JPH10213573A - Estimating method for surface layer damage - Google Patents

Estimating method for surface layer damage

Info

Publication number
JPH10213573A
JPH10213573A JP9014213A JP1421397A JPH10213573A JP H10213573 A JPH10213573 A JP H10213573A JP 9014213 A JP9014213 A JP 9014213A JP 1421397 A JP1421397 A JP 1421397A JP H10213573 A JPH10213573 A JP H10213573A
Authority
JP
Japan
Prior art keywords
wave
frequency
depth
flaw
transmitted wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9014213A
Other languages
Japanese (ja)
Inventor
Yukimichi Iizuka
幸理 飯塚
Tatsuya Hashimoto
達也 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP9014213A priority Critical patent/JPH10213573A/en
Publication of JPH10213573A publication Critical patent/JPH10213573A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To automatically and highly accurately estimate the kind of a surface damage and its depth irrespective of a damage direction by comparing the damping amount of the transmitted wave of a frequency corresponding to a transmitted wave with a threshold value. SOLUTION: A burst wave transmitter 1 optionally sets the frequency of a tone burst wave and transmits a surface wave based on this tone burst wave to an article 3 to be detected via a surface wave contact 2. A transmitted wave passed through the detected article 3 including damage 4 is received by a surface wave contact 5 and its intensity and a transmitting time are measured by a receiver 6. Here, burst wave frequencies are set to 1, 3 and 5MHz, a threshold value for the kind of damage is set to -5dB and a damping amount > threshold value in 5MHz is estimated to be opened damage and a damping amount < a threshold value is estimated to be non-opened damaged. In this case, if all the frequencies are set to a damping amount > a threshold value in 3 and 5MHz, or only 5MHz, then the depths of the opened damages are respectively 0.5mm or higher, 0.3 to 0.5mm and 0.1 to 0.3mm. Also, the depth position of non-opened damages are set to 0.1mm or lower and 0.3 to 0.1mm if a damping amount > a threshold value is realized in 1 and 3MHz or only 1MHz.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は超音波の表面波を用
いて材料の表層部の探傷を行ない、表層傷の種類と深さ
を推定するようにした表層傷の推定法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating a surface flaw by detecting a surface layer of a material using an ultrasonic surface wave and estimating the type and depth of the surface flaw.

【0002】[0002]

【従来の技術】超音波の表面波は材料の表層部を探傷す
る手段として良く知られている。表面波を用いた超音波
探傷の一般的構成は、被検体の表面に表面波を送信する
表面波探触子を用い、その探触子を用いて受信し、傷か
らのエコーの有無から傷の有無を判断するようにしてい
る。表面波は被検体の表面に沿って伝搬する弾性波であ
り、その浸透深さは波長に依存していることが良く知ら
れている。この性質を利用して傷の深さを推定すること
が行われている。
2. Description of the Related Art Ultrasonic surface waves are well known as means for detecting flaws on a surface layer of a material. The general configuration of ultrasonic flaw detection using surface waves is to use a surface wave probe that transmits a surface wave to the surface of the subject, receive using that probe, and determine whether or not there is an echo from the flaw. Is determined. It is well known that a surface wave is an elastic wave propagating along the surface of a subject, and its penetration depth depends on the wavelength. Estimation of the depth of a flaw is performed using this property.

【0003】例えば、特開昭60−235056号公報
に示す従来の表面波による欠陥深さの推定方法は、内在
する傷の深さ位置を推定する方法であり、反射法の構成
で広帯域の表面波を用い、高周波の成分ほど表面近傍で
振動していることから深い位置の傷では反射せず、低い
周波数の成分ほど深い位置の傷からも反射することを利
用したものである。しかしながら、本法では開口してい
る傷において、割れの表面からの深さが測定ができない
問題があった。また、反射法のため、超音波ビーム方向
と傷のなす角度が直角から傾いていると反射波が弱くな
り、さらにビームの広がりは周波数に依存しているた
め、深さ位置の推定精度も悪くなるという問題もあっ
た。
For example, a conventional method for estimating the depth of a defect by a surface wave disclosed in Japanese Patent Application Laid-Open No. Sho 60-235056 is a method for estimating the depth position of an existing flaw. Using a wave, the higher frequency component vibrates in the vicinity of the surface, so that it is not reflected by a flaw at a deep position, and the lower frequency component is reflected by a flaw at a deep position. However, in this method, there is a problem that the depth from the surface of the crack cannot be measured in the open flaw. In addition, because of the reflection method, if the angle between the ultrasonic beam direction and the flaw is inclined from a right angle, the reflected wave becomes weak, and the spread of the beam depends on the frequency. There was also the problem of becoming.

【0004】また、特開平1−31048号公報に示す
従来の超音波によるコンクリートの開口き裂深さの測定
方法は、対向させた送信用と受信用探触子を用い、送信
した表面波がき裂に沿ってその先端まで伝搬し、き裂の
先端にてモード変換した横波が受信用探触子に届くまで
の時間とき裂を回り込んだ表面波が受信用探触子に届く
までの時間との差を基にき裂の深さを測定する方法であ
る。しかしながら、本法では非常に弱いモード変換波を
受信する必要があるため、ノイズの多い環境下では使い
にくく、また透過してくる表面波などの様々なエコーと
分離することが難しいため、自動化が困難な問題があっ
た。また、傷形状が凹み状の場合は、き裂先端のような
モード変換が起こらず、適用できないという問題もあっ
た。
A conventional method of measuring the depth of an opening crack in concrete using ultrasonic waves disclosed in Japanese Patent Application Laid-Open No. Hei 1-331048 discloses a method of transmitting a transmitted surface wave using a transmitting and receiving probe facing each other. Time until the transverse wave propagated along the crack to its tip and mode-converted at the tip of the crack reaches the receiving probe, and time until the surface wave wrapped around the crack reaches the receiving probe This is a method of measuring the depth of a crack based on the difference between the two. However, this method needs to receive a very weak mode-converted wave, which makes it difficult to use it in a noisy environment and it is difficult to separate it from various echoes such as transmitted surface waves. There was a difficult problem. In addition, when the shape of the flaw is concave, there is also a problem that mode conversion such as the tip of a crack does not occur and cannot be applied.

【0005】[0005]

【発明が解決しようとする課題】本発明はかかる問題点
を解決するためになされたもので、傷の方向にかかわり
なく、表層傷の種類と深さを自動的に精度良く推定でき
る表層傷の推定法を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and it is possible to automatically and accurately estimate the type and depth of a surface flaw regardless of the direction of the flaw. The aim is to obtain an estimation method.

【0006】[0006]

【課題を解決するための手段】本発明の請求項1の表層
傷の推定法は、所定の周波数の送信波を用い、送信波に
対応した周波数の透過波の減衰量を所定のしきい値と比
較し、該減衰量が所定のしきい値を越えるときは開口傷
と推定し、該減衰量が所定のしきい値を越えないときは
非開口傷と推定するようにしたものである。かかる表層
傷の推定法によれば、送信波に対応した透過波の減衰量
を求めれば、しきい値と比較することにより、被検体の
表層部の傷の種類を容易に高精度に推定することができ
る。
According to a first aspect of the present invention, there is provided a method for estimating a surface flaw, wherein a transmission wave having a predetermined frequency is used, and the attenuation of a transmitted wave having a frequency corresponding to the transmission wave is determined by a predetermined threshold value. When the amount of attenuation exceeds a predetermined threshold value, it is estimated that the opening is flawed, and when the amount of attenuation does not exceed the predetermined threshold, it is estimated that the opening is not flawed. According to such a method for estimating a surface layer flaw, if the attenuation of a transmitted wave corresponding to a transmission wave is obtained, the type of the surface layer flaw of the subject can be easily and accurately estimated by comparing with a threshold value. be able to.

