JPH08201349A - Ultrasonic flaw detection method - Google Patents

Ultrasonic flaw detection method

Info

Publication number
JPH08201349A
JPH08201349A JP7007154A JP715495A JPH08201349A JP H08201349 A JPH08201349 A JP H08201349A JP 7007154 A JP7007154 A JP 7007154A JP 715495 A JP715495 A JP 715495A JP H08201349 A JPH08201349 A JP H08201349A
Authority
JP
Japan
Prior art keywords
signal
ultrasonic
pulse
amplitude
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7007154A
Other languages
Japanese (ja)
Inventor
Ryuichi Okuno
隆一 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP7007154A priority Critical patent/JPH08201349A/en
Publication of JPH08201349A publication Critical patent/JPH08201349A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE: To compensate the ultrasonic damping frequency characteristic of a specimen, reduce the side lobes near a main lobe and the side lobes at the periphery section, improve the S-N ratio of the received echo, and improve the defect measurement resolution in the ultrasonic flaw detection method using the pulse compression technique. CONSTITUTION: The ultrasonic wave by the chirp wave with the prescribed pulse width is transmitted from an FM signal transmission section 3 to a specimen 5 via a probe 4, and compression treatment is applied to the received signal by a pulse compression process section 6 with the reference signal from a reference wave set section 7 for the flaw detection of the specimen 5 in this ultrasonic flow detection method. The amplitude attenuation factor for each frequency component of the pulse-compressed signal against the amplitude of the transmitted pulse is obtained from the ultrasonic damping frequency characteristic of the specimen 5 in advance, and the amplitude for each frequency component of one or both of the transmitted pulse signal and the reference signal is set to supplement the obtained amplitude attenuation factor for each frequency component.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は超音波を用いて材料の
内外部を非破壊で検査したり、または材料の厚さを測定
する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for non-destructively inspecting the inside and outside of a material using ultrasonic waves or measuring the thickness of the material.

【0002】[0002]

【従来の技術】図10は従来の一般的な超音波探傷装置
の機能構成図である。図10において、21は各回路に
必要な同期信号を発生し出力する同期部、22は同期部
21からの出力信号をもとに送信電気信号を発生する送
信部、23は送信部22からの送信電気信号をもとに超
音波を発生し被検体24の内部に超音波を入射させると
共に、被検体内部からのエコーを受信し電気信号に変換
する探触子、25は探触子23からの電気信号を増幅さ
せる受信部、26は受信部25からの出力信号を表示す
る表示部である。
2. Description of the Related Art FIG. 10 is a functional block diagram of a conventional general ultrasonic flaw detector. In FIG. 10, reference numeral 21 is a synchronization unit that generates and outputs a synchronization signal required for each circuit, 22 is a transmission unit that generates a transmission electric signal based on the output signal from the synchronization unit 21, and 23 is a transmission unit 22. A probe 25 generates ultrasonic waves based on the transmitted electric signal to cause the ultrasonic waves to enter the inside of the subject 24, receives echoes from the inside of the subject, and converts them into electric signals. Is a receiving unit for amplifying the electric signal of, and 26 is a display unit for displaying the output signal from the receiving unit 25.

【0003】超音波を用いて材料の内外部の検査を行う
場合、一般には図10に示すような装置が使用されてい
る。上記のように構成された装置では、一般に送信信号
波形としてパルス波が用いられていて、パルス波は波形
が鋭く、パルスの時間軸方向の幅が短いため時間軸分解
能が優れている。しかし、粒子の粗い材料等を探傷する
場合には、材料の粒子の境界からの反射エコー(林状エ
コーと呼ぶ)が発生し、それがノイズとなり材料内部の
欠陥からの反射エコーに混入するため、受信信号の信号
対雑音比(SN比)が悪化し探傷が困難になる場合が生
じる。
When the inside and outside of a material is inspected using ultrasonic waves, an apparatus as shown in FIG. 10 is generally used. In the apparatus configured as described above, a pulse wave is generally used as the transmission signal waveform, and the pulse wave has a sharp waveform and the width of the pulse in the time axis direction is short, so that the time axis resolution is excellent. However, when detecting a material with coarse particles, a reflection echo (called a forest echo) from the boundary of the particles of the material is generated, which becomes noise and mixes with the reflection echo from the defect inside the material. In some cases, the signal-to-noise ratio (SN ratio) of the received signal deteriorates and it becomes difficult to detect flaws.

【0004】この林状エコーを低減する方法として、材
料内部に入射する超音波の周波数または波形を選択し、
受信信号のSN比が最適になるように調節する方法が知
られているが、送信信号にパルス波を用いる場合は、送
受信する超音波の周波数や波形は探触子の特性に依存す
る。即ち探触子が送受信の際に行う電気信号と音響信号
との間の相互変換における周波数対振幅特性(一般に振
幅スペクトルという)に依存する。
As a method for reducing this forest echo, the frequency or waveform of the ultrasonic waves entering the material is selected,
A method for adjusting the SN ratio of the received signal to be optimum is known, but when a pulse wave is used for the transmitted signal, the frequency and waveform of ultrasonic waves to be transmitted and received depend on the characteristics of the probe. That is, it depends on the frequency-amplitude characteristic (generally referred to as an amplitude spectrum) in the mutual conversion between the electric signal and the acoustic signal which the probe performs when transmitting and receiving.

【0005】図11は、パルス幅が無限小のパルス波形
(同図の(a))と、その振幅スペクトル(同図の
(b))を示す図であり、図12はパルス波励振による
探触子の受信波形(同図の(a))と、その振幅スペク
トル(同図の(b))を示す図である。電気信号として
の送信パルス波は、例えば図11の(a)におけるパル
ス波形のパルス幅が狭くなるほど広い周波数帯域の振幅
スペクトルになるように、種々の周波数成分(同図の
(b))をもつ波形であり、一方探触子の振幅スペクト
ルは、例えば図12の(b)に示すように、電気信号と
音響信号との相互変換における変換効率に相当する周波
数対振幅特性を有するので、パルス波により探触子を励
振して超音波を送受信する際の超音波の周波数及び波形
は、探触子の種類によりそれぞれ異なることになる。従
ってこのような場合には、超音波探傷を行う者が、勘と
経験から複数種類の探触子のうちから適合するものを選
択し、超音波の周波数としての波形を最適に制御して使
用しなければならない問題があった。
FIG. 11 is a diagram showing a pulse waveform with an infinitely small pulse width ((a) in the same figure) and its amplitude spectrum ((b) in the same figure), and FIG. 12 shows a search by pulse wave excitation. It is a figure which shows the received waveform ((a) of the same figure) of a tentacle, and its amplitude spectrum ((b) of the same figure). The transmission pulse wave as an electric signal has various frequency components ((b) in the same figure) so that the pulse width of the pulse waveform in (a) of FIG. 11 becomes an amplitude spectrum of a wider frequency band as the pulse width becomes narrower. On the other hand, the amplitude spectrum of the probe has a frequency-amplitude characteristic corresponding to the conversion efficiency in mutual conversion between an electric signal and an acoustic signal, as shown in (b) of FIG. Therefore, the frequency and the waveform of the ultrasonic wave when the probe is excited to transmit and receive the ultrasonic wave are different depending on the type of the probe. Therefore, in such a case, the person who performs the ultrasonic flaw detection selects a suitable one from a plurality of types of probes based on his intuition and experience, and optimally controls the waveform of the ultrasonic wave for use. There was a problem I had to do.

【0006】前記複数の探触子のうちから最適のものの
選択を要するという問題を解決するものとして、例えば
特公平3−43586号公報に示された超音波探傷装置
が提案されている。図13は上記文献に示された従来の
超音波探傷装置のブロック図である。図13において、
21〜26は図10に示したものと同様なものである。
27は周波数設定部28からの制御信号に従い、同期部
21からの出力信号に同期して発生する周波数を可変と
する周波数可変回路、28は周波数可変回路27への制
御信号を出力する周波数設定部、29は波数設定部30
からの制御信号に従い、周波数可変回路27の出力信号
の波数を可変とする波数可変回路、30は波数可変回路
29への制御信号を出力する波数設定部である。上記の
ような構成を有する装置では、被検材の探傷に最適な送
信周波数と送信波数を可変設定することにより、送信波
の振幅スペクトル、つまり送信波に含まれる周波数範囲
をコントロールできるため、探触子の選択交換が不要と
なる。
As a solution to the problem that the optimum probe needs to be selected from among the plurality of probes, for example, an ultrasonic flaw detector disclosed in Japanese Patent Publication No. 3-43586 has been proposed. FIG. 13 is a block diagram of the conventional ultrasonic flaw detector described in the above document. In FIG.
21 to 26 are the same as those shown in FIG.
Reference numeral 27 denotes a frequency variable circuit that varies the frequency generated in synchronization with the output signal from the synchronization unit 21 according to the control signal from the frequency setting unit 28, and 28 denotes a frequency setting unit that outputs the control signal to the frequency variable circuit 27. , 29 are wave number setting units 30
A wave number changing circuit for changing the wave number of the output signal of the frequency changing circuit 27 according to the control signal from, and a wave number setting unit 30 for outputting the control signal to the wave number changing circuit 29. In the device having the above configuration, the amplitude spectrum of the transmission wave, that is, the frequency range included in the transmission wave can be controlled by variably setting the transmission frequency and the transmission wave number that are optimal for flaw detection of the test material. There is no need to selectively replace the tentacles.

