25〜35%、Taでは(36−Nb%)/0.8〜(45%−Nb%)/0.8とする。好ましい含有量はNbでは27〜31%、Taでは(38−Nb%)/0.8〜(42%−Nb%)/0.8%である。
【0012】
Zr:3〜6%
Zrは、α相とβ相の両方を強化させる中性型元素であり、時効過程によって析出するα相を強化するので、そのために含有させる元素である。その効果を得るためには3%以上、好ましくは4%以上含有させる必要があるが、6%、好ましくは5%を超えるとその効果が飽和するので、その含有量を3〜6%とする。
好ましい含有量は4〜5%である。
【0013】
O+N+C:O+1.6N+0.9Cで0.40%以下
O、NおよびCは、いずれもα相強化型元素であるので、O+1.6N+0.9Cで0.40%まで含有させるとα相を強化するが、0.40%を超えると靱性を低下させると共に、ヤング率を高くするので、その含有量を0.40%以下とする。
【0014】
次に、引張強さを1050MPa以上、ヤング率を80GPa以下にする理由を説明する。
引張強さを1050MPa以上にすることについて
引張強さは高いほうが生体用機器ならば小型にすることができ、さらに線材であれば細くすることができ、またプレートであれば薄くかつ幅を狭くすることができる。製品断面積を小さくできることは、製品としての剛性をさらに下げることが可能になる。そのため、引張強さは1050MPa以上とする。
【0015】
ヤング率を80GPa以下にする点について
ヤング率は、人工股関節などの骨代替素材などの生体用として使用する場合には、骨のヤング率(20〜40GPa)に近いほうが好ましいが、ヤング率を低くすると引張強さを1050MPa以上にすることが困難であり、生体用として使用するには骨のヤング率の2倍以下、すなわち80GPa以下とする。
【0016】
次に、冷間加工を50%以上および時効処理を0.5〜5時間実施する理由を説明する。
冷間加工を50%以上にすることについて
冷間加工は、ヤング率を増加させることなく引張強さを高くすることができ、かつその後行う時効処理でのα相の析出を早くするので、それらのために実施するものである。引張強さを1050MPa以上で、かつヤング率を80GPa以下にするには、図1に示すように50%以上の冷間加工をする必要がある。冷間加工が50%、好ましくは60%より低いと、その後行う時効処理によっても引張強さを1050MPa以上で、かつヤング率を80GPa以下にすることができないからである。
【0017】
時効処理を0.5〜5時間実施することについて
時効処理は、引張強さを高くするので、そのために行うもので、引張強さを1050MPa以上にするためには図2に示すように0.5時間以上行う必要がある。しかし、図2に示すように5時間を超えるとヤング率が80GPaを超えるので、その時間を0.5〜5時間とする。
上記時効処理の温度は、300〜450℃が適当である。300℃より低いと時効処理に必要な時間が長くなるからであり、また450℃より高いと強度が出なくなるからである。
【0018】
【作用】
本発明は、Ti合金の成分組成をNb:25〜35%、Ta:Nb+0.8Taで36〜45%、Zr:3〜6%、O+N+C:O+1.6N+0.9Cで0.40%以下、残部Tiおよび不可避的不純物からなるものとし、冷間加工を50%以上および時効処理を0.5〜5時間実施することによって、従来のTi合金では得られなかった引張強さが1050MPa以上で、かつヤング率が80GPa以下のTi合金を製造することができる。
また、Ti合金の引張強さが1050MPa以上で、かつヤング率が80GPa以下であるので、人工股関節などの骨代替素材のほか、骨折時の固定プレートなどの広い範囲の生体用の用途にも使用することができる。
【0019】
本発明の生体用Ti合金の製造方法の一例は、浮遊溶解法により溶解した後、鋳造してインゴットにし、その後熱間鍛伸などにより所望形状にする。その後700〜800℃で10〜60分間加熱保持した後水冷する固溶化処理を実施し、加工率が50%以上の冷間加工をし、その後300〜450℃で0.5〜5時間加熱する時効処理をすることである。
【0020】
本発明の生体用Ti合金の用途は、人工股関節、膝関節などの骨代替材料、骨折時の固定ワイヤー、プレートなどの骨固定用補助材といった各種のインプラント材、人工歯根などに代表される歯科材料、さらには外科用ピンセット、クリップ類などの医療器具といった人体中に埋め込み、もしくは人体と接触して使用する生体用材料である。また、眼鏡フレーム、車椅子などの生体用材料を用いることが好ましい福祉機器類にも使用することができる。
【0021】
【実施例】
実施例1