【0007】本発明の請求項2の表層傷の推定法は、異
なる周波数を含む送信波を用い、前記送信波の各周波数
に対応したそれぞれの透過波が、開口傷が浅い場合は高
い周波数側のみが大きく減衰し、開口傷が浅くなるにつ
れて低い周波数まで減衰するという性質から求められた
開口傷の深さと各周波数に対応したそれぞれの透過波の
減衰量との間で相関関係を示す式に基づき、前記送信波
の各周波数に対応したそれぞれの透過波の減衰量から計
算して開口傷の深さを推定するようにしたものである。
かかる表層傷の推定法によれば、送信波の各周波数に対
応したそれぞれの透過波の減衰量を求めれば、所定の式
を計算することにより、被検体の表層部の開口傷の深さ
を容易に高精度に推定することができる。
According to a second aspect of the present invention, in the method for estimating a surface flaw, transmission waves including different frequencies are used, and each transmitted wave corresponding to each frequency of the transmission wave is transmitted to a higher frequency side when the aperture flaw is shallow. Is greatly attenuated, and as the aperture flaw becomes shallower, it attenuates to a lower frequency.The equation that shows the correlation between the depth of the aperture flaw and the attenuation of each transmitted wave corresponding to each frequency Based on this, the depth of the opening flaw is estimated by calculating from the attenuation of each transmitted wave corresponding to each frequency of the transmission wave.
According to such a method for estimating surface flaws, if the attenuation of each transmitted wave corresponding to each frequency of the transmitted wave is obtained, the depth of the opening flaw on the surface layer of the subject is calculated by calculating a predetermined formula. It can be easily and accurately estimated.

【0008】本発明の請求項3の表層傷の推定法は、異
なる周波数を含む送信波を用い、前記送信波の各周波数
に対応したそれぞれの透過波が、深さ位置が浅いほど高
い周波数の減衰は小さく、深くなるほど低い周波数の減
衰も小さくなるという性質から求められた非開口傷の深
さと、各周波数に対応したそれぞれの透過波の減衰量と
の間で相関関係を示す式に基づき、前記送信波の各周波
数に対応したそれぞれの透過波の減衰量から計算して非
開口傷の深さを推定するようにしたものである。かかる
表層傷の推定法によれば、送信波の各周波数に対応した
それぞれの透過波の減衰量を求めれば、所定の式を計算
することにより、被検体の表層部の非開口傷の深さを容
易に高精度に推定することができる。
According to a third aspect of the present invention, there is provided a method for estimating surface flaws, wherein transmission waves having different frequencies are used, and each transmitted wave corresponding to each frequency of the transmission waves has a higher frequency as the depth position becomes shallower. Attenuation is small, based on the equation that shows the correlation between the depth of the non-aperture flaw, which is determined from the property that the deeper the depth is, the lower the attenuation of the lower frequency is, and the attenuation of each transmitted wave corresponding to each frequency. The depth of the non-aperture flaw is estimated by calculating from the attenuation of each transmitted wave corresponding to each frequency of the transmission wave. According to such a method of estimating a surface flaw, if the attenuation of each transmitted wave corresponding to each frequency of the transmission wave is obtained, the depth of the non-opening flaw in the surface layer of the subject is calculated by calculating a predetermined formula. Can be easily and accurately estimated.

【0009】本発明の請求項4の表層傷の推定法は、所
定の周波数の送信波を用い、前記送信波に対応した周波
数の透過波の遅延時間が凹みの深さが深くなるほど長く
なるという性質から求められた凹みの深さと該透過波の
周波数の遅延時間との間で相関関係を示す式に基づき、
前記送信波に対応した透過波の周波数の遅延時間から計
算して凹みの深さを推定するようにしたものである。か
かる表層傷の推定法によれば、送信波の所定の周波数に
対応した遅延時間を求めれば、所定の式を計算すること
により、被検体の表層部の凹みの深さを容易に高精度に
推定することができる。
In the method for estimating a surface damage according to a fourth aspect of the present invention, a transmission wave having a predetermined frequency is used, and a delay time of a transmitted wave having a frequency corresponding to the transmission wave increases as the depth of the dent increases. Based on an equation showing a correlation between the depth of the dent determined from the properties and the delay time of the frequency of the transmitted wave,
The depth of the dent is estimated by calculating from the delay time of the frequency of the transmitted wave corresponding to the transmission wave. According to such a method for estimating a surface layer flaw, if a delay time corresponding to a predetermined frequency of a transmission wave is obtained, the depth of the dent of the surface layer of the subject can be easily and accurately determined by calculating a predetermined equation. Can be estimated.

【0010】[0010]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.図1は本発明の表層傷の推定方法を実施
する実施の形態1の装置の構成を示すブロック図、図2
は同装置を用いて測定した開口傷及び非開口傷に対する
透過波の減衰量の測定結果を示す図、図3は同装置を用
いて測定した開口傷に対する透過波の減衰量の比と傷の
深さ/波長との関係を示すグラフ、図4は同装置を用い
て測定した非開口傷に対する透過波の減衰量の比と傷の
深さ/波長との関係を示すグラフ、図5は本発明の実施
形態1の表層傷の推定方法を示すフローチャートであ
る。
Embodiment 1 FIG. FIG. 1 is a block diagram showing the configuration of an apparatus for carrying out the method for estimating a surface wound according to the first embodiment of the present invention.
FIG. 3 is a graph showing the results of measurement of the amount of attenuation of a transmitted wave with respect to an open wound and a non-aperture wound measured using the same device. FIG. FIG. 4 is a graph showing the relationship between the depth / wavelength, FIG. 4 is a graph showing the relationship between the ratio of the attenuation of the transmitted wave to the non-open wound and the depth / wavelength of the wound measured using the same apparatus, and FIG. It is a flowchart which shows the estimation method of the surface layer wound of Embodiment 1 of this invention.

【0011】図1において、1はトーンバースト波を発
生させるバースト波送信器であり、トーンバースト波の
周波数と波数を各々任意に定めることができるようにな
っている。トーンバースト波の周波数は1MHzから9
MHzまで可変できるものとし、その出力は200Vp
pとした。2は送信用の表面波探触子で、被検体3にト
ーンバースト波に基づく表面波を送信するものであり、
表面波探触子2と被検体3とは水などで音響接触されて
いる。4は被検体3の傷であり、受信用の表面波探触子
5と送信用の表面波探触子2の間に位置する時に本発明
は適用できる。送信用と受信用の表面波探触子2、5に
は、帯域が0.5〜9MHzの広帯域のものを用いた。
6は透過波の強度と透過時間を測定するための受信器で
あり、透過波の透過時間は図には書いていないが送信器
から送信タイミング時間に同期した同期信号を受けその
信号を基に測定するようにしている。
In FIG. 1, reference numeral 1 denotes a burst wave transmitter for generating a tone burst wave, which can arbitrarily determine the frequency and wave number of the tone burst wave. The frequency of the tone burst wave is from 1 MHz to 9
MHz and the output is 200Vp
p. A transmission surface wave probe 2 transmits a surface wave based on a tone burst wave to the subject 3.
The surface wave probe 2 and the subject 3 are in acoustic contact with water or the like. Reference numeral 4 denotes a scratch on the subject 3, and the present invention can be applied when it is located between the surface acoustic wave probe 5 for reception and the surface acoustic wave probe 2 for transmission. As the surface wave probes 2 and 5 for transmission and reception, those having a band of 0.5 to 9 MHz were used.
Reference numeral 6 denotes a receiver for measuring the intensity and transmission time of the transmitted wave. The transmission time of the transmitted wave is not shown in the figure, but receives a synchronization signal synchronized with the transmission timing time from the transmitter, and based on the signal. I try to measure.