【0007】しかし図13の超音波探傷装置により励振
される送信波形は一般にバースト波と呼ばれているもの
で、複数の波を送信するため、その送信時間はパルス波
よりも長時間となる。図14は一般の超音波送信波形で
あるバースト波とパルス波との比較を示す図であり、同
図の(a)バースト波を使用した場合には、送信エネル
ギーが大きいので十分な受信信号が得られる反面、同図
の(b)パルス波よりも時間軸方向の幅が長くなるため
時間軸分解能が悪くなるという問題がある。
However, the transmission waveform excited by the ultrasonic flaw detector shown in FIG. 13 is generally called a burst wave. Since a plurality of waves are transmitted, the transmission time is longer than the pulse wave. FIG. 14 is a diagram showing a comparison between a burst wave, which is a general ultrasonic transmission waveform, and a pulse wave. In the case of using the burst wave of FIG. On the other hand, there is a problem in that the time-axis resolution becomes worse because the width in the time-axis direction becomes longer than that of the pulse wave shown in FIG.

【0008】送信パルス幅を広くしたまま時間軸分解能
を向上させる技術として、レーダーの分野で知られてい
るパルス圧縮という技術がある(Radar hand
book,Skolnik et.,McGraw−H
ill Inc.,1970参照)。図15は直線状周
波数変調パルス圧縮レーダの説明図であり、同図の
(a)は、時刻t1 からt2 までの送信時間T(送信パ
ルス幅に等しい)内で周波数をf1 からf2 まで直線状
に周波数変調(FM)を行うことを示し、(b)はこの
ように直線状に周波数変調された波(これをチャープ波
という)の波形を示している。パルス圧縮レーダの一例
としては、図15の(b)のような周波数変調波を送信
波として送信し、その受信波形と送信に用いた波形との
相互相関演算処理を行うことにより、受信波の時間軸方
向のパルス幅を圧縮し振幅の鋭い波形を得るのと共に、
受信信号のSN比を向上させている。図15の(c)は
相互相関演算処理後の信号波形を示している。
As a technique for improving the time-axis resolution while keeping the transmission pulse width wide, there is a technique called pulse compression known in the field of radar (Radar hand).
book, Skolnik et. , McGraw-H
ill Inc. , 1970). FIG. 15 is an explanatory diagram of the linear frequency modulation pulse compression radar. In FIG. 15A, the frequencies are changed from f 1 to f within the transmission time T (equal to the transmission pulse width) from time t 1 to t 2. indicates that the frequency modulation (FM) in a straight line up to 2, shows the waveform of the (b) thus linearly frequency modulated wave (called a chirp wave). As an example of the pulse compression radar, a frequency-modulated wave as shown in FIG. 15B is transmitted as a transmission wave, and a cross-correlation calculation process is performed between the reception waveform and the waveform used for transmission to obtain the reception wave of the reception wave. While compressing the pulse width in the time axis direction to obtain a waveform with sharp amplitude,
The SN ratio of the received signal is improved. FIG. 15C shows the signal waveform after the cross-correlation calculation process.

【0009】パルス圧縮技術を超音波の分野に適用した
文献としては、例えば特開昭63−233369号公報
に示された超音波診断用パルス圧縮装置がある。この装
置においては、超音波エコー信号をパルス圧縮するの
に、直交検波手段を介した複素数信号と基準波信号との
相互相関処理を行っている。一般に、2つの関数f
1 (t) とf2 (t) の相関演算を行った結果としての相関
関数s(τ)は次の(1)式のように定義される。
An example of a document to which the pulse compression technique is applied in the field of ultrasonic waves is an ultrasonic diagnostic pulse compression device disclosed in Japanese Patent Laid-Open No. 63-233369. In this device, in order to pulse-compress an ultrasonic echo signal, a cross-correlation process is performed between the complex number signal and the reference wave signal via the quadrature detection means. In general, the two functions f
The correlation function s (τ) as a result of performing the correlation calculation of 1 (t) and f 2 (t) is defined by the following equation (1).

【0010】[0010]

【数1】 [Equation 1]

【0011】前記(1)式はf1 (t) ,f2 (t) がそれ
ぞれ連続関数の場合の相関演算式であり、最近はアナロ
グ形式の受信信号をA/D変換器を介してデジタル形式
の離散化信号(サンプリングされた不連続の信号)とし
て処理する場合が多いので、この場合の相関演算式を次
の(2)式に示す。なお(2)式のNはサンプルの総数
である。
The above formula (1) is a correlation calculation formula when f 1 (t) and f 2 (t) are continuous functions, and recently, an analog received signal is digitally converted through an A / D converter. Since it is often processed as a discretized signal of the form (sampled discontinuous signal), the correlation calculation equation in this case is shown in the following equation (2). Note that N in the equation (2) is the total number of samples.

【0012】[0012]

【数2】 [Equation 2]

【0013】前記(2)式の演算は、一般に複数の遅延
器と乗算器とを有するFIR(有限インパルス応答)デ
ジタルフィルタにより実現できる。図16はFIRデジ
タルフィルタの構成例を示す図であり、+印は加算器、
×印は乗算器、Z-1は遅延器であり、各遅延器は入力信
号に対して送信の繰返し周期に相当する時間の遅延を行
い出力する。図17は図16の動作を説明するための波
形図である。
The operation of the equation (2) can be generally realized by an FIR (finite impulse response) digital filter having a plurality of delay units and multipliers. FIG. 16 is a diagram showing a configuration example of the FIR digital filter, in which the + sign indicates an adder,
The mark X indicates a multiplier, and Z -1 indicates a delay device. Each delay device delays the input signal by a time corresponding to the repetition cycle of transmission and outputs the delayed signal. FIG. 17 is a waveform diagram for explaining the operation of FIG.

【0014】図16のデジタルフィルタにおいては、デ
ジタル信号に離散化された受信波形x(τ)と相関演算
を行うための参照波形は、ある一定のサンプリング周波
数でサンプリングされ(離散化され)、この例では各離
散化データ値は、128個のc0 〜c127 として、それ
ぞれ×印の乗算器の一方に入力される。一方入力端から
各送信周期毎に入力される離散化受信データx(τ)
は、各乗算器の他方の入力に直接供給され、前記参照デ
ータc0 〜c127 とそれぞれ個別に乗算され、c127
の乗算結果を除く各乗算結果はそれぞれ127個の遅延
器と加算器とが交互に直列接続された該当加算器の入力
の一方に供給される。そして、c127 との乗算結果のみ
が前記交互に直列接続された先頭の遅延器に直接供給さ
れ、この遅延器の後段に直列接続される加算器の入力の
他方にはc12 6 との乗算結果が供給されている。そして
前記直列結合の最後の加算器の出力が相関演算出力とな
る。以上の演算結果を(3)式に示す。
In the digital filter of FIG. 16, the received waveform x (τ) discretized into a digital signal and the reference waveform for performing the correlation calculation are sampled (discretized) at a certain sampling frequency, In the example, each discretized data value is input to one of the multipliers indicated by x as 128 c 0 to c 127 . On the other hand, the discretized reception data x (τ) input from the input end in each transmission cycle
Is directly supplied to the other input of each multiplier and individually multiplied with the reference data c 0 to c 127. Each multiplication result except the multiplication result with c 127 is 127 delay units and adders. And are alternately supplied to one of the inputs of the corresponding adder connected in series. Then, only the result of multiplication with c 127 is directly supplied to the leading delay device which is alternately connected in series, and the other input of the adder which is connected in series after this delay device is multiplied with c 12 6. The results are provided. Then, the output of the last adder of the series combination becomes the correlation calculation output. The above calculation result is shown in Expression (3).

【0015】[0015]

【数3】 (Equation 3)

【0016】この(3)式は、(2)式と等価である。
また順次得られる出力データy(τ)は、図17のよう
に時間τ〜τ+127で区切られる受信波形と参照波形
との畳み込み演算、つまり2つの波形の類似度であるこ
とが分かる。
The equation (3) is equivalent to the equation (2).
Further, it can be seen that the output data y (τ) sequentially obtained is the convolution operation of the received waveform and the reference waveform, which are divided by the time τ to τ + 127 as shown in FIG. 17, that is, the similarity between the two waveforms.