下記表1に記載した本発明例および比較例の成分組成のTi合金を浮遊溶解法により溶解した後、鋳造してインゴットにし、その後熱間鍛伸により直径12mmの丸棒にした。その後これらの丸棒を790℃で30分間保持した後水冷する固溶化処理を実施した。その後冷間加工率84%の冷間スエジングを実施した後、427℃(700K)で3時間加熱する時効処理を実施して供試材を作成した。これらの供試材から引張試験片を作成し、引張試験を実施した。その結果を下記表2に記載した。
【0022】
【表1】

Figure 0004547797
【0023】
【表2】
Figure 0004547797
【0024】
実施例2
上記表1の本発明例のNo. 1に記載したTi合金を実施例1に記載した方法で直径12mmの丸棒にし、この丸棒を790℃で30分間保持した後水冷する固溶化処理を実施した。その後表3に記載した冷間加工率の冷間スエジングを実施し、427℃(700K)で3時間加熱する時効処理を実施して供試材を作成した。これらの供試材から引張試験片を作成し、引張試験を実施した。その結果を下記表3および図1に記載した。
【0025】
【表3】
Figure 0004547797
【0026】
実施例3
上記表1の本発明例のNo. 1に記載したTi合金を実施例1に記載した方法で直径12mmの丸棒にし、この丸棒を790℃で30分間保持した後水冷する固溶化処理を実施した。その後冷間加工率84%の冷間スエジングを実施し、427℃(700K)で下記表4に記載した時間加熱する時効処理を実施して供試材を作成した。これらの供試材から引張試験片を作成し、引張試験を実施した。その結果を下記表4および図2に記載した。
【0027】
【表4】
Figure 0004547797
【0028】
表2の結果から、本発明例の成分組成のものは、何れも引張強さが1050MPa以上で、かつヤング率が80GPa以下であった。
さらに、表3の結果から、冷間加工の加工率を50%以上にしたものは、何れも引張強さが1050MPa以上で、かつヤング率が80GPa以下であった。
また、表4の結果から、時効処理を0.5〜5時間にしたものは、何れも引張強さが1050MPa以上で、かつヤング率が80GPa以下であった。
【0029】
【発明の効果】
本発明の生体用Ti合金の製造方法は、上記構成にしたこにより、引張強さが1050MPa以上で、かつヤング率が80GPa以下の高強度低弾性率の生体用Ti合金を製造することができ、また本発明の生体用Ti合金は、毒性およびアレルギー性に問題がある元素を含まず、また高強度低弾性率であるので、生体用部材においては、細くまたは薄くすることができ、また生体用機器においては小型にすることができるという優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明と同じ成分組成のTi合金の冷間加工率と引張強さ、0.2%耐力、伸びおよびヤング率との関係を示すグラフである。
【図2】本発明と同じ成分組成のTi合金の時効時間と引張強さ、0.2%耐力、伸びおよびヤング率との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a biomedical Ti alloy having high strength and low elastic modulus and a method for producing the same.
[0002]
[Prior art]
Biomaterials such as artificial hip joints, knee joints, and fixation plates at the time of fractures are desired to have excellent biocompatibility, light weight, high tensile strength, and Young's modulus close to that of bone (20-40 GPa). ing.
Conventionally, SUS316L, pure Ti, Ti-6% Al-4% V has been used as this biomaterial. However, since these alloys have not been developed for living organisms, SUS316L has high tensile strength but high Young's modulus of 165 GPa, and contains Ni, which is allergic. Further, pure Ti is excellent in biocompatibility, but has a tensile strength of about 500 MPa and low strength. Further, Ti-6% Al-4% V Ti alloy has a problem that it contains V, which has been pointed out to be toxic.