【0012】次に、本発明の表層傷の推定方法を実施す
る実施の形態1の装置を用いて実際に測定した結果につ
いて述べる。まず傷に割れ状の人工傷を用い、その深さ
を推定した。開口した割れ(以下、「開口傷」という)
の深さは0.1mm、0.3mm、0.5mmとし、非
開口の割れ(以下、「非開口傷」という)は深さ0.3
mmで位置は0.1mm、0.3mmとした。バースト
波の周波数は1MHz、3MHz、5MHzとした。
Next, the results of actual measurement using the apparatus according to the first embodiment for implementing the method for estimating surface damage according to the present invention will be described. First, a crack-shaped artificial wound was used, and the depth was estimated. Open cracks (hereinafter referred to as "open wounds")
Have a depth of 0.1 mm, 0.3 mm, and 0.5 mm, and a non-opening crack (hereinafter referred to as a “non-opening flaw”) has a depth of 0.3 mm.
The positions were 0.1 mm and 0.3 mm in mm. The frequency of the burst wave was 1 MHz, 3 MHz, and 5 MHz.

【0013】図2は各々の送信波に対応した透過波にお
ける被検体の健全部に対する傷部の減衰量を測定した結
果であり、開口傷では傷が浅い場合は高い周波数側のみ
大きく減衰し、傷が深くなるにつれて低い周波数まで減
衰するようになった。また、非開口傷では、深さ位置が
浅いほど高い周波数の減衰は小さく、深くなるほど低い
周波数の減衰も小さくなった。この結果から、例えば次
のように傷を推定することができる。まず、傷の種類に
ついては、しきい値を−5dBと定める。傷が開口して
いるか否かは、5MHzでの減衰量を調べる。しきい値
より減衰量が大きければ開口傷、小さければ非開口傷で
ある。
FIG. 2 shows the result of measurement of the attenuation of a flaw in the transmitted wave corresponding to each transmitted wave with respect to the healthy part of the subject. As the wound became deeper, it attenuated to lower frequencies. In the case of the non-opening flaw, the attenuation at a higher frequency was smaller as the depth position was smaller, and the attenuation at a lower frequency was smaller as the depth position was deeper. From this result, for example, a flaw can be estimated as follows. First, the threshold value is set to -5 dB for the type of flaw. The amount of attenuation at 5 MHz is checked to determine whether the flaw is open. If the amount of attenuation is larger than the threshold value, it is an opening flaw, and if it is smaller, it is a non-opening flaw.

【0014】開口傷の場合の深さは次のようになる。全
ての周波数での減衰量がしきい値を越えていれば0.5
mm以上、3MHzと5MHzでの減衰量がしきい値を
越えていれば0.3mm〜0.5mm、5MHzのみし
きい値を越えていれば0.1mm〜0.3mmである。
また、非開口傷の深さ位置は次のようになる。1MHz
と3MHzでの減衰量がしきい値を越えていれば0.1
mm以下、1MHzでの減衰量のみしきい値を越えてい
れば0.3mm〜0.1mmである。さらに、傷に凹み
の人工傷を用い、その深さを推定した。ここでは図6の
(a)に示すような形状の傷を用い、その深さは0.2
mm〜1mmとし、バースト波の周波数は5MHzとし
た。
The depth in the case of an opening flaw is as follows. 0.5 if the attenuation at all frequencies exceeds the threshold
If the attenuation amount at 3 MHz and 5 MHz exceeds the threshold value, the distance is 0.3 mm to 0.5 mm, and when the attenuation amount exceeds the threshold value only at 5 MHz, the distance is 0.1 mm to 0.3 mm.
The depth position of the non-opening flaw is as follows. 1MHz
And 0.1 if the attenuation at 3 MHz exceeds the threshold.
mm or less and 0.3 mm to 0.1 mm if only the attenuation at 1 MHz exceeds the threshold value. Furthermore, the depth of the wound was estimated by using a dent artificial wound. Here, a scratch having a shape as shown in FIG.
mm to 1 mm, and the frequency of the burst wave was 5 MHz.

【0015】更に、その後実験を繰り返した結果、開口
傷の深さと透過波の減衰量について、概略、図3のグラ
フに示すような関係があることを見い出した。また、非
開口傷の深さと透過波の減衰量については、図4のグラ
フに示すような関係があることを見い出した。図3及び
図4のグラフにおいて、縦軸に透過波減衰量の比をと
り、横軸に深さ/波長をとっている。なお、透過波減衰
量の比とは健全面に対する透過波の減衰量の比をいう。
Further, as a result of repeating the experiment thereafter, it was found that the relationship between the depth of the opening flaw and the amount of attenuation of the transmitted wave was approximately as shown in the graph of FIG. In addition, it has been found that the relationship between the depth of the non-opening flaw and the attenuation of the transmitted wave is as shown in the graph of FIG. In the graphs of FIGS. 3 and 4, the vertical axis represents the ratio of the attenuation of the transmitted wave, and the horizontal axis represents the depth / wavelength. The ratio of the transmitted wave attenuation refers to the ratio of the transmitted wave attenuation to the sound surface.

【0016】開口傷については、図3のグラフを見ると
分かるように、深さ/波長が0.5までは比較的直線的
に透過波が減衰し、あるところからサチュレーションす
ること分かる。そこで、この直線領域においては、開口
傷の深さと各周波数に対応したそれぞれの透過波の減衰
量との間で相関関係が成立し、特定の周波数に対応した
透過波の減衰量が分かれば開口傷の深さを推定すること
ができる。即ち、開口傷の場合の直線領域の式は、周波
数fの時の透過波減衰量をα(f)とすると、 深さ/波長=0.6(1−α(f)) となり、波長=表面波音速/音速周波数であるから、表
面波音速を3000m/s とすると、深さhは次式で表され
る。h=1.8(1−α(f))/f 但し、透過波減
衰量の比は0.5<α(f)<1の範囲で推定すること
ができる。
As can be seen from the graph of FIG. 3, the transmitted wave attenuates the transmitted wave relatively linearly up to a depth / wavelength of 0.5 and saturates from a certain point. Therefore, in this linear region, a correlation is established between the depth of the opening flaw and the attenuation of each transmitted wave corresponding to each frequency, and if the attenuation of the transmitted wave corresponding to a specific frequency is known, the aperture is determined. The depth of the wound can be estimated. That is, the equation of the linear region in the case of an opening flaw is as follows: When the transmitted wave attenuation at the frequency f is α (f), depth / wavelength = 0.6 (1−α (f)), and wavelength = Since the sound velocity is the surface wave sound speed / the sound speed frequency, if the surface wave sound speed is 3000 m / s, the depth h is expressed by the following equation. h = 1.8 (1−α (f)) / f However, the ratio of the attenuation of the transmitted wave can be estimated in the range of 0.5 <α (f) <1.

【0017】また、非開口傷の深さ位置については、図
4のグラフを見ると分かるように、深さ/波長が0.3
までは比較的直線的に透過波の減衰が減少し、あるとこ
ろからサチュレーションすること分かる。そこで、この
直線領域においては、非開口傷の深さ位置と、各周波数
に対応したそれぞれの透過波の減衰量との間で相関関係
が成立し、特定の周波数に対応した透過波の減衰量が分
かれば非開口傷の深さ位置を推定することができる。即
ち、非開口傷の場合の直線領域の式は、周波数fの時の
透過波減衰量をα(f)とすると、非開口傷の深さ位置
dは次式で表される。d=1.8α(f))/f 但
し、透過波減衰量の比は0<α(f)<0.5の範囲で
推定することができる。
As can be seen from the graph of FIG. 4, the depth position of the non-opening flaw is 0.3 / depth / wavelength.
It can be seen that the attenuation of the transmitted wave decreases relatively linearly, and saturation occurs from a certain point. Therefore, in this linear region, a correlation is established between the depth position of the non-opening flaw and the attenuation of each transmitted wave corresponding to each frequency, and the attenuation of the transmitted wave corresponding to a specific frequency. , The depth position of the non-opening flaw can be estimated. That is, in the equation of the linear region in the case of the non-aperture flaw, the depth position d of the non-aperture flaw is expressed by the following equation, where the transmitted wave attenuation at the frequency f is α (f). d = 1.8α (f)) / f However, the ratio of the attenuation of the transmitted wave can be estimated in the range of 0 <α (f) <0.5.