【0017】図18,19は方形窓により切出したチャ
ープ波のパルス圧縮処理の説明図である。上記のような
従来のパルス圧縮技術を用いた超音波探傷方法では、例
えば図18の(a)に示すような、所定の送信時間幅
(この例では5μs)において、信号振幅が均一で、所
定の周波数遷移(この例では1〜9MHz)のみを行っ
た周波数変調(FM)信号を、送信波として使用すると
共に、受信波と相関演算を行うための参照波としても使
用しているが、この場合送信波と参照波の相互相関演算
によるパルス圧縮後の波形は、同図の(b)に示すよう
にメインローブの両側に多くのサイドローブが現れる。
そしてこのサイドローブは一種のノイズとなりSN比を
悪化させる。このサイドローブの発生原因は、図18の
(c)に示すように送信波形の振幅スペクトルを調べる
と、この振幅スペクトルの山状平坦部に多くのリプルが
存在することによるものである。
18 and 19 are explanatory views of pulse compression processing of a chirp wave cut out by a rectangular window. In the ultrasonic flaw detection method using the conventional pulse compression technique as described above, for example, as shown in (a) of FIG. 18, the signal amplitude is uniform and the predetermined amplitude is obtained in a predetermined transmission time width (5 μs in this example). The frequency-modulated (FM) signal that has undergone only the frequency transition (1 to 9 MHz in this example) is used as the transmission wave and also as the reference wave for performing the correlation calculation with the reception wave. In the case of the waveform after pulse compression by the cross-correlation calculation of the transmission wave and the reference wave, many side lobes appear on both sides of the main lobe, as shown in FIG.
Then, this side lobe becomes a kind of noise and deteriorates the SN ratio. The cause of the side lobes is that when the amplitude spectrum of the transmission waveform is examined as shown in (c) of FIG. 18, many ripples are present in the mountain-shaped flat portion of this amplitude spectrum.

【0018】しかしながら、送信波形は探触子にて超音
波に変換されて被検体内に送波され、被検体中から受波
される超音波エコー信号は再び探触子で電気信号に変換
するため、受信信号は探触子の周波数帯域による影響を
受けている。図19の(a)はこの受信信号の波形例を
示し、同図の(b)はこの受信信号の振幅スペクトル例
を示している。この探触子による影響は送信波形中のリ
プルの低減につながる(The optimum ba
ndwidth of chirp signals
in ultrasonic application
s,Ultrasonics,1993,VOL.31
No.6 参照)。そしてサイドローブの発生原因は
参照波形のスペクトラム中に含まれるリプルに起因する
ため、送信波形と参照波形との直接のパルス圧縮による
ものよりは、探触子を介して行なうパルス圧縮後のサイ
ドローブレベルは低減される。
However, the transmitted waveform is converted into ultrasonic waves by the probe and transmitted to the inside of the subject, and the ultrasonic echo signal received from the inside of the subject is again converted into an electric signal by the probe. Therefore, the received signal is affected by the frequency band of the probe. FIG. 19A shows an example of the waveform of this received signal, and FIG. 19B shows an example of the amplitude spectrum of this received signal. The effect of this probe leads to the reduction of ripples in the transmitted waveform (The optimum ba
ndwidth of chirp signals
in ultrasonic application
s, Ultrasonics, 1993, VOL. 31
No. 6). Since the cause of the side lobe is due to the ripple included in the spectrum of the reference waveform, the side lobe after pulse compression performed via the probe is rather than the direct pulse compression of the transmission waveform and the reference waveform. The level is reduced.

【0019】ここで送信波形に対する受信波形は、超音
波の送受信の過程により、以下に示す影響を受ける。 (1)探触子の周波数帯域 上記のように探触子を介して行なうパルス圧縮後のサイ
ドローブは低減される。 (2)被検体中の超音波減衰量の影響 被検体中を透過する超音波の減衰量は、超音波の波長が
結晶粒径に比べて大きい場合にはレイリー散乱が成り立
ち、下記の(4)式に示す理論式α(f)が成り立つ。 α(f)=s×D3 ×f4 +c×f …(4) ここで、Dは結晶粒径、fは超音波の周波数、sは散乱
係数、cは吸収係数である。(4)式における第1項は
結晶粒界による散乱減衰を、第2項は被検体中でのエネ
ルギー吸収を表している。
Here, the reception waveform with respect to the transmission waveform is affected as follows by the process of transmitting and receiving ultrasonic waves. (1) Frequency Band of Probe The side lobes after pulse compression performed via the probe as described above are reduced. (2) Effect of ultrasonic attenuation in the subject The attenuation of the ultrasonic wave transmitted through the subject is Rayleigh scattering when the wavelength of the ultrasonic wave is larger than the crystal grain size. The theoretical formula α (f) shown in the formula) holds. α (f) = s × D 3 × f 4 + c × f (4) Here, D is the crystal grain size, f is the frequency of ultrasonic waves, s is the scattering coefficient, and c is the absorption coefficient. The first term in the equation (4) represents the scattering attenuation by the crystal grain boundaries, and the second term represents the energy absorption in the object.

【0020】図20は超音波の散乱減衰の概略図であ
り、超音波の散乱減衰とは、図20に示すように、超音
波が結晶粒界で散乱されて減衰するものである。また超
音波の吸収は磁歪による損失が主である。ここで上記
(1)及び(2)により、受信波形は探触子の周波数特
性と被検体中における(4)式の如き周波数特性を有す
るフィルタ機能により影響を受けるる。
FIG. 20 is a schematic diagram of scattering attenuation of ultrasonic waves. The ultrasonic scattering attenuation means that ultrasonic waves are scattered and attenuated at grain boundaries as shown in FIG. The absorption of ultrasonic waves is mainly due to magnetostriction. Here, due to the above (1) and (2), the received waveform is affected by the frequency characteristic of the probe and the filter function having the frequency characteristic of the expression (4) in the subject.

【0021】図21,22は受信信号への外乱の影響を
説明する図である。いま図21のように、周波数をfと
し、ω=2πfをパラメータにもつ送信波形の関数H
(ω)は、探触子の送受信において、探触子の周波数帯
域を有する同一パラメータωによるフィルタ関数Z
(ω)を通過し、被検体の透過に際しては、被検体の減
衰特性を有する同一パラメータωによるフィルタ関数G
(ω)を通過して、受信波形J(ω)となる。従って受
信波形J(ω)は下記の(5)式のように3つの関数の
積で表すことができる。 J(ω)=H(ω)×Z(ω)×G(ω) …(5)
21 and 22 are diagrams for explaining the influence of disturbance on the received signal. Now, as shown in FIG. 21, the function H of the transmission waveform having the frequency f and the parameter ω = 2πf
(Ω) is a filter function Z with the same parameter ω having the frequency band of the probe in transmission and reception of the probe.
When passing through (ω) and passing through the subject, the filter function G with the same parameter ω having the attenuation characteristic of the subject
After passing through (ω), a reception waveform J (ω) is obtained. Therefore, the received waveform J (ω) can be expressed by the product of three functions as in the following expression (5). J (ω) = H (ω) × Z (ω) × G (ω) (5)

【0022】また受信信号J(ω)と参照信号S(ω)
のパルス圧縮処理は2つの信号の相関をとることと等価
であるから、相関関数P(ω)は周波数領域に関する限
り2つの関数の積で表すことができ、下記の(6)式の
様に表すことができる。 P(ω)=J(ω)×S(ω) …(6) ここで、理想的な相関関数R(ω)を考えると、下記の
(7)式の様に送信信号H(ω)と参照信号S(ω)と
の相関である。 R(ω)=H(ω)×S(ω) …(7) なお(5)式に示す影響因子Z(ω)及びG(ω)は、
パルス圧縮効果を減ずる方向に作用する。
Further, the received signal J (ω) and the reference signal S (ω)
Since the pulse compression processing of is equivalent to taking the correlation of two signals, the correlation function P (ω) can be expressed by the product of the two functions as far as the frequency domain is concerned, and is expressed by the following equation (6). Can be represented. P (ω) = J (ω) × S (ω) (6) Here, considering the ideal correlation function R (ω), the transmission signal H (ω) is expressed by the following equation (7). It is the correlation with the reference signal S (ω). R (ω) = H (ω) × S (ω) (7) The influencing factors Z (ω) and G (ω) shown in the equation (5) are
It acts to reduce the pulse compression effect.