[0003]
Α + β type Ti alloys such as Ti-6% Al-7% Nb and Ti-5Al-2.5% Fe containing Nb or Fe instead of Ti-6% Al-4% V have been proposed. However, there is a report that Al in the alloy causes some kind of dementia.
[0004]
Also proposed is a β-type Ti alloy that uses elements other than the metal elements for which toxicity and allergic properties have been pointed out, has higher elongation than α + β-type Ti alloys, has excellent cold workability, and has a low elastic modulus. It has come to be. Examples of the β-type Ti alloy include Ti-13% Nb-13% Zr, Ti-13% Nb-10% Hf, Ti-15% Mo, Ti-12% Mo-5% Zr-2% Fe, Ti. -15% Mo-6% Zr-2.8% Nb-0.2% Si-0.2% O.
However, these β-type Ti alloys have no problem in toxicity and allergenicity, but have a sufficiently high tensile strength and a sufficiently low elastic modulus.
[0005]
Therefore, the present applicant does not include elements that are problematic in toxicity and allergenicity, includes moderate tensile strength, high elongation, and low elastic modulus Nb and Ta in a total of 20 to 60%. Japanese Patent Application No. 9-20588 has developed a Ti alloy containing one or two elements of Mo 10% or less, Zr 5% or less, and Sn 5% or less, the balance being Ti and inevitable impurities. A patent application was filed as JP-A-10-219375.
However, the Ti alloy of this patent application has higher tensile strength and lower elastic modulus than conventional Ti alloys, but those with higher tensile strength also have higher elastic modulus and those with lower elastic modulus have lower tensile strength. Further, those having a tensile strength of 1050 MPa or more and a Young's modulus of 80 GPa or less were not obtained.
[0006]
[Problems to be solved by the invention]
The present invention provides a high-strength and low-elastic modulus Ti alloy having a tensile strength of 1050 MPa or more and a Young's modulus of 80 GPa or less, and a method for producing the same, which does not contain elements that are problematic in toxicity and allergenicity. It is an issue.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have conducted intensive research on a Ti alloy having a tensile strength of 1050 MPa or more and a Young's modulus of 80 GPa or less. The component composition is Nb: 25 to 35%, Ta: 36 to 45% by nb + 0.8Ta, Zr: 3~6% , O + N + C: O + 1.6N + 0.40% or less at 0.9C, working ratio in Ti alloy and the balance Ti and unavoidable impurities between more than 50% of the cold We obtained knowledge such that a Ti alloy having a tensile strength of 1050 MPa or more and a Young's modulus of 80 GPa or less can be obtained by processing and further aging treatment for 0.5 to 5 hours.
[0008]
That is, in the biomedical Ti alloy of the present invention, the component composition is Nb: 25-35%, Ta: Nb + 0.8Ta, 36-45% ((36-Nb%) / 0.8-45% -Nb%) /0.8), Zr: 3 to 6%, O + N + C: O + 1.6N + 0.9C, 0.40% or less, balance Ti and inevitable impurities, tensile strength is 1050 MPa or more, and Young's modulus is 80 GPa or less.
[0009]
In the method for producing a biomedical Ti alloy of the present invention, the component composition is Nb: 25-35%, Ta: Nb + 0.8Ta, 36-45% ((36-Nb%) / 0.8-45%- Nb%) / 0.8), Zr: 3 to 6%, O + N + C: O + 1.6N + 0.9C, 0.40% or less, Ti alloy consisting of the balance Ti and unavoidable impurities, cold work of 50% or more and 0 .5-5 hours of aging treatment.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the biomedical Ti alloy of the present invention and the manufacturing method thereof will be described in detail.
First, the reason why the component composition of the biomedical Ti alloy of the present invention is specified as described above will be described.