【0018】そこで、上記式に基づき、3つの周波数か
ら開口傷と非開口傷の種別の判定と、これらの傷のある
程度の深さ範囲の推定について、図5のフローチャート
に基づいて説明する。スタートし(ステップS1)、透
過波の周波数が9MHzの場合、透過波減衰量の比の
0.5をしきい値として開口傷か非開口傷かを判定す
る。即ち、透過波減衰量の比が0.5以上であるときは
開口傷があると判定し、透過波減衰量の比が0.5未満
であるときは非開口傷と判定することができるが、透過
波の周波数が9MHzの場合は開口傷と非開口傷の深さ
についていはいずれも上記式に基づいて計算により求め
ることはできない(ステップS2)。
The determination of the types of open and non-open flaws from the three frequencies based on the above equation and the estimation of a certain depth range of these flaws will be described with reference to the flowchart of FIG. The process is started (step S1), and when the frequency of the transmitted wave is 9 MHz, it is determined whether or not the wound is an opening flaw or a non-opening flaw using the ratio of the attenuation of the transmitted wave of 0.5 as a threshold. That is, when the ratio of the transmitted wave attenuation is 0.5 or more, it is determined that there is an opening flaw, and when the ratio of the transmitted wave attenuation is less than 0.5, it can be determined that there is no opening flaw. When the frequency of the transmitted wave is 9 MHz, the depths of the open flaw and the non-aperture flaw cannot be obtained by calculation based on the above equation (step S2).

【0019】次に、透過波の周波数が9MHzで透過波
減衰量の比が0.5未満のときで、透過波の周波数が3
MHzで透過波減衰量の比が0.5以上の場合は開口傷
の深さhについて上記式に基づいて計算により求めるこ
とができ(ステップS3、4)、透過波の周波数が3M
Hzで透過波減衰量の比が0.5未満の場合は開口傷の
深さhについて上記式に基づいて計算により求めること
ができない。更に、透過波の周波数が3MHzで透過波
減衰量の比が0.5未満のときで、透過波の周波数が1
MHzで透過波減衰量の比が0.5以上の場合は開口傷
の深さhについて上記式に基づいて計算により求めるこ
とができ(ステップS5、6)、透過波の周波数が1M
Hzで透過波減衰量の比が0.5未満の場合は開口傷の
深さhは0.9以上と推定する(ステップS7)。
Next, when the frequency of the transmitted wave is 9 MHz and the ratio of the attenuation of the transmitted wave is less than 0.5, and the frequency of the transmitted wave is 3
When the ratio of the attenuation of the transmitted wave in MHz is 0.5 or more, the depth h of the opening flaw can be obtained by calculation based on the above equation (steps S3 and S4), and the frequency of the transmitted wave is 3M.
If the ratio of the attenuation of the transmitted wave at Hz is less than 0.5, the depth h of the opening flaw cannot be obtained by calculation based on the above equation. Further, when the frequency of the transmitted wave is 3 MHz and the ratio of the attenuation of the transmitted wave is less than 0.5, the frequency of the transmitted wave is 1
If the ratio of the attenuation of the transmitted wave in MHz is 0.5 or more, the depth h of the opening flaw can be obtained by calculation based on the above equation (steps S5 and S6), and the frequency of the transmitted wave is 1M.
If the ratio of the transmitted wave attenuation at Hz is less than 0.5, the depth h of the opening flaw is estimated to be 0.9 or more (step S7).

【0020】他方、透過波の周波数が9MHzで透過波
減衰量の比が0.5以上のときで、透過波の周波数が3
MHzで透過波減衰量の比が0.5未満の場合は非開口
傷の深さhについて上記式に基づいて計算により求める
ことができ(ステップS8、9)、透過波の周波数が3
MHzで透過波減衰量の比が0.5以上の場合は非開口
傷の深さ位置dについて上記式に基づいて計算により求
めることができない。次に、透過波の周波数が3MHz
で透過波減衰量の比が0.5以上のときで、透過波の周
波数が1MHzで透過波減衰量の比が0.5未満の場合
は非開口傷の深さ位置dについて上記式に基づいて計算
により求めることができ(ステップS10、11)、透
過波の周波数が1MHzで透過波減衰量の比が0.5以
上の場合は非開口傷はなく、健全部であると推定する
(ステップS12)。このように、3つの周波数から開
口傷と非開口傷の種別の判定と、これらの傷のある程度
の深さ範囲の推定について、上記式に基づいて計算によ
り求めることができるから、被検体の表層部の開口及び
非開口傷の種別の判定と、これらの傷の深さを容易に高
精度に推定することができる。
On the other hand, when the frequency of the transmitted wave is 9 MHz and the ratio of the attenuation of the transmitted wave is 0.5 or more, the frequency of the transmitted wave is 3
If the ratio of the attenuation of the transmitted wave in MHz is less than 0.5, the depth h of the non-opening flaw can be obtained by calculation based on the above equation (steps S8 and S9), and the frequency of the transmitted wave is 3
When the ratio of the attenuation of the transmitted wave in MHz is 0.5 or more, the depth position d of the non-opening flaw cannot be obtained by calculation based on the above equation. Next, the frequency of the transmitted wave is 3 MHz.
When the ratio of the transmitted wave attenuation is 0.5 or more, and the frequency of the transmitted wave is 1 MHz and the ratio of the transmitted wave attenuation is less than 0.5, the depth position d of the non-opening flaw is calculated based on the above equation. If the transmitted wave frequency is 1 MHz and the ratio of the transmitted wave attenuation is 0.5 or more, there is no non-opening flaw and it is estimated that the part is sound (steps S10 and S11). S12). As described above, the determination of the types of the open wound and the non-open wound and the estimation of the depth range of these wounds to some extent from the three frequencies can be obtained by calculation based on the above formula. It is possible to easily determine the types of the opening and non-opening flaws of the part and to estimate the depths of these flaws with high accuracy.

【0021】次に、被検体の表層部の凹みの傷の深さの
推定法について説明する。図6の(a)は被検体の表層
部の凹みの傷の状態を示し、図6の(b)に示すグラフ
は縦軸に透過波の遅延時間をとり、横軸に凹みの傷の深
さをとっている。図7は被検体の健全部と凹みの傷とに
対する透過波の遅延時間の違いを示す波形図である。図
7の波形図は、まず被検体の健全部での透過波を測定
し、送信した時間からの経過時間t1を求めておく、次
に凹みの傷を測定したときの透過波の送信からの経過時
間t2を求め、両者から遅延時間はt2−t1で求めて
いる。また、凹みの傷の深さの推定は、予め図6の
(b)に示すグラフに示すように、被検体の表層部の凹
みの傷に対する所定の周波数の透過波の遅延時間を測定
し、凹み状の傷の深さと遅延時間との関係を表したもの
である。
Next, a method for estimating the depth of a dent wound in the surface layer of a subject will be described. FIG. 6 (a) shows the state of a dent in the surface layer of the subject, and the graph shown in FIG. 6 (b) shows the delay time of the transmitted wave on the vertical axis and the depth of the dent in the horizontal axis. I'm taking it. FIG. 7 is a waveform diagram showing a difference in delay time of a transmitted wave with respect to a healthy part and a dent wound of a subject. The waveform diagram of FIG. 7 shows that the transmitted wave in the healthy part of the subject is measured first, and the elapsed time t1 from the transmission time is obtained, and then the transmitted wave when the dent is measured is measured. The elapsed time t2 is obtained, and the delay time is obtained from the two by t2-t1. Further, the depth of the dent flaw is estimated by measuring the delay time of a transmitted wave of a predetermined frequency with respect to the dent flaw on the surface layer of the subject, as shown in a graph of FIG. It shows the relationship between the depth of a dent-shaped flaw and the delay time.