【0023】即ち図22に示すように、探触子の伝達関
数Z(ω)により、超音波の送受信における送信波形の
周波数遷移幅B及びそれに見合うパルス幅Tは減少し、
また被検体内部を透過する段階では、前記の周波数遷移
幅B及びパルス幅Tは更に減少する。よって、パルス圧
縮後の相関関数P(ω)は理想的な関数R(ω)と比較
して、パルス圧縮比の低下、メインローブのパルス幅の
拡大という現象を来す。この結果、次のような解決すべ
き課題があった。
That is, as shown in FIG. 22, due to the transfer function Z (ω) of the probe, the frequency transition width B of the transmission waveform in ultrasonic wave transmission / reception and the pulse width T corresponding thereto decrease,
Further, at the stage of passing through the inside of the subject, the frequency transition width B and the pulse width T are further reduced. Therefore, the correlation function P (ω) after pulse compression has a phenomenon in which the pulse compression ratio is reduced and the pulse width of the main lobe is expanded, as compared with the ideal function R (ω). As a result, there were the following problems to be solved.

【0024】[0024]

【発明が解決しようとする課題】しかしながら、上記の
ような超音波によるパルス圧縮を用いた探傷方法では、
下記のような問題点があった。 (1)被検体の超音波減衰量G(ω)が大きな材料(例
えば、鋳鉄及びオーステナイト系ステンレス鋼等)の探
傷においては、パルス圧縮比の低下によるSN比の低
下、メインローブのパルス幅の拡大に伴う距離分解能の
低下により、探傷精度が低下する。 (2)前記(1)に示す被検体の厚さ測定において、S
N比及びパルス幅拡大により、測定精度が低下する。
However, in the flaw detection method using pulse compression by ultrasonic waves as described above,
There were the following problems. (1) In flaw detection of a material having a large ultrasonic attenuation G (ω) of a subject (for example, cast iron and austenitic stainless steel), the SN ratio decreases due to the decrease of the pulse compression ratio, and the pulse width of the main lobe decreases. The accuracy of flaw detection deteriorates due to the decrease in distance resolution due to the enlargement. (2) In the thickness measurement of the subject described in (1) above, S
The measurement accuracy decreases due to the N ratio and the pulse width expansion.

【0025】[0025]

【課題を解決するための手段】本発明の請求項1に係る
超音波探傷方法は、被検体に対して探触子を介して所定
パルス幅のチャープ波による超音波の送受信を行い、そ
の受信信号に対して参照信号を用いてパルス圧縮処理を
施した信号によって被検体の探傷を行う超音波探傷方法
において、あらかじめ被検体の超音波減衰周波数特性か
ら、送信パルスの振幅に対する前記パルス圧縮を施した
信号の各周波数成分毎の振幅減衰率を求め、前記求めた
各周波数成分毎の振幅減衰率を補うように前記送信パル
ス信号もしくは参照信号のいずれか一方の信号または両
方の信号の各周波数成分毎の振幅設定を行うものであ
る。
An ultrasonic flaw detection method according to a first aspect of the present invention transmits / receives an ultrasonic wave by a chirp wave having a predetermined pulse width to / from an object through a probe, and receives the ultrasonic wave. In an ultrasonic flaw detection method in which a signal is pulse-compressed using a reference signal for flaw detection of an object, the pulse compression for the amplitude of the transmission pulse is performed in advance from the ultrasonic attenuation frequency characteristic of the object. Amplitude attenuation rate for each frequency component of the signal was obtained, so as to supplement the amplitude attenuation rate for each obtained frequency component, either one of the transmission pulse signal or the reference signal or each frequency component of both signals The amplitude is set for each.

【0026】本発明の請求項2に係る超音波探傷方法
は、被検体に対して探触子を介して所定パルス幅のチャ
ープ波による超音波の送受信を行い、その受信信号に対
して参照信号を用いてパルス圧縮処理を施した信号によ
って被検体の探傷を行う超音波探傷方法において、あら
かじめ被検体の超音波減衰周波数特性から、送信パルス
の振幅に対する前記パルス圧縮を施した信号の各周波数
成分毎の振幅変化を、送信パルス信号の周波数遷移内の
減衰率の最小値に対する各周波数成分毎の減衰率増加係
数として求め、前記求めた各周波数成分毎の減衰率増加
係数と等しい値になるように前記送信パルス信号もしは
く参照信号のいずれか一方の信号または両方の信号の各
周波数成分毎の振幅増加係数を設定するものである。
In the ultrasonic flaw detection method according to the second aspect of the present invention, ultrasonic waves are transmitted / received to / from a subject through a probe by a chirp wave having a predetermined pulse width, and a reference signal is received with respect to the received signal. In an ultrasonic flaw detection method for flaw detection of a subject by a pulse-compressed signal using, from the ultrasonic attenuation frequency characteristics of the subject in advance, each frequency component of the signal subjected to the pulse compression for the amplitude of the transmission pulse The amplitude change for each frequency component is calculated as the attenuation rate increase coefficient for each frequency component with respect to the minimum value of the attenuation rate in the frequency transition of the transmission pulse signal, and the value is equal to the calculated attenuation rate increase coefficient for each frequency component. In addition, an amplitude increase coefficient is set for each frequency component of either one or both of the transmission pulse signal and the reference signal.

【0027】[0027]

【作用】前記の(5)式に関して、探触子の周波数の伝
達関数Z(ω)及び材料の超音波減衰関数G(ω)の影
響を受けた受信信号J(ω)と参照信号S(ω)との相
関処理によって得られる処理後の波形P(ω)は、超音
波の送受信前の送信信号H(ω)と参照信号S(ω)に
おける理想的な相関処理によって得られる処理後の波形
R(ω)に比較し、メインローブの圧縮比(SN比)及
びメインローブのパルス幅に関して劣る。そこで、探触
子の伝達関数Z(ω)及び材料の伝達関数G(ω)の影
響を除去するために、送信信号H(ω)に以下のような
処理を施すとよい。 (1)探触子の伝達関数Z(ω)による影響の除去 H1 (ω)=H(ω)/Z(ω) (2)材料の超音波減衰による影響の除去 H2 (ω)=H(ω)/G(ω)
With respect to the above equation (5), the reception signal J (ω) and the reference signal S (which are influenced by the transfer function Z (ω) of the frequency of the probe and the ultrasonic attenuation function G (ω) of the material. The processed waveform P (ω) obtained by the correlation processing with ω) is the waveform after the processing obtained by the ideal correlation processing of the transmission signal H (ω) before the transmission / reception of the ultrasonic wave and the reference signal S (ω). Compared to the waveform R (ω), the main lobe compression ratio (SN ratio) and the main lobe pulse width are inferior. Therefore, in order to remove the influences of the transfer function Z (ω) of the probe and the transfer function G (ω) of the material, the following processing may be performed on the transmission signal H (ω). (1) Removal of influence of probe transfer function Z (ω) H 1 (ω) = H (ω) / Z (ω) (2) Removal of influence of ultrasonic attenuation of material H 2 (ω) = H (ω) / G (ω)

【0028】上記(1),(2)に示すH1 (ω)とH
2 (ω)の積を新しい送信信号H3(ω)として用いる
ことにより相関処理を行うと(7)式の様になる。 J(ω)=[H(ω)/{Z(ω)×G(ω)}]×Z(ω)×G(ω) =H1 (ω)×H2 (ω)×Z(ω)×G(ω) P(ω)=J(ω)×S(ω) =H(ω)×S(ω) …(7) なお前記(1)の探触子の伝達関数Z(ω)の影響除去
法に関しては別出願とし、本願は前記(2)の材料の超
音波減衰による影響除去法に関するものとした。
H 1 (ω) and H shown in (1) and (2) above
When the correlation process is performed by using the product of 2 (ω) as the new transmission signal H 3 (ω), the equation (7) is obtained. J (ω) = [H (ω) / {Z (ω) × G (ω)}] × Z (ω) × G (ω) = H 1 (ω) × H 2 (ω) × Z (ω) × G (ω) P (ω) = J (ω) × S (ω) = H (ω) × S (ω) (7) Note that the transfer function Z (ω) of the probe in (1) above is The effect removal method is a separate application, and the present application relates to the effect removal method by ultrasonic attenuation of the material of the above (2).

【0029】図9は被検材の超音波減衰の補償方法の説
明図である。材料の超音波減衰の周波数特性は一般的
に、図9の(b)に示すように周波数が高くなるに従っ
て減衰量は増加するため、透過率は図9の(a)に示す
ように、右下がりの曲線となる。従って、従来のように
送信信号の各周波数における振幅を一定にすると、材料
透過後の受信信号の各周波数における振幅は、図9の
(c)に示すように高い周波数ほど減少してしまう。
FIG. 9 is an explanatory diagram of a method of compensating for ultrasonic attenuation of a test material. The frequency characteristic of ultrasonic attenuation of a material generally increases as the frequency increases as shown in FIG. 9 (b), so that the transmittance becomes right as shown in FIG. 9 (a). It becomes a downward curve. Therefore, if the amplitude at each frequency of the transmission signal is made constant as in the prior art, the amplitude at each frequency of the reception signal after passing through the material decreases as the frequency becomes higher as shown in FIG. 9C.