Nb: 25-35%, Ta: Nb + 0.8Ta, 36-45%
Nb and Ta are β-type stabilizing elements of a solid solution type with no indication of cytotoxicity, and the matrix phase has a low elastic modulus and a good cold workability. Therefore, it is an element to be contained. However, since Ta has a higher density than Nb, the productivity is not good (it is easy to make segregation or the like), so Nb is mainly contained. In order to secure a β single phase with good cold workability and low Young's modulus, Nb is 25% or more, preferably 27% or more, Ta is (36-Nb%) / 0.8% or more, preferably It is necessary to contain (38-Nb%) / 0.8% or more.
[0011]
However, if Nb exceeds 35%, preferably 31%, and Ta exceeds (45-Nb%) / 0.8%, preferably (42-Nb%) / 0.8%, productivity decreases (Nb and Ta Has a higher melting point and higher density than Ti, and therefore, segregation and the like are easy to make), so the content of Nb is 25 to 35% and that of Ta is (36-Nb%) / 0.8. ~ (45% -Nb%) / 0.8. Preferable contents are 27 to 31% for Nb and (38-Nb%) / 0.8 to (42% -Nb%) / 0.8% for Ta.
[0012]
Zr: 3-6%
Zr is a neutral element that strengthens both the α-phase and the β-phase, and strengthens the α-phase that is precipitated by the aging process. Therefore, Zr is an element that is contained for that purpose. In order to acquire the effect, it is necessary to make it contain 3% or more, preferably 4% or more, but since the effect is saturated when it exceeds 6%, preferably 5%, the content is made 3 to 6%. .
The preferred content is 4-5%.
[0013]
O + N + C: O + 1.6N + 0.9C and 0.40% or less Since O, N and C are all α-phase strengthening elements, the inclusion of O + 1.6N + 0.9C up to 0.40% strengthens the α-phase. However, if it exceeds 0.40%, the toughness is lowered and the Young's modulus is increased, so the content is made 0.40% or less.
[0014]
Next, the reason why the tensile strength is set to 1050 MPa or more and the Young's modulus is set to 80 GPa or less will be described.
When the tensile strength is 1050 MPa or more, the higher the tensile strength, the smaller it can be for a biological device, the smaller the wire, the thinner the plate, and the narrower the width. be able to. The ability to reduce the product cross-sectional area can further reduce the rigidity of the product. Therefore, the tensile strength is set to 1050 MPa or more.
[0015]
Regarding the Young's modulus of 80 GPa or less, the Young's modulus is preferably close to the Young's modulus of bone (20-40 GPa) when used as a living body such as a bone substitute material such as an artificial hip joint. Then, it is difficult to set the tensile strength to 1050 MPa or more, and to use it for a living body, the Young's modulus of bone is set to twice or less, that is, 80 GPa or less.
[0016]
Next, the reason why the cold working is 50% or more and the aging treatment is performed for 0.5 to 5 hours will be described.
About making cold work 50% or more Cold work can increase the tensile strength without increasing the Young's modulus and accelerate the precipitation of α phase in the subsequent aging treatment. It is intended for the purpose. In order to set the tensile strength to 1050 MPa or more and the Young's modulus to 80 GPa or less, it is necessary to cold work 50% or more as shown in FIG. This is because if the cold working is lower than 50%, preferably lower than 60%, the tensile strength cannot be made 1050 MPa or more and the Young's modulus cannot be made 80 GPa or less even by the subsequent aging treatment.
[0017]
About performing aging treatment for 0.5 to 5 hours The aging treatment is performed for that purpose because it increases the tensile strength. To increase the tensile strength to 1050 MPa or more, as shown in FIG. It must be done for 5 hours or more. However, as shown in FIG. 2, the Young's modulus exceeds 80 GPa when it exceeds 5 hours, so the time is set to 0.5 to 5 hours.
The temperature of the aging treatment is suitably 300 to 450 ° C. This is because when the temperature is lower than 300 ° C., the time required for the aging treatment becomes longer, and when the temperature is higher than 450 ° C., the strength is not obtained.