【0022】このグラフを見ると、凹みの傷が深くなる
ほど透過波の遅延時間が長くなっており、両者の間には
直線的な相関関係があることが分かり、両者の相関関係
を次の式で表すことができ、その式を計算することによ
り、遅延時間から凹みの傷の深さを求めることができ
る。 D=k・t ここで、Dは凹みの傷の深さ、kは係数であり、実験的
に求めたもので、ここでは0.25である。tは遅延時
間である。
From this graph, it can be seen that the deeper the dent is, the longer the delay time of the transmitted wave is, and that there is a linear correlation between the two. The depth of the dent flaw can be obtained from the delay time by calculating the equation. D = k · t Here, D is the depth of the dent, and k is a coefficient, which is experimentally obtained, and is 0.25 in this case. t is a delay time.

【0023】このように凹みの傷が深くなるほど透過波
の遅延時間が長くなるのは、表面波は割れでは反射しや
すく、凹みの傷ではそのまま透過しやすい性質から、割
れでは透過波が減衰するので上記に述べた関係から推定
できるのに対し、凹みの傷では透過波がほとんど減衰し
ないため上記に述べた関係が適用できない。しかし、健
全部に比較して凹みの傷の表面に沿って伝搬する分、透
過波が遅れるため、透過波の遅延時間を基に凹みの傷の
深さを推定することができる。なお透過波を用いている
ので、傷の方向に関りなく以上の深さ推定を行なうこと
ができる。
As described above, the longer the depth of the dent, the longer the delay time of the transmitted wave is. The surface wave is easily reflected by the crack, and easily transmitted by the dent, and the transmitted wave is attenuated by the crack. Therefore, while the above-mentioned relation can be estimated, the above-mentioned relation cannot be applied to the dent flaw because the transmitted wave is hardly attenuated. However, the transmitted wave is delayed by an amount corresponding to the propagation along the surface of the dent flaw as compared with the sound part, so that the depth of the dent flaw can be estimated based on the delay time of the transmitted wave. Since the transmitted wave is used, the above depth estimation can be performed regardless of the direction of the flaw.

【0024】なお、以上の実施の形態では、トーンバー
スト波の周波数を切換えるようにしたが、例えば3つの
トーンバースト波を加算した送信信号を用い、受信では
それらの周波数に対応したバンドパスフィルタで3つの
信号に分離するようにしても良く、また受信ではバンド
パスフィルタを使わずデジタル的にFFTなどで周波数
解析を行っても良く、また透過波の解析に用いる周波数
は3つ以上でも良い。
In the above embodiment, the frequency of the tone burst wave is switched. However, for example, a transmission signal obtained by adding three tone burst waves is used, and a band pass filter corresponding to those frequencies is used for reception. The signal may be separated into three signals, the frequency may be digitally analyzed by FFT or the like without using a band-pass filter in reception, and three or more frequencies may be used for the analysis of the transmitted wave.

【0025】実施の形態2.次に、本発明の実施の形態
2について説明する。図8は本発明の表層傷の推定方法
を実施する実施の形態2の装置の構成を示すブロック
図、図9は同装置を用いて測定した開口傷及び非開口傷
に対する透過波の時間一周波数分布を示す図、図10は
同装置を用いて測定した凹みの傷に対する透過波の時間
−周波数分布を示す図、図11は同装置を用いて測定し
た凹みの傷に対する透過波の遅延時間の波形図である。
図8において、7は広帯域パルス波を発生させるパルス
波送信器であり、パルス波の幅は5ns、出力電圧は2
00Vである。2〜5は実施の形態1と同じである。8
は透過波を時間−周波数解析するための受信器であり、
透過波を増幅した後、サンプリング周波数50MHzで
A/D変換し、そのデータをFFT(高速フーリエ変
換)を用いて時間−周波数解析するようになっている。
Embodiment 2 Next, a second embodiment of the present invention will be described. FIG. 8 is a block diagram showing a configuration of an apparatus for carrying out the method for estimating a surface damage according to the second embodiment of the present invention. FIG. FIG. 10 is a diagram showing a distribution, FIG. 10 is a diagram showing a time-frequency distribution of a transmitted wave with respect to a dent scratch measured using the same device, and FIG. It is a waveform diagram.
In FIG. 8, reference numeral 7 denotes a pulse wave transmitter for generating a broadband pulse wave, the width of the pulse wave is 5 ns, and the output voltage is 2
00V. 2 to 5 are the same as in the first embodiment. 8
Is a receiver for time-frequency analysis of the transmitted wave,
After amplifying the transmitted wave, A / D conversion is performed at a sampling frequency of 50 MHz, and the data is subjected to time-frequency analysis using FFT (Fast Fourier Transform).

【0026】その時間−周波数解析の方法は、信号の解
析したい時間範囲に窓関数をかけてその範囲のみ取り出
してFFTし、その時間範囲をわずかずつずらしていく
方法としたが、ウェーブレット処理など他の時間−周波
数解析方法でもよい。ここでは窓関数にはハミング窓を
用い、窓の幅は0.4μsとした。窓幅内のデータ点数
は20点であるが、そのデータに0データを足して10
24点にしてFFTを行った。次に、実際に測定した結
果について述べる。まず、実施の形態1と同様に、割れ
状の人工傷を用い、その深さを推定した。開口傷の深さ
は0.1mm、0.3mm、0.5mmとし、非開口傷
の深さは0.3mmで、位置は0.1mm、0.3mm
である。
In the time-frequency analysis method, a window function is applied to a time range in which a signal is to be analyzed, only the range is extracted and FFT is performed, and the time range is shifted slightly. Time-frequency analysis method. Here, a Hamming window was used as the window function, and the width of the window was 0.4 μs. The number of data points within the window width is 20, but 0 data is added to the data to obtain 10 points.
FFT was performed with 24 points. Next, the results of actual measurement will be described. First, as in the first embodiment, a crack-shaped artificial wound was used, and its depth was estimated. The depth of the open wound is 0.1 mm, 0.3 mm, 0.5 mm, and the depth of the non-open wound is 0.3 mm, and the position is 0.1 mm, 0.3 mm.
It is.

【0027】図9は解析した透過波の時間−周波数分布
であり、スペクトラムの強さに応じて等高線表示されて
いる。傷の深さに応じて時間−周波数分布が変化した。
ここで、周波数1MHz、3MHz、5MHzの時のス
ペクトラムの最大値を求めると、その関係は先の図2と
同様になった。よって、その結果から傷の深さや深さ位
置を推定することができる。また、その後実験を繰り返
した結果、透過波の時間−周波数分布についても、開口
傷及び非開口傷の深さと透過波の減衰量の関係は、実施
の形態1における図3及び図4のグラフに示すのと同様
な関係があることを見い出した。
FIG. 9 shows a time-frequency distribution of the analyzed transmitted wave, which is indicated by contour lines according to the intensity of the spectrum. The time-frequency distribution changed according to the depth of the wound.
Here, when the maximum value of the spectrum at the frequency of 1 MHz, 3 MHz, and 5 MHz was obtained, the relationship was similar to that of FIG. Therefore, the depth and depth position of the flaw can be estimated from the result. Further, as a result of repeating the experiment, the relationship between the depth of the opening flaw and the non-aperture flaw and the attenuation of the transmitted wave is also shown in the graphs of FIG. 3 and FIG. We found that there was a similar relationship as shown.