【0030】そこで、材料の超音波減衰量による影響を
除去するためには、図9の(d)に示すように、送信信
号の各周波数における振幅を、周波数が高くなるほど振
幅を大きくする、即ち右上がりの曲線とするのがよい。
また、材料の超音波減衰量は、検査する材料により異な
るため、検査前に送信信号の周波数遷移範囲における被
検体の伝達関数G(ω)を求め、この伝達関数による伝
達処理後の各周波数における変化状態を補うように送信
信号H(ω)もしくは参照信号のいずれか一方または両
方の信号の振幅重み付けとすることが必要である。以上
のような送信信号もしくは参照信号のいずれか一方また
は両方の信号の振幅重み付けをする事により、被検体の
超音波減衰の影響を除去することができる。
Therefore, in order to eliminate the influence of the ultrasonic attenuation of the material, as shown in (d) of FIG. 9, the amplitude at each frequency of the transmission signal is increased as the frequency becomes higher, that is, It is good to have a curve that rises to the right.
Also, since the ultrasonic attenuation amount of the material differs depending on the material to be inspected, the transfer function G (ω) of the subject in the frequency transition range of the transmission signal is obtained before the inspection, and at each frequency after the transfer processing by this transfer function. It is necessary to perform amplitude weighting on either or both of the transmission signal H (ω) and the reference signal so as to compensate for the changed state. By weighting the amplitude of one or both of the transmission signal and the reference signal as described above, the influence of the ultrasonic attenuation of the subject can be removed.

【0031】[0031]

【実施例】図1は本発明に係る超音波探傷装置の一例を
示す機能構成図である。図1において、1は各回路に必
要な同期信号を発生し出力する同期部、2は所定波形の
周波数変調信号(この例ではチャープ信号波)を設定す
るFM信号設定部、3はFM信号設定部2で設定された
FM信号に基づき送信するFM信号を発生し探触子4へ
供給するFM信号送信部、4はFM信号送信部3からの
送信信号をもとに超音波を発生し被検体5の内部に超音
波を入射させると共に、被検体内部らかのエコーを電気
信号に変換する探触子、5は探傷を行う被検体、6はパ
ルス圧縮部、7は参照波設定部、8は表示部である。
1 is a functional block diagram showing an example of an ultrasonic flaw detector according to the present invention. In FIG. 1, reference numeral 1 is a synchronizing section for generating and outputting a necessary synchronizing signal for each circuit, 2 is an FM signal setting section for setting a frequency modulation signal (chirp signal wave in this example) of a predetermined waveform, and 3 is an FM signal setting. The FM signal transmitting unit 4 that generates an FM signal to be transmitted based on the FM signal set in the unit 2 and supplies the FM signal to the probe 4 generates ultrasonic waves based on the transmission signal from the FM signal transmitting unit 3 and generates an ultrasonic wave. A probe that applies an ultrasonic wave to the inside of the sample 5 and converts an echo from inside the sample into an electric signal, 5 is a sample for flaw detection, 6 is a pulse compression unit, 7 is a reference wave setting unit, 8 is a display unit.

【0032】図1の装置においては、同期部1から所定
の繰返し同期毎に出力される同期信号に基づき、所定周
期毎にFM信号設定部2で設定されたFM信号がFM信
号送信部3から送信される。探触子4は送信されてきた
FM信号をもとに超音波を発生し被検体5に超音波を入
射させると共に、被検体内外部に存在する音響インピー
ダンスの不均一部からの超音波反射エコーを捉えて電気
信号に変換して出力する。探触子4からの受信信号は、
同期部1からの出力信号に基づき、パルス圧縮部6にお
いて参照波設定部7で設定された参照波との相関演算に
よりパルス圧縮がなされ、その結果が表示部8に表示さ
れる。
In the apparatus shown in FIG. 1, the FM signal set by the FM signal setting unit 2 is output from the FM signal transmitting unit 3 in every predetermined cycle based on the synchronization signal output from the synchronizing unit 1 every predetermined repeated synchronization. Sent. The probe 4 generates an ultrasonic wave based on the transmitted FM signal and makes the ultrasonic wave incident on the subject 5, and at the same time, an ultrasonic wave reflection echo from a non-uniform portion of acoustic impedance existing inside and outside the subject. Is captured, converted into an electrical signal, and output. The received signal from the probe 4 is
Based on the output signal from the synchronization unit 1, pulse compression is performed in the pulse compression unit 6 by correlation calculation with the reference wave set in the reference wave setting unit 7, and the result is displayed on the display unit 8.

【0033】図2は図1の装置の具体的なハードウェア
構成の一例を示す図である。図2において、11はパー
ソナルコンピュータであり、図1の同期部1、FM信号
設定部2、FM信号送信部3及び参照波設定部7の各機
能動作をすべて行うものである。12はD/A変換器、
13は送信用のアンプ、14は探触子、15は受信用の
アンプ、16はA/D変換器、17はFIRフィルタで
あり、図1のパルス圧縮部6の具体的なハードウェアで
ある。FIRフィルタ17としては、例えば図16の構
成によるものでよい。18はオッシロスコープ、19は
被検体である。
FIG. 2 is a diagram showing an example of a concrete hardware configuration of the apparatus shown in FIG. In FIG. 2, reference numeral 11 denotes a personal computer, which performs all functional operations of the synchronization unit 1, the FM signal setting unit 2, the FM signal transmitting unit 3, and the reference wave setting unit 7 of FIG. 12 is a D / A converter,
Reference numeral 13 is a transmission amplifier, 14 is a probe, 15 is a reception amplifier, 16 is an A / D converter, 17 is an FIR filter, and is concrete hardware of the pulse compression unit 6 in FIG. . The FIR filter 17 may have the structure shown in FIG. 16, for example. Reference numeral 18 is an oscilloscope, and 19 is a subject.

【0034】図2においては、パーソナルコンピュータ
11で作成されたFM波形は、D/A変換器12により
アナログ信号に変換され、送信用アンプ13によ所要の
送信電力にまで増幅され、探触子14から超音波として
被検体19内に送信される。探触子14に受信された信
号は受信用アンプ15で信号増幅され、A/D変換器6
で逐次デジタル信号に変換される。そして、この受信デ
ジタル信号は、FIRフィルタ17により、パーソナル
コンピュータ11が作成し出力する参照波と相関演算さ
れ、パルス圧縮処理が行われる。このパルス圧縮後の波
形がオッシロスコープ18に表示される。
In FIG. 2, the FM waveform created by the personal computer 11 is converted into an analog signal by the D / A converter 12, amplified by the transmission amplifier 13 to a required transmission power, and then the probe. 14 is transmitted as ultrasonic waves into the subject 19. The signal received by the probe 14 is amplified by the reception amplifier 15, and the A / D converter 6
Are sequentially converted into digital signals. Then, the received digital signal is subjected to correlation calculation with the reference wave created and output by the personal computer 11 by the FIR filter 17, and pulse compression processing is performed. The waveform after the pulse compression is displayed on the oscilloscope 18.

【0035】ここでパーソナルコンピュータ11を使用
した理由は、プログラムの変更により、送信波の波形及
び参照波の波形を任意の形状に設定することが可能であ
り、この送信波及び参照波の波形変更を行い、被検体の
超音波減衰による影響の除去を確認できるからである。
以下送信波及び参照波の波形を種々変更し、探傷を行っ
た場合の効果を比較してみる。
The reason why the personal computer 11 is used here is that the waveform of the transmission wave and the waveform of the reference wave can be set to an arbitrary shape by changing the program, and the waveforms of the transmission wave and the reference wave can be changed. This is because it is possible to confirm that the influence of the ultrasonic attenuation of the subject is removed.
Below, the waveforms of the transmitted wave and the reference wave are variously changed, and the effects of flaw detection are compared.