[0018]
[Action]
In the present invention, the component composition of the Ti alloy is Nb: 25-35%, Ta: Nb + 0.8Ta, 36-45%, Zr: 3-6%, O + N + C: O + 1.6N + 0.9C, 0.40% or less, the balance It is composed of Ti and unavoidable impurities, and by performing cold working at 50% or more and aging treatment for 0.5 to 5 hours, the tensile strength that could not be obtained with a conventional Ti alloy is 1050 MPa or more, and A Ti alloy having a Young's modulus of 80 GPa or less can be produced.
In addition, since the tensile strength of Ti alloy is 1050 MPa or more and Young's modulus is 80 GPa or less, it can be used for a wide range of biomedical applications such as bone substitute materials such as artificial hip joints and fixation plates for fractures. can do.
[0019]
An example of the method for producing the biomedical Ti alloy of the present invention is melted by a floating melting method, then cast into an ingot, and then formed into a desired shape by hot forging. After that, the solution is heated and held at 700 to 800 ° C. for 10 to 60 minutes and then water-cooled, cold working with a processing rate of 50% or more is performed, and then heated at 300 to 450 ° C. for 0.5 to 5 hours. It is an aging treatment.
[0020]
The use of the Ti alloy for living body of the present invention includes bone substitute materials such as artificial hip joints and knee joints, various implant materials such as bone fixation materials such as fixation wires and plates for fractures, and dental typified by artificial tooth roots. It is a biomaterial that is used in contact with or in contact with a human body, such as a material, and medical instruments such as surgical tweezers and clips. Moreover, it can be used also for welfare equipment for which it is preferable to use biomaterials such as eyeglass frames and wheelchairs.
[0021]
【Example】
Example 1
The Ti alloys having the composition of the present invention and comparative examples shown in Table 1 below were melted by the floating melting method, then cast into ingots, and then formed into round bars with a diameter of 12 mm by hot forging. Thereafter, these round bars were held at 790 ° C. for 30 minutes and then subjected to a solution treatment in which they were cooled with water. Then, after performing cold swaging with a cold working rate of 84%, an aging treatment was performed by heating at 427 ° C. (700 K) for 3 hours to prepare a test material. Tensile test pieces were prepared from these test materials, and a tensile test was performed. The results are shown in Table 2 below.
[0022]
[Table 1]
Figure 0004547797
[0023]
[Table 2]
Figure 0004547797
[0024]
Example 2
The Ti alloy described in No. 1 of the present invention example in Table 1 was made into a round bar having a diameter of 12 mm by the method described in Example 1, and this round bar was kept at 790 ° C. for 30 minutes and then water-cooled. Carried out. Thereafter, cold swaging at the cold working rate described in Table 3 was performed, and an aging treatment was performed by heating at 427 ° C. (700 K) for 3 hours to prepare a specimen. Tensile test pieces were prepared from these test materials, and a tensile test was performed. The results are shown in Table 3 below and FIG.
[0025]
[Table 3]
Figure 0004547797
[0026]
Example 3
The Ti alloy described in No. 1 of the present invention example in Table 1 was made into a round bar having a diameter of 12 mm by the method described in Example 1, and this round bar was kept at 790 ° C. for 30 minutes and then water-cooled. Carried out. Thereafter, cold swaging with a cold working rate of 84% was carried out, and an aging treatment was carried out at 427 ° C. (700 K) for the time indicated in Table 4 below to prepare a test material. Tensile test pieces were prepared from these test materials, and a tensile test was performed. The results are shown in Table 4 and FIG.
[0027]
[Table 4]
Figure 0004547797
[0028]
From the results of Table 2, all of the component compositions of the present invention examples had a tensile strength of 1050 MPa or more and a Young's modulus of 80 GPa or less.
Furthermore, from the results shown in Table 3, any of the cold working ratios of 50% or more had a tensile strength of 1050 MPa or more and a Young's modulus of 80 GPa or less.
Moreover, from the results of Table 4, any of the aging treatments performed for 0.5 to 5 hours had a tensile strength of 1050 MPa or more and a Young's modulus of 80 GPa or less.