【0028】これは、実施の形態1では、複数のトーン
バースト波の周波数を切換えるようにしていたが、この
実施の形態1では、発信側で1つのパルス波を用い、受
信側でデジタル的にFFTなどで周波数解析を行い、透
過波の解析に用いる周波数を3つ選んだだけの違いしか
実質的にはないからである。従って、受信側で透過波の
解析に用いる選んだ3つの周波数の透過波の減衰量が求
められれば、実施の形態1と同様の式により、計算で3
つの周波数から開口傷と非開口傷の種別の判定とある程
度の深さ範囲の推定について求めることができることに
なる。
In the first embodiment, the frequency of a plurality of tone burst waves is switched. In the first embodiment, one pulse wave is used on the transmitting side and digitally on the receiving side. This is because frequency analysis is performed by FFT or the like, and only a difference of three frequencies used for analysis of the transmitted wave is substantially obtained. Therefore, if the attenuation of the transmission wave of the selected three frequencies used for the analysis of the transmission wave on the receiving side is obtained, 3 is calculated by the same formula as in the first embodiment.
From the two frequencies, it is possible to determine the types of the opening flaw and the non-opening flaw and estimate a certain depth range.

【0029】また、被検体の表層部の凹みの傷の深さの
推定法についても、図10に示すように解析した透過波
の時間−周波数分布をみると、傷が深くなるほど高い周
波数は遅延するようになった。そこで、周波数5MHz
の時にスペクトラムの値が最大となる時間を求め、健全
部の時の時間に対する遅延時間を求めた結果、遅延時間
と深さの関係は実施の形態1の図6と同様になった。従
って、この結果から、遅延時間が求められれば、実施の
形態1と同様の式を計算することにより、凹みの傷の深
さを推定することができる。なお、図11の波形図は、
実施の形態1の図7と同様に遅延時間を示すものであ
る。
As for the method of estimating the depth of a dent in the dent of the surface layer of the subject, the time-frequency distribution of the transmitted wave analyzed as shown in FIG. It was way. Therefore, frequency 5MHz
At the time, the time at which the value of the spectrum becomes the maximum is obtained, and the delay time with respect to the time of the sound part is obtained. As a result, the relationship between the delay time and the depth is the same as that of FIG. Therefore, if the delay time is obtained from this result, the depth of the dent flaw can be estimated by calculating the same equation as in the first embodiment. Note that the waveform diagram of FIG.
8 shows a delay time as in FIG. 7 of the first embodiment.

【0030】なお、以上の実施例では、時間−周波数解
析にデジタル的な処理を用いたが、受信した信号を例え
ば3つのバンドパスフィルタで分けるようにして時間−
周波数分布を求めてもよく、また解析に用いる周波数は
3つ以上でもよい。
In the above embodiment, digital processing is used for time-frequency analysis. However, time-frequency analysis is performed by dividing a received signal by, for example, three band-pass filters.
A frequency distribution may be obtained, and three or more frequencies may be used for analysis.

【0031】[0031]

【発明の効果】以上説明したように、本発明の請求項1
の表層傷の推定法によれば、所定の周波数の送信波を用
い、送信波に対応した周波数の透過波の減衰量を所定の
しきい値と比較し、該減衰量が所定のしきい値を越える
ときは開口傷と推定し、該減衰量が所定のしきい値を越
えないときは非開口傷と推定するようにしたものであ
り、送信波に対応した透過波の減衰量を求めてしきい値
と比較することにより、被検体の表層部の傷の種類を容
易に高精度に判定できるという効果を有する。
As described above, according to the first aspect of the present invention,
According to the method for estimating a surface flaw, a transmission wave having a predetermined frequency is used, the attenuation of a transmitted wave having a frequency corresponding to the transmission wave is compared with a predetermined threshold, and the attenuation is determined by a predetermined threshold. When the attenuation exceeds a predetermined threshold value, the aperture is estimated to be non-aperture, and the attenuation of the transmitted wave corresponding to the transmission wave is calculated. By comparing with the threshold value, there is an effect that the type of the scratch on the surface layer of the subject can be easily and accurately determined.

【0032】また、本発明の請求項2の表層傷の推定法
によれば、異なる周波数を含む送信波を用い、前記送信
波の各周波数に対応したそれぞれの透過波が、開口傷が
浅い場合は高い周波数側のみが大きく減衰し、開口傷が
浅くなるにつれて低い周波数まで減衰するという性質か
ら求められた開口傷の深さと各周波数に対応したそれぞ
れの透過波の減衰量との間で相関関係を示す式に基づ
き、前記送信波の各周波数に対応したそれぞれの透過波
の減衰量から計算して開口傷の深さを推定するようにし
たものであり、送信波の各周波数に対応したそれぞれの
透過波の減衰量を求めて所定の式を計算することによ
り、被検体の表層部の開口傷の深さを容易に高精度に推
定できるという効果を有する。
According to the method for estimating a surface flaw according to a second aspect of the present invention, when transmission waves having different frequencies are used and each transmitted wave corresponding to each frequency of the transmission wave has a shallow aperture flaw, Is the correlation between the depth of the opening flaw, which is determined from the property that only the high frequency side attenuates greatly, and the attenuation decreases to the lower frequency as the opening flaw becomes shallower, and the attenuation of each transmitted wave corresponding to each frequency. Based on the equation, the depth of the opening flaw is estimated by calculating from the attenuation of each transmitted wave corresponding to each frequency of the transmission wave, and each corresponding to each frequency of the transmission wave By calculating the predetermined equation by calculating the attenuation of the transmitted wave, it is possible to easily and accurately estimate the depth of the opening flaw in the surface layer of the subject.

【0033】さらに、本発明の請求項3の表層傷の推定
法によれば、異なる周波数を含む送信波を用い、前記送
信波の各周波数に対応したそれぞれの透過波が、深さ位
置が浅いほど高い周波数の減衰は小さく、深くなるほど
低い周波数の減衰も小さくなるという性質から求められ
た非開口傷の深さと各周波数に対応したそれぞれの透過
波の減衰量との間で相関関係を示す式に基づき、前記送
信波の各周波数に対応したそれぞれの透過波の減衰量か
ら計算して非開口傷の深さを推定するようにしたもので
あり、送信波の各周波数に対応したそれぞれの透過波の
減衰量を求めて所定の式を計算することにより、被検体
の表層部の非開口傷の深さを容易に高精度に推定すでき
るという効果を有する。
Further, according to the method for estimating a surface flaw according to claim 3 of the present invention, transmission waves having different frequencies are used, and each transmitted wave corresponding to each frequency of the transmission waves has a shallow depth position. The equation that shows the correlation between the depth of non-aperture flaws and the attenuation of each transmitted wave corresponding to each frequency, determined from the property that the attenuation of higher frequencies decreases as the frequency increases and the attenuation of lower frequencies decreases as the depth increases. Based on the above, the depth of the non-aperture flaw is estimated by calculating from the attenuation of each transmission wave corresponding to each frequency of the transmission wave, and the transmission corresponding to each frequency of the transmission wave is calculated. By calculating a predetermined equation by calculating the amount of wave attenuation, the depth of the non-opening flaw in the surface layer of the subject can be easily and accurately estimated.

【0034】さらにまた、本発明の請求項4の表層傷の
推定法は、所定の周波数の送信波を用い、前記送信波に
対応した周波数の透過波の遅延時間が凹みの深さが深く
なるほど長くなるという性質から求められた凹みの深さ
と該透過波の周波数の遅延時間との間で相関関係を示す
式に基づき、前記送信波に対応した透過波の周波数の遅
延時間から計算して凹みの深さを推定するようにしたも
のであり、送信波の所定の周波数に対応した遅延時間を
求めれて所定の式を計算することにより、被検体の表層
部の凹みの深さを容易に高精度に推定できるという効果
を有する。
Further, in the method for estimating a surface damage according to a fourth aspect of the present invention, a transmission wave having a predetermined frequency is used, and a delay time of a transmitted wave having a frequency corresponding to the transmission wave increases as the depth of the dent increases. Based on the equation showing the correlation between the depth of the dent determined from the property of becoming longer and the delay time of the frequency of the transmitted wave, the dent is calculated from the delay time of the frequency of the transmitted wave corresponding to the transmission wave. The depth of the dent of the surface layer of the subject can be easily increased by calculating the delay time corresponding to the predetermined frequency of the transmission wave and calculating the predetermined formula. This has the effect that estimation can be performed with high accuracy.

【0035】このように、本発明は傷の方向に関りなく
表層傷の深さを自動的に精度良く推定できるので、被検
体の表層部の傷をオンラインで検出してその傷の深さを
容易に高精度に推定できるようになり、表面波を用いた
表層部探傷の信頼性向上と適用範囲拡大に極めて効果を
奏するものである。
As described above, according to the present invention, the depth of the surface layer can be automatically and accurately estimated regardless of the direction of the wound. Can be easily and accurately estimated, and this is extremely effective in improving the reliability of surface layer flaw detection using surface waves and expanding the applicable range.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の表層傷の推定方法を実施する実施の形
態1の装置の構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of an apparatus according to a first embodiment for implementing a method for estimating a surface damage according to the present invention.

【図2】同装置を用いて測定した開口傷及び非開口傷に
対する透過波の減衰量の測定結果を示す図である。
FIG. 2 is a diagram showing the results of measuring the amount of attenuation of a transmitted wave with respect to an opening flaw and a non-aperture flaw measured using the same apparatus.

【図3】同装置を用いて測定した開口傷に対する透過波
の減衰量の比と傷の深さ/波長との関係を示すグラフで
ある。
FIG. 3 is a graph showing the relationship between the ratio of the attenuation of a transmitted wave to an open wound measured using the same apparatus and the depth / wavelength of the wound.

【図4】同装置を用いて測定した非開口傷に対する透過
波の減衰量の比と傷の深さ/波長との関係を示すグラフ
である。
FIG. 4 is a graph showing the relationship between the ratio of attenuation of a transmitted wave to a non-open wound measured using the same apparatus and the depth / wavelength of the wound.

【図5】本発明の実施形態1の表層傷の推定方法を示す
フローチャートである。
FIG. 5 is a flowchart illustrating a method for estimating a surface damage according to the first embodiment of the present invention.

【図6】同装置を用いて測定した凹みの傷に対する透過
波の遅延時間の測定結果を示す図である。
FIG. 6 is a diagram showing a measurement result of a delay time of a transmitted wave with respect to a dent scratch measured using the same device.

【図7】同装置を用いて測定した凹みの傷に対する透過
波の遅延時間の波形図である。
FIG. 7 is a waveform diagram of a delay time of a transmitted wave with respect to a dent scar measured using the same device.

【図8】本発明の表層傷の推定方法を実施する実施の形
態2の装置の構成を示すブロック図である。
FIG. 8 is a block diagram showing a configuration of an apparatus according to a second embodiment for implementing the method for estimating a surface wound according to the present invention.

【図9】同装置を用いて測定した開口傷及び非開口傷に
対する透過波の時間一周波数分布を示す図である。
FIG. 9 is a diagram showing a time-frequency distribution of a transmitted wave with respect to an opening flaw and a non-opening flaw measured using the same apparatus.

【図10】同装置を用いて測定した凹みの傷に対する透
過波の時間−周波数分布を示す図である。
FIG. 10 is a diagram showing a time-frequency distribution of a transmitted wave with respect to a dent wound measured using the same device.

【図11】同装置を用いて測定した凹みの傷に対する透
過波の遅延時間の波形図である。
FIG. 11 is a waveform diagram of a delay time of a transmitted wave with respect to a dent flaw measured using the same device.

【符号の説明】[Explanation of symbols]

1 バースト波送信器 2 送信用表面波探触子 3 被検体 4 傷 5 受信用表面波探触子 6 受信器 DESCRIPTION OF SYMBOLS 1 Burst wave transmitter 2 Transmission surface wave probe 3 Subject 4 Scratches 5 Reception surface wave probe 6 Receiver

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 表面波の透過波を用いて被検体の表層傷
を探傷し、表層傷の種類を推定する表層傷の推定法にお
いて、 所定の周波数の表面波となる送信波を用い、前記送信波
に対応した周波数の透過波の減衰量を所定のしきい値と
比較し、該減衰量が所定のしきい値を越えるときは開口
傷と推定し、該減衰量が所定のしきい値を越えないとき
は非開口傷と推定することを特徴とする表層傷の推定
法。
In a method for estimating a surface flaw of a subject using a transmitted wave of a surface wave and estimating a type of the surface flaw, a transmission wave serving as a surface wave having a predetermined frequency is used. The attenuation of the transmitted wave of the frequency corresponding to the transmission wave is compared with a predetermined threshold, and when the attenuation exceeds a predetermined threshold, it is estimated that the aperture is flawed. A method for estimating a superficial wound, which is characterized by estimating a non-opening wound when the value does not exceed the limit.
【請求項2】 表面波の透過波を用いて被検体の表層傷
を探傷し、開口の表層傷の深さを推定する表層傷の推定
法において、 異なる周波数を含む送信波を用い、前記送信波の各周波
数に対応したそれぞれの透過波が、開口傷が浅い場合は
高い周波数側のみが大きく減衰し、開口傷が浅くなるに
つれて低い周波数まで減衰するという性質から求められ
た開口傷の深さと各周波数に対応したそれぞれの透過波
の減衰量との間で相関関係を示す式に基づき、前記送信
波の各周波数に対応したそれぞれの透過波の減衰量から
計算して開口傷の深さを推定することを特徴とする表層
傷の推定法。
2. A method for estimating a surface flaw of a subject using a transmitted wave of a surface wave and estimating a depth of the surface flaw of an opening, wherein the transmission using a transmission wave having a different frequency is performed. Each transmitted wave corresponding to each frequency of the wave, when the opening flaw is shallow, only the high frequency side is greatly attenuated, and as the opening flaw becomes shallow, it attenuates to a lower frequency and the depth of the opening flaw is calculated from the property Based on the equation showing the correlation between the attenuation of each transmitted wave corresponding to each frequency, based on the attenuation of each transmitted wave corresponding to each frequency of the transmission wave, calculate the depth of the opening flaw A method for estimating a superficial wound characterized by estimating.
【請求項3】 表面波の透過波を用いて被検体の表層傷
を探傷し、非開口の表層傷の深さを推定する表層傷の推
定法において、 異なる周波数を含む送信波を用い、前記送信波の各周波
数に対応したそれぞれの透過波が、深さ位置が浅いほど
高い周波数の減衰は小さく、深くなるほど低い周波数の
減衰も小さくなるという性質から求められた非開口傷の
深さと、各周波数に対応したそれぞれの透過波の減衰量
との間で相関関係を示す式に基づき、前記送信波の各周
波数に対応したそれぞれの透過波の減衰量から計算して
非開口傷の深さを推定することを特徴とする表層傷の推
定法。
3. A method for estimating a surface flaw of a subject using a transmitted wave of a surface wave and estimating a depth of a non-apertured surface flaw, wherein a transmission wave including a different frequency is used. Each transmitted wave corresponding to each frequency of the transmission wave, the depth of the non-aperture flaw determined from the property that the attenuation of the high frequency is small as the depth position is shallow, and the attenuation of the low frequency is small as the depth position is deep, Based on the expression showing the correlation between the attenuation of each transmitted wave corresponding to the frequency, the depth of the non-aperture flaw is calculated from the attenuation of each transmitted wave corresponding to each frequency of the transmission wave. A method for estimating a superficial wound characterized by estimating.
【請求項4】 表面波の透過波を用いて被検体の表層傷
を探傷し、凹みの表層傷の深さを推定する表層傷の推定
法において、 所定の周波数の送信波を用い、前記送信波に対応した周
波数の透過波の遅延時間が凹みの深さが深くなるほど長
くなるという性質から求められた凹みの深さと所定の周
波数の送信波に対応した透過波の周波数の遅延時間との
間で相関関係を示す式に基づき、前記送信波に対応した
透過波の周波数の遅延時間から計算して凹みの深さを推
定することを特徴とする表層傷の推定法。
4. A surface flaw estimating method for detecting a surface flaw of a subject using a transmitted wave of a surface wave and estimating a depth of a concave surface flaw, wherein the transmission is performed using a transmission wave of a predetermined frequency. Between the depth of the dent determined from the property that the delay time of the transmitted wave at the frequency corresponding to the wave increases as the depth of the dent increases, and the delay time of the frequency of the transmitted wave corresponding to the transmission wave at the predetermined frequency And estimating the depth of the dent by calculating from the delay time of the frequency of the transmitted wave corresponding to the transmission wave, based on the equation indicating the correlation.
JP9014213A 1997-01-28 1997-01-28 Estimating method for surface layer damage Pending JPH10213573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9014213A JPH10213573A (en) 1997-01-28 1997-01-28 Estimating method for surface layer damage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9014213A JPH10213573A (en) 1997-01-28 1997-01-28 Estimating method for surface layer damage

Publications (1)

Publication Number Publication Date
JPH10213573A true JPH10213573A (en) 1998-08-11

Family

ID=11854827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9014213A Pending JPH10213573A (en) 1997-01-28 1997-01-28 Estimating method for surface layer damage

Country Status (1)

Country Link
JP (1) JPH10213573A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017300A (en) * 2005-07-07 2007-01-25 Toshiba Corp Surface inspection device and surface inspection method
JP2007017298A (en) * 2005-07-07 2007-01-25 Toshiba Corp Surface inspecting method and surface inspection device
JP2009244079A (en) * 2008-03-31 2009-10-22 Tokyo Electric Power Co Inc:The Ultrasonic flaw detector for turbine blade implanted part and flaw detection method using the same
JP2009276095A (en) * 2008-05-12 2009-11-26 Jfe Civil Engineering & Construction Corp Non-destructive flaw detecting method and non-destructive flaw detector
EP2148195A1 (en) 2005-07-07 2010-01-27 Kabushiki Kaisha Toshiba Laser-based apparatus for ultrasonic flaw detection
JP2010038908A (en) * 2008-07-10 2010-02-18 Shimizu Corp Apparatus and method for measuring depth of crack in concrete surface by ultrasonic wave
JP2014013187A (en) * 2012-07-04 2014-01-23 Mitsubishi Electric Corp Array flaw detection device and method
JP2021124373A (en) * 2020-02-05 2021-08-30 株式会社東芝 Laser ultrasonic measurement device and method for measuring laser ultrasonic

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2159575A2 (en) 2005-07-07 2010-03-03 Kabushiki Kaisha Toshiba Laser-based apparatus for ultrasonic flaw detection
EP2157426A1 (en) 2005-07-07 2010-02-24 Kabushiki Kaisha Toshiba Maintenance apparatus using laser generated ultrasound
US8248595B2 (en) 2005-07-07 2012-08-21 Kabushiki Kaisha Toshiba Laser-based maintenance apparatus for inspecting flaws based on a generated surface wave
JP4746365B2 (en) * 2005-07-07 2011-08-10 株式会社東芝 Surface inspection method
EP2148195A1 (en) 2005-07-07 2010-01-27 Kabushiki Kaisha Toshiba Laser-based apparatus for ultrasonic flaw detection
EP2148196A1 (en) 2005-07-07 2010-01-27 Kabushiki Kaisha Toshiba Laser-based apparatus for ultrasonic flaw detection
JP2007017298A (en) * 2005-07-07 2007-01-25 Toshiba Corp Surface inspecting method and surface inspection device
EP2278324A1 (en) 2005-07-07 2011-01-26 Kabushiki Kaisha Toshiba Ultrasonic laser-based maintenance apparatus
EP2148197A1 (en) 2005-07-07 2010-01-27 Kabushiki Kaisha Toshiba Ultrasonic laser-based maintenance apparatus
JP2007017300A (en) * 2005-07-07 2007-01-25 Toshiba Corp Surface inspection device and surface inspection method
JP2009244079A (en) * 2008-03-31 2009-10-22 Tokyo Electric Power Co Inc:The Ultrasonic flaw detector for turbine blade implanted part and flaw detection method using the same
JP2009276095A (en) * 2008-05-12 2009-11-26 Jfe Civil Engineering & Construction Corp Non-destructive flaw detecting method and non-destructive flaw detector
JP2010038908A (en) * 2008-07-10 2010-02-18 Shimizu Corp Apparatus and method for measuring depth of crack in concrete surface by ultrasonic wave
JP2014013187A (en) * 2012-07-04 2014-01-23 Mitsubishi Electric Corp Array flaw detection device and method
JP2021124373A (en) * 2020-02-05 2021-08-30 株式会社東芝 Laser ultrasonic measurement device and method for measuring laser ultrasonic

Similar Documents

Publication Publication Date Title
Clorennec et al. Nondestructive evaluation of cylindrical parts using laser ultrasonics
CN109196350B (en) Method for detecting defects in materials by ultrasound
US20080210010A1 (en) Method for Nondestructive Testing of Pipes for Surface Flaws
JP2000508774A (en) Characterizing objects with ultrasound
JP6144038B2 (en) Non-contact acoustic inspection apparatus and non-contact acoustic inspection method
JPH10213573A (en) Estimating method for surface layer damage
JP2011047763A (en) Ultrasonic diagnostic device
JP2000241397A (en) Method and apparatus for detecting surface defect
JP4534309B2 (en) Method for measuring thickness resonance spectrum of metal thin plate and method for measuring electromagnetic ultrasonic wave of metal thin plate
JPH04323553A (en) Method and device for ultrasonic resonance flaw detection
JP3036387B2 (en) Ultrasonic flaw detection method and device
RU2714868C1 (en) Method of detecting pitting corrosion
RU2301420C2 (en) Mode of definition of coefficient of longitudinal ultrasound vibrations&#39; fading in material
US11054399B2 (en) Inspection method
JPH07248317A (en) Ultrasonic flaw detecting method
RU2379675C2 (en) Method for detection of local corrosion depth and tracking of its development
JP3830650B2 (en) Ultrasonic bone measuring device
JP2669204B2 (en) Exploration equipment
Murakami et al. Nondestructive technique for estimating crack positions in a concrete structure by subtraction of the surface-wave component
JPH07325070A (en) Ultrasonic method for measuring depth of defect
JP3562159B2 (en) Multi-channel automatic ultrasonic flaw detection method and apparatus for metal plate
Liang et al. Maximum fraction cross-correlation spectrum for time of arrival estimation of ultrasonic echoes
JPH08201349A (en) Ultrasonic flaw detection method
JP2000249534A (en) Method and device for measuring coating thickness by ultrasonic wave
JP3388316B2 (en) Ultrasonic inspection method