【0036】探傷例1.探傷例1は、被検体の材質をS
S400、厚さを25mmとして、これに直接接触して
探傷を行った例であり、図3,4がこの探傷例1におけ
る各種波形の説明図、図5がこの探傷データの説明図で
ある。この探傷例1において使用する探触子14の公称
周波数は5MHzの直接接触型である。ここで、この被
検体の超音波減衰量の周波数特性を求めてみると、図3
の(a)のような特性を得ることができた。なお超音波
減衰量の周波数特性を求めるに当たっては、本出願人が
先に出願した特開平5−333003号公報の被検体の
超音波減衰量測定方法及び装置に示す測定方法を用い
た。
Example of flaw detection 1. In flaw detection example 1, the material of the subject is S
S400 is an example in which the thickness is set to 25 mm and flaw detection is performed by directly contacting this, FIGS. 3 and 4 are explanatory diagrams of various waveforms in this flaw detection example 1, and FIG. 5 is an explanatory diagram of this flaw detection data. The probe 14 used in this flaw detection example 1 is a direct contact type with a nominal frequency of 5 MHz. Here, when the frequency characteristic of the ultrasonic attenuation amount of the subject is calculated, FIG.
It was possible to obtain the characteristics as shown in (a). In determining the frequency characteristic of the ultrasonic attenuation amount, the ultrasonic attenuation amount measuring method of the subject and the measuring method shown in the apparatus of Japanese Patent Application Laid-Open No. 5-333003 filed by the present applicant were used.

【0037】このような被検体の探傷を被検体の超音波
減衰量による影響を考慮せずに、図3の(b),(c)
に示す送信波形及び参照波形を用いると図3の(d)に
示すような底面反射エコーを得る。そこで本発明におい
ては、図3の(a)に示す超音波減衰量の影響を補償す
るように、図4の(a),(b)に示す送信波形及び参
照波形を用い、その結果図4の(c)に示すような底面
反射エコーを得た。
Such flaw detection of the subject is considered without considering the influence of the ultrasonic attenuation amount of the subject, as shown in (b) and (c) of FIG.
By using the transmission waveform and the reference waveform shown in FIG. 3, a bottom surface reflection echo as shown in FIG. Therefore, in the present invention, the transmission waveform and the reference waveform shown in FIGS. 4A and 4B are used so as to compensate the influence of the ultrasonic attenuation amount shown in FIG. A bottom reflection echo as shown in (c) of FIG.

【0038】ここで、前記の補償に対する効果を評価す
るために、図5の(a)に示すようにメインローブの振
幅とサイドローブの振幅の比AM /AS を図3の(d)
と図4の(c)とから測定し、その結果を図5の(b)
に示す。なお図の黒丸は補償前の値、白丸は補償後の値
を示しており、振幅比が6.25[dB]から6.74
[dB]に改善されていることが分かる。探傷時におけ
る効果としては、メインローブ対サイドローブの振幅比
の向上により、大きな欠陥(例:底面)の近傍に存在す
る小さな欠陥を検査する場合、サイドローブがノイズな
のか欠陥エコーであるのかの判断を要するので、少なく
ともサイドローブの低減は、ノイズと欠陥エコーとの分
別を容易にするといえる。また図5の(c)に示す様に
メインローブのパルス幅が若干狭化されているため欠陥
の測定距離分解能が向上されていることが分かる。
Here, in order to evaluate the effect on the compensation, the ratio A M / A S of the amplitude of the main lobe to the amplitude of the side lobe as shown in FIG. 5A is shown in FIG.
And (c) of FIG. 4 and the results are shown in (b) of FIG.
Shown in The black circles in the figure show the values before compensation and the white circles show the values after compensation, and the amplitude ratio is from 6.25 [dB] to 6.74.
It can be seen that it is improved to [dB]. The effect at the time of flaw detection is to improve the amplitude ratio of the main lobe to the side lobe, and when inspecting a small defect existing near a large defect (eg bottom surface), whether the side lobe is a noise or a defect echo. Since judgment is required, it can be said that at least reduction of side lobes facilitates discrimination between noise and defective echo. Further, as shown in FIG. 5C, the pulse width of the main lobe is slightly narrowed, so that it is understood that the measurement distance resolution of the defect is improved.

【0039】探傷例2.探傷例2は、被検体の材質をS
US304、厚さを25mmとして、これを水中にて探
傷した例であり、図6,7,8がこの探傷例2における
各種波形の説明図である。この探傷例2において使用す
る探触子は、公称周波数5MHzの水浸型である。ここ
で被検体の超音波減衰量は、前記探傷例1で用いた方法
と同じ方法を用いて周波数特性を求めてみると図6の
(a)に示すような結果となった。そして従来の送信波
形及び参照波形である図6の(b),(c)に示すよう
な振幅一定の波形を用いた場合には、図6の(d)に示
すように底面エコーの周辺部に細かなサイドローブが発
生し、これがノイズとなりSN比を悪化させ、欠陥と誤
認識してしまう恐れがある。
Example of flaw detection 2. In flaw detection example 2, the material of the subject is S
US304, the thickness is 25 mm, and this is an example of flaw detection in water, and FIGS. 6, 7 and 8 are explanatory diagrams of various waveforms in this flaw detection example 2. The probe used in this flaw detection example 2 is a water immersion type with a nominal frequency of 5 MHz. Here, when the frequency characteristic of the ultrasonic attenuation of the subject is determined by using the same method as that used in the flaw detection example 1, the result shown in FIG. 6A is obtained. When a waveform having a constant amplitude as shown in FIGS. 6B and 6C, which is a conventional transmission waveform and a reference waveform, is used, as shown in FIG. There is a possibility that fine side lobes will be generated, which will become noise, which will deteriorate the SN ratio and will be erroneously recognized as a defect.

【0040】これを解決する1つの方法として、本出願
人が先に出願した特開平5−273335号公報で示し
た図7の(a),(b)のような滑らかな丘状の送信波
形及び参照波形を用いると、底面反射エコーの波形は図
7の(c)に示すように、周辺部のサイドローブを低減
することができる。しかしながら図7の(c)において
は、メインローブの両側のサイドローブは図6の(d)
の場合よりも増加しているので、近接した欠陥の認識が
困難になってしまうという問題点がある。
As one method for solving this, a smooth hill-like transmission waveform as shown in FIGS. 7 (a) and 7 (b) of FIG. 7 shown in Japanese Patent Application Laid-Open No. 5-273335 previously filed by the present applicant. By using the and reference waveforms, the waveform of the bottom surface reflection echo can reduce the side lobes in the peripheral portion as shown in FIG. 7 (c). However, in FIG. 7C, the side lobes on both sides of the main lobe are shown in FIG. 6D.
Since the number is larger than that in the case of (1), there is a problem that it becomes difficult to recognize the adjacent defects.

【0041】そこで本発明においては、図6の(a)に
示す超音波減衰量の補償を送信波形に対して行い、図8
の(a),(b)に示すような送信波形及び参照波形を
用いることにより、図8の(c)に示すような底面反射
エコーを得た。図8の(c)において、前記実施例1に
示すようなメインローブの振幅とサイドローブの振幅の
比(AM /AS )は12.0dBであるが図7(c)に
おいては9.5dBであり、3.5dBのサイドローブ
低減が達成されていることが分かる。その結果受信エコ
ーのSN比の向上と欠陥の測定分解能の向上の両方を実
現することができる。
Therefore, in the present invention, the ultrasonic wave attenuation amount shown in FIG.
By using the transmission waveform and the reference waveform as shown in (a) and (b), the bottom surface reflection echo as shown in (c) of FIG. 8 was obtained. In FIG. 8C, the ratio (A M / A S ) of the main lobe amplitude to the side lobe amplitude as in the first embodiment is 12.0 dB, but in FIG. It is 5 dB, and it can be seen that the side lobe reduction of 3.5 dB is achieved. As a result, it is possible to improve both the SN ratio of the received echo and the measurement resolution of the defect.

【0042】なお上記実施例においては、あらかじめ被
検体の超音波減衰周波数特性から、送信パルスの振幅に
対するパルス圧縮処理後の信号の各周波数成分毎の振幅
減衰量を求め、この求めた各周波数成分毎の振幅減衰量
を補うように送信パルス信号の各周波数成分毎の振幅調
整を行う場合の例を説明したが、本発明はこれに限定さ
れるものではない。例えば送信パルス信号の代りにパル
ス圧縮処理に用いる参照信号によって各周波数成分毎の
振幅補正を行っても、さらに送信パルス信号と参照信号
の両方に分けて各周波数成分毎の振幅調整を行うように
してもよい。即ち送信パルス信号もしくは参照信号のい
ずれか一方の信号または両方の信号の各周波数成分毎の
振幅調整を行うようにすればよい。
In the above embodiment, the amount of amplitude attenuation for each frequency component of the signal after pulse compression processing with respect to the amplitude of the transmission pulse is obtained in advance from the ultrasonic attenuation frequency characteristic of the subject, and the obtained frequency components are obtained. An example in which the amplitude adjustment is performed for each frequency component of the transmission pulse signal so as to compensate the amplitude attenuation amount for each has been described, but the present invention is not limited to this. For example, even if the amplitude correction for each frequency component is performed by the reference signal used for pulse compression processing instead of the transmission pulse signal, the amplitude adjustment is performed for each frequency component separately for both the transmission pulse signal and the reference signal. May be. That is, amplitude adjustment may be performed for each frequency component of either one of the transmission pulse signal or the reference signal or both signals.