[0029]
【The invention's effect】
According to the method for producing a biomedical Ti alloy of the present invention, a high-strength, low-elastic modulus biomedical Ti alloy having a tensile strength of 1050 MPa or more and a Young's modulus of 80 GPa or less can be produced. Moreover, since the biomedical Ti alloy of the present invention does not contain elements that are problematic in toxicity and allergenicity and has high strength and low elastic modulus, the biomaterial can be made thin or thin, The device has an excellent effect that it can be reduced in size.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the cold working rate and tensile strength, 0.2% proof stress, elongation and Young's modulus of a Ti alloy having the same composition as that of the present invention.
FIG. 2 is a graph showing the relationship between aging time, tensile strength, 0.2% proof stress, elongation and Young's modulus of a Ti alloy having the same composition as that of the present invention.

Claims (2)

重量%で(以下同じ)、Nb:25〜35%、Ta:Nb+0.8Taで36〜45%、Zr:3〜6%、O+N+C:O+1.6N+0.9Cで0.40%以下、残部Tiおよび不可避的不純物からなるTi合金であって、引張強さが1050MPa以上で、かつヤング率が80GPa以下であることを特徴とする生体用Ti合金。% By weight (hereinafter the same), Nb: 25-35%, Ta: Nb + 0.8Ta, 36-45%, Zr: 3-6%, O + N + C: O + 1.6N + 0.9C, 0.40% or less, balance Ti and A Ti alloy composed of inevitable impurities, having a tensile strength of 1050 MPa or more and a Young's modulus of 80 GPa or less. Nb:25〜35%、Ta:Nb+0.8Taで36〜45%、Zr:3〜6%、O+N+C:O+1.6N+0.9Cで0.40%以下、残部Tiおよび不可避的不純物からなるTi合金50%以上の冷間加工および0.5〜5時間の時効処理を施すことを特徴とする生体用Ti合金の製造方法。Nb: 25~35%, Ta: 36~45 % by Nb + 0.8Ta, Zr: 3~6% , O + N + C: 0.40% by O + 1.6N + 0.9C or less, the Ti alloy and the balance Ti and unavoidable impurities A method for producing a biomedical Ti alloy, comprising performing cold working of 50% or more and aging treatment for 0.5 to 5 hours.
JP2000384738A 2000-12-19 2000-12-19 Biomedical Ti alloy and method for producing the same Expired - Fee Related JP4547797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000384738A JP4547797B2 (en) 2000-12-19 2000-12-19 Biomedical Ti alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000384738A JP4547797B2 (en) 2000-12-19 2000-12-19 Biomedical Ti alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002180168A JP2002180168A (en) 2002-06-26
JP4547797B2 true JP4547797B2 (en) 2010-09-22

Family

ID=18852129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000384738A Expired - Fee Related JP4547797B2 (en) 2000-12-19 2000-12-19 Biomedical Ti alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP4547797B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3934372B2 (en) * 2001-08-15 2007-06-20 株式会社神戸製鋼所 High strength and low Young's modulus β-type Ti alloy and method for producing the same
JP3753380B2 (en) * 2003-07-18 2006-03-08 株式会社古河テクノマテリアル Production method of bioelastic superelastic titanium alloy and bioelastic superelastic titanium alloy
JP4302604B2 (en) * 2004-09-27 2009-07-29 株式会社古河テクノマテリアル Superelastic titanium alloy for living body
US7670445B2 (en) 2006-01-18 2010-03-02 Nissan Motor Co., Ltd. Titanium alloy of low Young's modulus
US8512486B2 (en) 2006-04-04 2013-08-20 Daido Tokushuko Kabushiki Kaisha Beta-type titanium alloy and product thereof
EP2297370B1 (en) * 2008-05-28 2013-12-04 Korea Institute Of Machinery & Materials Beta-based titanium alloy with low elastic modulus
KR101562669B1 (en) * 2014-09-30 2015-10-23 한국기계연구원 Ultrahigh strength, ultralow elastic modulus, and stable superelasticity titanium alloy with non-linear elastic deformation
WO2019166749A1 (en) * 2018-02-27 2019-09-06 Oxmet Technologies Limited A bio-compatible titanium alloy optimised for additive manufacturing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08299428A (en) * 1994-10-14 1996-11-19 Osteonics Corp Medical apparatus consisting of titanium based alloys with biological adaptability