【0043】また被検体の超音波減衰周波数特性から、
送信パルスの振幅に対するパルス圧縮処理後の信号の各
周波数成分毎の振幅減衰量を求める代りに、パルス圧縮
処理後の信号の各周波数成分毎の振幅減衰率を求め、こ
の求めた各周波数成分毎の振幅減衰率を補うように送信
パルス信号もしはく参照信号のいずれか一方の信号また
は両方の信号の各周波数成分毎の振幅調整を行ってもよ
い。
From the ultrasonic attenuation frequency characteristics of the subject,
Instead of calculating the amplitude attenuation amount for each frequency component of the signal after pulse compression processing with respect to the amplitude of the transmission pulse, calculate the amplitude attenuation rate for each frequency component of the signal after pulse compression processing, and for each frequency component thus calculated Amplitude adjustment may be performed for each frequency component of either one or both of the transmission pulse signal and the reference signal so as to compensate the amplitude attenuation rate.

【0044】また、被検体の超音波減衰周波数特性か
ら、送信パルスの振幅に対するパルス圧縮処理後の信号
の各周波数成分毎の振幅変化を、送信パルス信号の周波
数遷移内の減衰率の最小値に対する各周波数成分毎の減
衰率増加係数として求め、この求めた各周波数成分毎の
減衰率増加係数と等しい値になるように前記送信パルス
信号もしは参照信号のいずか一方の信号または両方の信
号の各周波数成分毎の振幅増加係数を調整するようにし
てもよい。
Further, from the ultrasonic attenuation frequency characteristic of the subject, the amplitude change for each frequency component of the signal after pulse compression processing with respect to the amplitude of the transmission pulse is compared with the minimum value of the attenuation rate in the frequency transition of the transmission pulse signal. Obtained as an attenuation rate increase coefficient for each frequency component, the transmission pulse signal if one or both signals of the reference signal so as to be a value equal to the obtained attenuation rate increase coefficient for each frequency component The amplitude increase coefficient for each frequency component may be adjusted.

【0045】[0045]

【発明の効果】以上のように本発明によれば、被検体に
対して探触子を介して所定パルス幅のチャープ波による
超音波の送受信を行い、その受信信号に対して参照信号
を用いてパルス圧縮処理を施した信号によって被検体の
探傷を行う超音波探傷方法において、あらかじめ被検体
の超音波減衰周波数特性から、送信パルスの振幅に対す
る前記パルス圧縮を施した信号の各周波数成分毎の振幅
減衰率を求め、前記求めた各周波数成分毎の振幅減衰率
を補うように前記送信パルス信号もしくは参照信号のい
ずれか一方の信号または両方の信号の各周波数成分毎の
振幅設定を行うようにしたので、メインローブ両側のサ
イドローブ及び周辺部のサイドローブを低減することが
できる。これは、超音波の被検体透過時の減衰による送
信信号に対する受信信号のスペクトラム狭化を補うこと
ができるからであり、鋳鉄やオーステナイト系ステンレ
ス鋼のように超音波の減衰を考慮しなければならない被
検体の検査におけるSN比向上及び分解能の向上に効果
がある。また被検材の超音波減衰が材料の深さ方向の位
置によって異なる場合でも、あらかじめ深さ方向の位置
毎の減衰周波数特性を求めておくことにより、任意の位
置からの反射波エコーに対するパルス圧縮処理の最適化
が可能となる。
As described above, according to the present invention, ultrasonic waves are transmitted and received by a chirp wave having a predetermined pulse width to and from a subject through a probe, and a reference signal is used for the received signal. In an ultrasonic flaw detection method for flaw detection of a subject with a signal subjected to pulse compression processing, from the ultrasonic attenuation frequency characteristic of the subject in advance, for each frequency component of the signal subjected to the pulse compression with respect to the amplitude of the transmission pulse Obtain the amplitude attenuation rate, and set the amplitude for each frequency component of either the transmission pulse signal or the reference signal or both signals so as to supplement the obtained amplitude attenuation rate for each frequency component. Therefore, it is possible to reduce the side lobes on both sides of the main lobe and the side lobes of the peripheral portion. This is because it is possible to compensate for the narrowing of the spectrum of the received signal with respect to the transmitted signal due to the attenuation of the ultrasonic wave when passing through the subject, and the attenuation of the ultrasonic wave must be taken into consideration like cast iron and austenitic stainless steel. This is effective in improving the SN ratio and the resolution in the inspection of the subject. Even if the ultrasonic attenuation of the material to be inspected differs depending on the position in the depth direction of the material, by obtaining the attenuation frequency characteristics for each position in the depth direction in advance, pulse compression for the reflected wave echo from any position is performed. It is possible to optimize the processing.

【0046】また本発明によれば、あらかじめ被検体の
超音波減衰周波数特性から、送信パルスの振幅に対する
前記パルス圧縮を施した信号の各周波数成分毎の振幅変
化を、送信パルス信号の周波数遷移内の減衰率の最小値
に対する各周波数成分毎の減衰率増加係数として求め、
前記求めた各周波数成分毎の減衰率増加係数と等しい値
になるように前記送信パルス信号もしくは参照信号のい
ずれか一方の信号または両方の信号の各周波数数成分毎
の振幅増加係数を設定するようにしたので、被検体の材
質、厚さ、形状等の変更に対応させて送信パルス信号や
参照信号の各周波数成分毎の振幅調整を行う場合に、パ
ーソナルコンピュータ等が前記各周波数成分毎の振幅増
加係数を用いて送信パルス信号や参照信号の振幅設定を
自動的に行うことができ省力化が計られる。
According to the present invention, the amplitude change for each frequency component of the pulse-compressed signal with respect to the amplitude of the transmission pulse is calculated from the ultrasonic attenuation frequency characteristic of the subject in advance within the frequency transition of the transmission pulse signal. As the attenuation rate increase coefficient for each frequency component with respect to the minimum value of the attenuation rate of
To set the amplitude increase coefficient for each frequency component of either one of the transmission pulse signal or the reference signal or both signals so that the value becomes equal to the obtained attenuation rate increase coefficient for each frequency component. Therefore, when performing amplitude adjustment for each frequency component of the transmission pulse signal or reference signal in response to changes in the material, thickness, shape, etc. of the subject, the personal computer, etc. The amplitude of the transmission pulse signal and the reference signal can be automatically set by using the increase coefficient, which saves labor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る超音波探傷装置の一例を示す機能
構成図である。
FIG. 1 is a functional configuration diagram showing an example of an ultrasonic flaw detector according to the present invention.

【図2】図1の装置の具体的なハードウェア構成の一例
を示す図である。
FIG. 2 is a diagram showing an example of a specific hardware configuration of the apparatus of FIG.

【図3】本発明の探傷例1における各種波形の説明図で
ある。
FIG. 3 is an explanatory view of various waveforms in flaw detection example 1 of the present invention.

【図4】本発明の探傷例1における各種波形の説明図で
ある。
FIG. 4 is an explanatory diagram of various waveforms in flaw detection example 1 of the present invention.

【図5】本発明の探傷例1における探傷データの説明図
である。
FIG. 5 is an explanatory diagram of flaw detection data in flaw detection example 1 of the present invention.

【図6】本発明の探傷例2における各種波形の説明図で
ある。
FIG. 6 is an explanatory diagram of various waveforms in flaw detection example 2 of the present invention.

【図7】本発明の探傷例2における各種波形の説明図で
ある。
FIG. 7 is an explanatory diagram of various waveforms in flaw detection example 2 of the present invention.

【図8】本発明の探傷例2における各種波形の説明図で
ある。
FIG. 8 is an explanatory diagram of various waveforms in flaw detection example 2 of the present invention.

【図9】被検材の超音波減衰の補償方法の説明図であ
る。
FIG. 9 is an explanatory diagram of a method of compensating for ultrasonic attenuation of a test material.

【図10】従来の一般的な超音波探傷装置の機能構成図
である。
FIG. 10 is a functional configuration diagram of a conventional general ultrasonic flaw detector.

【図11】パルス波の波形とその振幅スペクトルを示す
図である。
FIG. 11 is a diagram showing a waveform of a pulse wave and its amplitude spectrum.

【図12】パルス波励振による探触子の受信波形とその
振幅スペクトルを示す図である。
FIG. 12 is a diagram showing a received waveform of the probe by pulse wave excitation and its amplitude spectrum.

【図13】従来の文献に示された超音波探傷装置のブロ
ック図である。
FIG. 13 is a block diagram of an ultrasonic flaw detector described in a conventional document.

【図14】超音波送信波形であるバースト波とパルス波
との比較を示す図である。
FIG. 14 is a diagram showing a comparison between a burst wave and a pulse wave, which are ultrasonic transmission waveforms.

【図15】直線状周波数変調パルス圧縮レーダの説明図
である。
FIG. 15 is an explanatory diagram of a linear frequency modulation pulse compression radar.

【図16】FIRデジタルフィルタの構成例を示す図で
ある。
FIG. 16 is a diagram showing a configuration example of an FIR digital filter.

【図17】図16の動作を説明するための波形図であ
る。
FIG. 17 is a waveform chart for explaining the operation of FIG.

【図18】方形窓により切出したチャープ波のパルス圧
縮処理の説明図である。
FIG. 18 is an explanatory diagram of pulse compression processing of a chirp wave cut out by a rectangular window.

【図19】方形窓により切出したチャープ波のパルス圧
縮処理の説明図である。
FIG. 19 is an explanatory diagram of pulse compression processing of a chirp wave cut out by a rectangular window.

【図20】超音波の散乱減衰の概略図である。FIG. 20 is a schematic diagram of scattering attenuation of ultrasonic waves.

【図21】受信信号への外乱の影響を説明する図であ
る。
FIG. 21 is a diagram for explaining the influence of disturbance on a received signal.

【図22】受信信号への外乱の影響を説明する図であ
る。
FIG. 22 is a diagram illustrating the influence of disturbance on a received signal.

【符号の説明】[Explanation of symbols]

1 同期部 2 FM信号設定部 3 FM信号送信部 4,14 探触子 5,19 被検体 6 パルス圧縮部 7 参照波設定部 8 表示部 11 パーソナルコンピュータ 12 D/A変換器 13 送信用アンプ 15 受信用アンプ 16 A/D変換器 17 FIRフィルタ 18 オッシロスコープ DESCRIPTION OF SYMBOLS 1 synchronization part 2 FM signal setting part 3 FM signal transmission part 4,14 probe 5,19 subject 6 pulse compression part 7 reference wave setting part 8 display part 11 personal computer 12 D / A converter 13 transmission amplifier 15 Receiver amplifier 16 A / D converter 17 FIR filter 18 Oscilloscope

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被検体に対して探触子を介して所定パル
ス幅のチャープ波による超音波の送受信を行い、その受
信信号に対して参照信号を用いてパルス圧縮処理を施し
た信号によって被検体の探傷を行う超音波探傷方法にお
いて、 あらかじめ被検体の超音波減衰周波数特性から、送信パ
ルスの振幅に対する前記パルス圧縮を施した信号の各周
波数成分毎の振幅減衰率を求め、 前記求めた各周波数成分毎の振幅減衰率を補うように前
記送信パルス信号もしくは参照信号のいずれか一方の信
号または両方の信号の各周波数成分毎の振幅設定を行う
ことを特徴とする超音波探傷方法。
1. An ultrasonic wave is transmitted and received by a chirp wave having a predetermined pulse width to and from a subject through a probe, and a received signal is subjected to pulse compression processing using a reference signal to obtain a target signal. In an ultrasonic flaw detection method for flaw detection of a specimen, from the ultrasonic attenuation frequency characteristics of the subject in advance, the amplitude attenuation rate for each frequency component of the pulse-compressed signal with respect to the amplitude of the transmission pulse is calculated, An ultrasonic flaw detection method characterized by performing amplitude setting for each frequency component of either one or both of the transmission pulse signal and the reference signal so as to supplement the amplitude attenuation rate for each frequency component.
【請求項2】 被検体に対して探触子を介して所定パル
ス幅のチャープ波による超音波の送受信を行い、その受
信信号に対して参照信号を用いてパルス圧縮処理を施し
た信号によって被検体の探傷を行う超音波探傷方法にお
いて、 あらかじめ被検体の超音波減衰周波数特性から、送信パ
ルスの振幅に対する前記パルス圧縮を施した信号の各周
波数成分毎の振幅変化を、送信パルス信号の周波数遷移
内の減衰率の最小値に対する各周波数成分毎の減衰率増
加係数として求め、 前記求めた各周波数成分毎の減衰率増加係数と等しい値
になるように前記送信パルス信号もしくは参照信号のい
ずれか一方の信号または両方の信号の各周波数成分毎の
振幅増加係数を設定することを特徴とする超音波探傷方
法。
2. An ultrasonic wave with a chirp wave having a predetermined pulse width is transmitted and received to and from a subject through a probe, and a received signal is subjected to pulse compression processing using a reference signal to be detected. In the ultrasonic flaw detection method for performing flaw detection on a specimen, the amplitude change for each frequency component of the pulse-compressed signal with respect to the amplitude of the transmission pulse is calculated in advance from the ultrasonic attenuation frequency characteristic of the subject, and the frequency transition of the transmission pulse signal is calculated. As the attenuation rate increase coefficient for each frequency component with respect to the minimum value of the attenuation rate in, the one of the transmission pulse signal or the reference signal so that the value equal to the attenuation rate increase coefficient for each frequency component obtained The ultrasonic flaw detection method, wherein an amplitude increase coefficient is set for each frequency component of the signal or both signals.
JP7007154A 1995-01-20 1995-01-20 Ultrasonic flaw detection method Pending JPH08201349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7007154A JPH08201349A (en) 1995-01-20 1995-01-20 Ultrasonic flaw detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7007154A JPH08201349A (en) 1995-01-20 1995-01-20 Ultrasonic flaw detection method

Publications (1)

Publication Number Publication Date
JPH08201349A true JPH08201349A (en) 1996-08-09

Family

ID=11658159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7007154A Pending JPH08201349A (en) 1995-01-20 1995-01-20 Ultrasonic flaw detection method

Country Status (1)

Country Link
JP (1) JPH08201349A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331116A (en) * 2005-05-26 2006-12-07 Taiyo Denki Kk Fluorescence detection apparatus
JP2012154678A (en) * 2011-01-24 2012-08-16 Nippon Telegr & Teleph Corp <Ntt> Correlation processing system of optical code modulation pulse
JP2018205055A (en) * 2017-06-01 2018-12-27 株式会社神戸製鋼所 Defect evaluation method
JP2020508461A (en) * 2017-02-23 2020-03-19 サザン リサーチ インスティチュート Ultrasound inspection system using spectral domain and time domain

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331116A (en) * 2005-05-26 2006-12-07 Taiyo Denki Kk Fluorescence detection apparatus
JP2012154678A (en) * 2011-01-24 2012-08-16 Nippon Telegr & Teleph Corp <Ntt> Correlation processing system of optical code modulation pulse
JP2020508461A (en) * 2017-02-23 2020-03-19 サザン リサーチ インスティチュート Ultrasound inspection system using spectral domain and time domain
JP2018205055A (en) * 2017-06-01 2018-12-27 株式会社神戸製鋼所 Defect evaluation method

Similar Documents

Publication Publication Date Title
EP0654666B1 (en) Signal processing method and signal processing device for ultrasonic inspection apparatus
CN111044613A (en) Metal plate micro-defect detection method based on nonlinear Lamb wave
US6530890B2 (en) Ultrasound diagnostic apparatus and method for measuring blood flow velocity using doppler effect
US7666142B2 (en) Ultrasound doppler diagnostic apparatus and image data generating method
EP1934592A2 (en) Digital time variable gain circuit for non-destructive test instrument
JP4997636B2 (en) Non-destructive diagnostic method for structures
JPH08201349A (en) Ultrasonic flaw detection method
JP2011047763A (en) Ultrasonic diagnostic device
JP4534309B2 (en) Method for measuring thickness resonance spectrum of metal thin plate and method for measuring electromagnetic ultrasonic wave of metal thin plate
US4676251A (en) Improved method and device for measuring frequency dependent parameters of objects by means of ultrasound echography
Fritsch et al. Detecting small flaws near the interface in pulse-echo
JP4405821B2 (en) Ultrasonic signal detection method and apparatus
JP3036387B2 (en) Ultrasonic flaw detection method and device
JPH0715457B2 (en) Ultrasonic echography inspection method and device
JPH08122308A (en) Ultrasonic flaw-detection method
JPH05203632A (en) Ultrasonic flaw detection device
JP3360578B2 (en) Ultrasonic testing of steel plates
JPH06207928A (en) Signal processing apparatus of ultrasonic flaw detecting apparatus
JPH095310A (en) Ultrasonic inspection method
JP3022108B2 (en) Ultrasound transceiver
JPH08211029A (en) Ultrasonic flaw detection method
JP2000088819A (en) Ultrasonic detecting device and computer-readable record medium memolizing program for supersonic detection
JP2669204B2 (en) Exploration equipment
JP4135512B2 (en) Ultrasonic signal processing method and ultrasonic measurement apparatus
JPH08292175A (en) Method and device of ultrasonic inspection