JPH10501719A (en) * 1994-06-16 1998-02-17 スミス アンド ネフュー リチャーズ インコーポレーテッド Biocompatible, low modulus dental device
JPH10219375A (en) * 1997-02-03 1998-08-18 Daido Steel Co Ltd Titanium alloy and hard tissular substitutive material using same
JP2000102602A (en) * 1998-07-31 2000-04-11 Daido Steel Co Ltd Substitute material for hard tissue
JP2001247924A (en) * 1999-12-27 2001-09-14 Toyota Central Res & Dev Lab Inc Portable articles
JP2003003225A (en) * 1999-06-11 2003-01-08 Toyota Central Res & Dev Lab Inc Bolt made of titanium alloy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10501719A (en) * 1994-06-16 1998-02-17 スミス アンド ネフュー リチャーズ インコーポレーテッド Biocompatible, low modulus dental device
JPH08299428A (en) * 1994-10-14 1996-11-19 Osteonics Corp Medical apparatus consisting of titanium based alloys with biological adaptability
JPH10219375A (en) * 1997-02-03 1998-08-18 Daido Steel Co Ltd Titanium alloy and hard tissular substitutive material using same
JP2000102602A (en) * 1998-07-31 2000-04-11 Daido Steel Co Ltd Substitute material for hard tissue
JP2003003225A (en) * 1999-06-11 2003-01-08 Toyota Central Res & Dev Lab Inc Bolt made of titanium alloy
JP2001247924A (en) * 1999-12-27 2001-09-14 Toyota Central Res & Dev Lab Inc Portable articles

Also Published As

Publication number Publication date
JP2002180168A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
Kuroda et al. Design and mechanical properties of new β type titanium alloys for implant materials
CN101768685B (en) Biomedical titanium-niobium-based shape memory alloy as well as preparation method, processing method and application method thereof
CN105925845B (en) A kind of high intensity, high-ductility, erosion resistant titanium alloy and its preparation method and application
KR100971649B1 (en) Beta-based titanium alloy with low elastic modulus
JPH08299428A (en) Medical apparatus consisting of titanium based alloys with biological adaptability
WO2005064026A1 (en) Super elasticity and low modulus ti alloy and its manufacture process
CN107630151B (en) A kind of beta titanium alloy with antibacterial and promotion knitting function
JPH0784634B2 (en) Titanium alloy with high strength, low elastic modulus, ductility and biocompatibility
CN102899528A (en) Biomedical beta-titanium alloy material and preparation method
EP1842933B1 (en) Beta-type titanium alloy and product thereof
JP3959770B2 (en) Titanium alloy for hard tissue substitute
JP4547797B2 (en) Biomedical Ti alloy and method for producing the same
WO2013035269A1 (en) Super elastic zirconium alloy for biological use, medical instrument and glasses
US8492002B2 (en) Titanium-based alloy
RU2485197C1 (en) Metal nanostructured alloy based on titanium, and method for its treatment
KR100653160B1 (en) Production method of Ti-base alloy with low elastic modulus and excellent bio-compatibility
Abd-Elaziem et al. Titanium-Based alloys and composites for orthopedic implants Applications: A comprehensive review
JP2000102602A (en) Substitute material for hard tissue
CN101760668B (en) Biological medical titanium alloy with low elastic modulus
CN108642359B (en) High-strength rapid-degradation biomedical Mg-Zn-Zr-Fe alloy material and preparation method thereof
JP4212945B2 (en) Functional medical device and manufacturing method thereof
JP2004197112A (en) Method of producing biological superelastic titanium alloy
Seixas et al. Mechanical and microstructural characterization of the Ti-25Ta-25Nb alloy for dental applications
JP2016141838A (en) β TYPE TITANIUM ALLOY
JP2000087160A (en) Titanium alloy for living body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100628

R150 Certificate of patent or registration of utility model

Ref document number: 4547797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees