JP4534309B2 - Method for measuring thickness resonance spectrum of metal thin plate and method for measuring electromagnetic ultrasonic wave of metal thin plate - Google Patents

Method for measuring thickness resonance spectrum of metal thin plate and method for measuring electromagnetic ultrasonic wave of metal thin plate Download PDF

Info

Publication number
JP4534309B2
JP4534309B2 JP2000165369A JP2000165369A JP4534309B2 JP 4534309 B2 JP4534309 B2 JP 4534309B2 JP 2000165369 A JP2000165369 A JP 2000165369A JP 2000165369 A JP2000165369 A JP 2000165369A JP 4534309 B2 JP4534309 B2 JP 4534309B2
Authority
JP
Japan
Prior art keywords
thickness
ultrasonic
thin plate
resonance spectrum
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000165369A
Other languages
Japanese (ja)
Other versions
JP2001343365A (en
Inventor
達也 橋本
幸理 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000165369A priority Critical patent/JP4534309B2/en
Publication of JP2001343365A publication Critical patent/JP2001343365A/en
Application granted granted Critical
Publication of JP4534309B2 publication Critical patent/JP4534309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非接触、非破壊で金属薄板に超音波を伝播させ、金属薄板の超音波厚み共振スペクトルを測定する方法、及び求めれられた厚み共振スペクトルを用いて、金属薄板の諸物理量を測定する方法に関するものである。ここで、金属薄板の諸物理量とは、例えば、金属薄板の厚さ、音速、超音波の減衰係数、または、それから求められる結晶粒径などである。
【0002】
【従来の技術】
従来、超音波を被検査体の板厚方向に伝播させることによって、板厚ないしは音速、または減衰を利用して結晶粒径等が求められることがわかっている。例えば、それらの超音波を板厚方向に伝播させて被検査体の厚さ等を測定する方法として、共振法及びパルス反射法がある。
【0003】
共振法による厚さ測定としては、例えば特開昭52−18591号公報に開示されているように、超音波探触子を被検査体に接触させて超音波を連続的に被検査体に入射し、超音波の波長と被検査体の厚さとで決まる共振周波数に応じて探触子の電気的インピーダンスが変化することを利用して共振周波数を求め、この共振周波数と既知である被検査体中の音速から、被検査体の厚みを求める方法が知られている。
【0004】
また、パルス反射法により被検査体の厚みを求める方法も周知である。これは、超音波探触子からインパルス状の超音波を被検査体に入射し、被検査体から反射してきた超音波パルスを同一の探触子で受信し、超音波が被検査体を往復した時間を測定し、この時間と既知である被検査体中の音速から、被検査体の厚みを求める方法である。
【0005】
どちらの方法も超音波を用いた厚み測定方法として、例えば丹羽登著「超音波計測」(昭昇堂出版)P.70に記載されているように良く知られた技術である。
しかしながら、これらの技術を金属薄板に適用しようとすると、種々の問題が発生する。
【0006】
まず、パルス反射法を薄板に適用しようとする場合について述べる。この方法は伝播過程の異なるパルスを比較することによって、伝播過程相当の伝播時間や減衰を求めるため、送信パルス幅が厚さ方向の伝播時間より長くなると、送信パルスと受信パルス、及び異なる回数の反射を行った受信パルス同士が分離できなくなり、異なる伝播過程のパルスを比較できない問題が発生する。そのため、測定できる被検査体の厚さに限界がある。
【0007】
また、共振法を薄板に適用しようとする場合について述べる。この方法は、そもそも、共振周波数を求めるために被検体に対して連続的に入射する超音波の周波数を掃引しなければならないため、測定時間がパルス反射法に比較して長いという問題があり、さらに、薄板の場合には、共振周期が長くなるため、さらに掃引時間が長くなる問題が発生する。そのため、自動測定には適しておらず、特に生産ライン等において迅速な測定が求められるオンライン測定では使い物にならない。
【0008】
このような問題点を解決する方法として、特開平5−1910号公報に開示される発明がなされている。この方法は、広帯域のインパルスを送信し、その後得られる干渉波形を周波数解析することで、パルス幅より厚い材料の厚さを測定することを可能にしている。そのため、パルス反射法が使用できないような薄板においても、パルス反射法と同等の測定時間で測定が行えるという利点がある。
【0009】
【発明が解決しようとする課題】
しかしながら、特開平5−1910号公報に開示されている方法は、生産ライン等において迅速な測定が求められるオンライン測定には適用が困難であると言う問題点がある。すなわち、この方法は、超音波プローブと被検査体の間の超音波の伝達を機械的な振動で伝える手法によってのみ、実現できるものである。
【0010】
勿論、実験室のような所で静止した対象を測定する場合は問題がないが、鋼板の製造ラインのようなところでは、超音波プローブと被検査体を間接的に接触させた状態で測定を行う必要があり、水などの接触媒質の使用が前提となってしまう。しかし、冷延鋼板のような水を嫌う対象の場合には、このような方法が適用できない。
【0011】
接触媒質を使用せず、製造ライン等でも使える金属薄板の超音波測定方法としては、非接触超音波法である電磁超音波法が考えられるが、やはり次のような種々の問題が発生する。
【0012】
まず、電磁超音波のパルス反射法に関して言うと、そもそも電磁超音波法では計測に十分な感度で広帯域のインパルスを出せないという問題がある。これは、電磁超音波に用いる高電圧パルサーに広帯域なものが無いということに由来する。そこで、高周波のバースト波を用いることも考えられるが、電磁超音波法は高周波化が困難であるという問題がある。これもまた、電磁超音波センサー用の高電圧パルサーに起因しており、10MHz以上のパルスを効率よく発生できるものが世の中に無い理由から10MHz以上での感度が急激に低下してしまう。
【0013】
このような理由から、電磁超音波では、インパルス送受信によるパルス反射法が困難で、そのためインパルスの干渉を使用した方法も適用できない。
【0014】
次に電磁超音波法に共振法を適用した場合を述べる。この方法には、例えば、特開平6−148148に開示された方法がある。この方法では電磁超音波の発受信コイルに、時間幅の長いバースト波或いは正弦波の高周波電流を流し、周波数を掃引して、各周波数での受信振幅を記録し、共振スペクトルを得ている。送信波に連続波を用いているため感度はパルス反射法に比較して良いものの、非常に長い測定時間を要するといった問題は、やはり発生する。例えば、各周波数の測定を1msとして、100kHz毎に0〜10MHzまで掃引した場合、約100msの測定時間を要してしまう。
【0015】
以上のように、金属薄板の製造ラインで使えるような、迅速な非接触の超音波測定法は無いのが現状である。本発明は、このような実情に鑑みてなされたもので、被検査体である金属薄板を電磁超音波法で計測する方法であって、非接触での測定が短時間で完了でき、さらに感度よく超音波を送受信でき、高精度な計測を可能にするものを提供することを課題とする。
【0016】
【課題を解決するための手段】
前記課題を解決するための第1の手段は、電磁超音波法を用いて、金属薄板の板厚方向に伝播する超音波を発生及び検出し、当該金属薄板の厚さ方向の超音波厚み共振スペクトルを測定する方法であって、当該金属薄板で共鳴振動を起こす周波数成分を含み、かつパルス幅内で周波数変化をするパルス波形を超音波送信波形として用い、パルス送信後に得られる受信波形を周波数解析することによって厚み共振スペクトルを測定することを特徴とする金属薄板の厚み共振スペクトル測定方法である。
【0017】
インパルス波形は全周波数成分を含みかつ時間幅が狭いので、十分に高周波数まで含むものであれば、パルス反射法にも適用でき、かつFFT等の周波数解析を行なえば共振スペクトルを得ることも可能である。しかしながら、先述のように電磁超音波法は周波数が高くなるほど感度が低くなるために、単純なインパルス波形を送信波に用いた場合、パルス反射法では、金属薄板内の多重反射エコーが分離できない問題が発生する、また共振スペクトルを得るためにFFT等の周波数解析を行なっても、1つのパルスに全周波数成分が含まれているために、各周波数成分の強度が低く、感度が十分に取れない問題がある。
【0018】
そこで、時間幅を短くすることをあきらめ、板厚の超音波伝播時間より長い時間幅のパルスであるが、そのパルス幅内に、被検査対象である金属薄板で共鳴振動を起こす周波数成分を含み、かつパルス幅内で周波数変化をするパルス波形を送信波形に用いる。この場合、勿論、受信波形は多重反射エコーのそれぞれのエコーが分離できないようなものになってしまうが、送信波において各周波数の送信強度がダイナミックレンジ最大の値であることより、FFT等の周波数解析をしても十分な感度でスペクトルを得ることができる。即ち、パルス反射法に近い測定時間で、共振スペクトルを精度良く測定することができる。
【0019】
前記課題を解決するための第2の手段は、前記第1の手段であって、送信波にチャープパルス波を用いることを特徴とするものである。
【0020】
被検査対象である金属薄板で共鳴振動を起こす周波数成分を含み、かつパルス幅内で周波数変化をするパルス波形として、チャープパルスは最もシンプルなものであり、最も短いパルス幅で周波数特性がフラットな波形を表現できる。勿論、高感度化のメリットも備えている。
【0021】
例えば、送信波に電圧振幅±1kV、10MHz、1波のインパルス波を用いるより、時間幅を増やして電圧振幅±1kV、周波数1〜10MHzチャープパルス波形を用いた方が各周波数成分の強度は大きくなることは言うまでも無く、その結果、ノイズの影響を受けにくく、受信波から高精度で共振スペクトルを得ることが可能になる。しかも、パルス1回の送受信で測定できるので、短時間での測定が可能である。
【0022】
前記課題を解決するための第3の手段は、金属薄板の物理量を測定する方法であって、前記第1の手段又は第2の手段を、その工程中に含むことを特徴とする金属薄板の電磁超音波計測方法である。
【0023】
例えば、金属薄板の厚さ、音速、超音波の減衰係数、または、それから求められる結晶粒径等の金属薄板の物理量には、厚み共振スペクトルを求めてそこから計算により求められるものが多い。本手段においては、これら物理量を求めるために必要な厚み共振スペクトルを、前記第1の手段又は第2の手段を用いて測定しているので、これらの物理量を測定する際においても、実ラインにおいて被接触で、かつ短時間で高精度の測定を行うことができる。なお、電磁超音波計測方法とは、電磁超音波を利用してある量の計測を行う方法をいう。
【0024】
前記課題を解決するための第4の手段は、前記第3の手段であって、求められた超音波厚み共振スペクトルと既知である前記金属薄板の音速より、前記金属薄板の板厚を求めることを特徴とするものである。
【0025】
金属薄板の超音波厚み共振スペクトルと当該金属薄板中の音速が分かれば、当該金属薄板の板厚が求まることは周知の事実である。本手段においては、このうち超音波厚み共振スペクトルを測定するのに前記第1の手段又は第2の手段を使用しているので、実ラインにおいて被接触で、かつ短時間で高精度の測定を行うことができる。
【0026】
前記課題を解決するための第5の手段は、前記第5の手段であって、求められた超音波厚み共振スペクトルと既知である前記金属薄板の板厚より、前記金属薄板の音速を求めることを特徴とするものである。
【0027】
金属薄板の超音波厚み共振スペクトルと当該金属薄板の板厚が分かれば、当該金属薄板中の音速が求まることは周知の事実である。本手段においては、このうち超音波厚み共振スペクトルを測定するのに前記第1の手段又は第2の手段を使用しているので、実ラインにおいて被接触で、かつ短時間で高精度の測定を行うことができる。
【0028】
【発明の実施の形態】
以下に本発明の実施の形態を示す。本実施の形態は、被検査体である公称板厚1.2mmの熱延鋼板に電磁超音波法で板厚方向に超音波を発生ならびに検出し、これから熱延鋼板の厚み共振スペクトルを求め、さらにこれから板厚を測定するものである。
【0029】
図1は、本発明の実施の形態を実施するための装置の構成を示すものであり、図1において、1は被検査体、2は被検査体内を伝播する超音波、3はチャープパルス波形発生手段、4は電圧増幅器、5はダイプレクサー、6は電磁超音波センサー、7は前置増幅器、8はAD変換器、9は周波数解析手段、10は板厚演算手段である。
【0030】
先ず、チャープパルス波形発生手段3は、パルス幅10μs、周波数帯域0〜10MHzのチャープパルス波を発生させ、その波形を電圧増幅器4に送信する。図2に、本実施の形態で用いるチャープパルス波形の例を示す。ここで、チャープパルス波発生手段3が発生させる周波数帯機は、被検査体2である公称板厚1.2mmの熱延鋼板の共振周波数を含むものであれば良く、パルス幅も測定に許される時間内であればいくらでも構わない。
【0031】
ただし、共振周波数frは、次式(1)で与えられる。
fr = v・n/(2d) …(1)
但し、v :音速
d :厚さ
n :正の整数
である。もちろん、実際の共振周波数は未知であり測定によって求まるものなので、ここで用いている共振周波数とは想定される共振周波数という意味である。
【0032】
電圧増幅器4はチャープパルス波発生手段から送られた波形を1.2kVの電圧まで増幅し、ダイプレクサー5に送信する。ここで、増幅する電圧は電磁超音波センサーの耐圧以内なら何Vでもよく、増幅度が増すほど電磁超音波センサーが発生させる超音波の強度は強くなる。ダイプレクサー5は、増幅された高電圧のチャープパルス波形を電磁超音波センサー6に送り、送信終了後、電磁超音波センサー6から受信される受信波形を前置増幅器7に送る。
【0033】
前置増幅器7は、受信波形を60dB増幅し、AD変換器8に送信する。ここで、前置増幅器の増幅度はAD変換器で受信できる振幅以上でかつ飽和しない程度であればいくらでもよいが、できるだけ大きい方が好ましい。AD変換器8は、受信波形をデジタル化し周波数解析手段9に送る。図3に、AD変換器8によりデジタル化された受信波形の例を示す。
【0034】
周波数解析手段9は、受信波形を周波数解析しスペクトルを求める。図4に、図3に示す受信波形を周波数解析手段9によりFFTを行なって得られたスペクトルを示す。
【0035】
図4に示すスペクトルは、超音波が板厚方向に伝播する際、チャープパルス波の周波数成分の一部が、その厚さによって共振を起こしたものであり、それぞれのスペクトルピークは、共振周波数を示すものである。図5は、図4の第一共振スペクトルを拡大して示したものである。
【0036】
板厚演算手段10は、この共振スペクトルから共振周波数を決定し、(1)式によって板厚を算出する。実際の例においては、図5から求まる第1共振周波数1.40MHzから(1)式を使って厚さを1.15mmと測定することができた。ここで、音速は鋼材の横波音速3.23μs/mmを用いた。図5は、図4の第一共振スペクトルを拡大したものである。
【0037】
ここでは、共振周波数を求めるのにスペクトルから最も低い周波数の共振ピークを読み取って第一共振周波数を求めたが、隣り合う共振ピークの差から共振周波数を求めることも可能である。
【0038】
また、本実施の形態では、被検査体の音速を既知として、スペクトルから共振周波数を求めて、板厚を求めたが、逆に板厚が既知であれば、音速測定も可能である。さらに、スペクトルの共振ピークのプロファイルからは、共振周波数の減衰を求めることが可能なので、減衰を測定して結晶粒径を算出することも可能である。
【0039】
【発明の効果】
以上説明したように、本発明のうち請求項1に係る発明においては、パルス反射法に近い測定時間で、共振スペクトルを精度良く測定することができる。
請求項2に係る発明においては、最も短いパルス幅で周波数特性がフラットな波形を表現できる。
請求項3から請求項5に係る発明においては、実ラインにおいて被接触で、かつ短時間で高精度の測定を行うことができる。
【図面の簡単な説明】
【図1】本発明の実施の形態を実施するための装置の構成を示す図である。
【図2】本実施の形態で用いるチャープパルス波形の例を示す図である。
【図3】AD変換器によりデジタル化された受信波形の例を示す図である。
【図4】図3に示す受信波形を周波数解析手段によりFFTを行なって得られたスペクトルを示す図である。
【図5】図4の第一共振スペクトルを拡大して示した図である。
【符号の説明】
1…被検査体
2…被検査体内を伝播する超音波
3…チャープパルス波形発生手段
4…電圧増幅器
5…ダイプレクサー
6…電磁超音波センサー
7…前置増幅器
8…AD変換器
9…周波数解析手段
10…板厚演算手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for measuring ultrasonic thickness resonance spectrum of a metal thin plate by propagating ultrasonic waves to the metal thin plate in a non-contact and non-destructive manner, and measuring various physical quantities of the metal thin plate using the obtained thickness resonance spectrum. It is about how to do. Here, the physical quantities of the thin metal plate are, for example, the thickness of the thin metal plate, the speed of sound, the attenuation coefficient of ultrasonic waves, or the crystal grain size determined therefrom.
[0002]
[Prior art]
Conventionally, it has been found that the crystal grain size and the like can be obtained by utilizing the plate thickness or sound velocity or attenuation by propagating ultrasonic waves in the plate thickness direction of the object to be inspected. For example, there are a resonance method and a pulse reflection method as a method of measuring the thickness of an object to be inspected by propagating those ultrasonic waves in the plate thickness direction.
[0003]
As thickness measurement by the resonance method, for example, as disclosed in JP-A-52-18591, an ultrasonic probe is brought into contact with an object to be inspected and ultrasonic waves are continuously incident on the object to be inspected. The resonance frequency is obtained by utilizing the change in the electrical impedance of the probe according to the resonance frequency determined by the wavelength of the ultrasonic wave and the thickness of the object to be inspected, and this resonance frequency and the object to be inspected are known. A method for obtaining the thickness of an object to be inspected from the speed of sound inside is known.
[0004]
A method for obtaining the thickness of an object to be inspected by a pulse reflection method is also well known. This is because impulse ultrasonic waves from an ultrasonic probe are incident on an object to be inspected, and ultrasonic pulses reflected from the object to be inspected are received by the same probe, and the ultrasonic waves reciprocate the object to be inspected. This is a method of measuring the measured time and determining the thickness of the object to be inspected from this time and the known sound velocity in the object to be inspected.
[0005]
Both methods are well-known techniques as described in, for example, Toshi Niwa's “Ultrasonic Measurements” (Shoshodo Publishing Co., Ltd.), page 70, as a thickness measurement method using ultrasonic waves.
However, when these techniques are applied to a thin metal plate, various problems occur.
[0006]
First, the case of applying the pulse reflection method to a thin plate will be described. In this method, the propagation time and attenuation corresponding to the propagation process are obtained by comparing pulses with different propagation processes, so if the transmission pulse width is longer than the propagation time in the thickness direction, the transmission pulse and the reception pulse and The reflected received pulses cannot be separated from each other, causing a problem that pulses in different propagation processes cannot be compared. Therefore, there is a limit to the thickness of the object to be inspected.
[0007]
A case where the resonance method is applied to a thin plate will be described. This method has the problem that the measurement time is long compared to the pulse reflection method because the frequency of the ultrasonic wave continuously incident on the subject must be swept in order to obtain the resonance frequency. Furthermore, in the case of a thin plate, the resonance period becomes long, so that there arises a problem that the sweep time becomes longer. For this reason, it is not suitable for automatic measurement, and it is not useful for on-line measurement that requires quick measurement particularly in production lines.
[0008]
As a method for solving such a problem, an invention disclosed in Japanese Patent Laid-Open No. 5-1910 has been made. This method makes it possible to measure a thickness of a material thicker than the pulse width by transmitting a wide-band impulse and then performing frequency analysis on the obtained interference waveform. Therefore, even a thin plate that cannot use the pulse reflection method has an advantage that measurement can be performed in the same measurement time as the pulse reflection method.
[0009]
[Problems to be solved by the invention]
However, the method disclosed in Japanese Patent Laid-Open No. 5-1910 has a problem that it is difficult to apply to on-line measurement that requires quick measurement in a production line or the like. In other words, this method can be realized only by a technique for transmitting ultrasonic transmission between the ultrasonic probe and the object to be inspected by mechanical vibration.
[0010]
Of course, there is no problem when measuring a stationary object such as in a laboratory, but in places such as a steel plate production line, measurement is performed with the ultrasonic probe and the object to be inspected in indirect contact. It is necessary to do so, and the use of a contact medium such as water is assumed. However, such a method cannot be applied to an object that dislikes water, such as a cold-rolled steel sheet.
[0011]
As an ultrasonic measurement method of a metal thin plate that can be used on a production line or the like without using a contact medium, an electromagnetic ultrasonic method that is a non-contact ultrasonic method can be considered, but the following various problems also occur.
[0012]
First, regarding the electromagnetic ultrasonic pulse reflection method, the electromagnetic ultrasonic method has a problem in that a broadband impulse cannot be produced with sufficient sensitivity for measurement. This is due to the fact that there is no broadband high-voltage pulser used for electromagnetic ultrasonic waves. Thus, although it is conceivable to use a high-frequency burst wave, the electromagnetic ultrasonic method has a problem that it is difficult to increase the frequency. This is also due to the high-voltage pulser for the electromagnetic ultrasonic sensor, and the sensitivity at 10 MHz or higher is drastically reduced because there is no one in the world that can efficiently generate pulses of 10 MHz or higher.
[0013]
For this reason, it is difficult for electromagnetic ultrasonic waves to use the pulse reflection method by impulse transmission and reception, and therefore, a method using impulse interference cannot be applied.
[0014]
Next, the case where the resonance method is applied to the electromagnetic ultrasonic method will be described. As this method, for example, there is a method disclosed in JP-A-6-148148. In this method, a burst wave or sine wave high-frequency current having a long time width is passed through an electromagnetic ultrasonic wave transmitting / receiving coil, the frequency is swept, the received amplitude at each frequency is recorded, and a resonance spectrum is obtained. Since a continuous wave is used for the transmission wave, the sensitivity may be better than that of the pulse reflection method, but the problem that a very long measurement time is required still occurs. For example, if each frequency is measured at 1 ms and swept from 0 to 10 MHz every 100 kHz, a measurement time of about 100 ms is required.
[0015]
As described above, there is no rapid non-contact ultrasonic measurement method that can be used in a metal sheet production line. The present invention has been made in view of such circumstances, and is a method for measuring a metal thin plate as an object to be inspected by an electromagnetic ultrasonic method, in which non-contact measurement can be completed in a short time, and the sensitivity is further improved. It is an object of the present invention to provide a device that can transmit and receive ultrasonic waves well and enables highly accurate measurement.
[0016]
[Means for Solving the Problems]
The first means for solving the above problem is to generate and detect an ultrasonic wave propagating in the thickness direction of the thin metal plate by using an electromagnetic ultrasonic method, and to perform ultrasonic thickness resonance in the thickness direction of the thin metal plate. A method for measuring a spectrum, which uses a pulse waveform that includes a frequency component that causes resonance vibration in the metal thin plate and that changes in frequency within a pulse width as an ultrasonic transmission waveform, and that a received waveform obtained after pulse transmission is a frequency. A thickness resonance spectrum measurement method for a metal thin plate, wherein the thickness resonance spectrum is measured by analysis .
[0017]
Since the impulse waveform includes all frequency components and has a narrow time width, it can be applied to the pulse reflection method as long as it includes a sufficiently high frequency, and a resonance spectrum can be obtained by performing frequency analysis such as FFT. It is. However, as described above, since the sensitivity of the electromagnetic ultrasonic method becomes lower as the frequency becomes higher, when a simple impulse waveform is used for the transmission wave, the problem of the multiple reflection echoes in the metal thin plate cannot be separated by the pulse reflection method. Even if frequency analysis such as FFT is performed to obtain a resonance spectrum, since all frequency components are included in one pulse, the intensity of each frequency component is low and sufficient sensitivity cannot be obtained. There's a problem.
[0018]
Therefore, giving up shortening the time width, it is a pulse with a time width longer than the ultrasonic propagation time of the plate thickness, but the pulse width includes a frequency component that causes resonance vibration in the metal thin plate to be inspected. A pulse waveform that changes in frequency within the pulse width is used as the transmission waveform. In this case, of course, the received waveform is such that each of the multiple reflected echoes cannot be separated. However, since the transmission intensity of each frequency in the transmission wave has the maximum dynamic range, the frequency such as FFT Even with analysis, a spectrum can be obtained with sufficient sensitivity. That is, the resonance spectrum can be measured with high accuracy in a measurement time close to the pulse reflection method.
[0019]
A second means for solving the above problem is the first means, wherein a chirped pulse wave is used as a transmission wave .
[0020]
The chirp pulse is the simplest pulse waveform that includes frequency components that cause resonance vibration in the metal thin plate to be inspected, and that changes in frequency within the pulse width. The frequency characteristics are flat with the shortest pulse width. Waveform can be expressed. Of course, it has the merit of high sensitivity.
[0021]
For example, rather than using an impulse wave with a voltage amplitude of ± 1 kV, 10 MHz, and a transmission wave, the intensity of each frequency component is greater when the time width is increased and a voltage amplitude of ± 1 kV and a frequency of 1 to 10 MHz is used as a chirp pulse waveform. Needless to say, as a result, it is difficult to be affected by noise, and a resonance spectrum can be obtained from the received wave with high accuracy. In addition, measurement can be performed in a short time because measurement can be performed by transmitting and receiving a single pulse.
[0022]
A third means for solving the above-mentioned problem is a method for measuring a physical quantity of a thin metal sheet, and includes the first means or the second means in the process. This is an electromagnetic ultrasonic measurement method .
[0023]
For example, many physical quantities of a thin metal sheet such as the thickness of the thin metal sheet, the speed of sound, the attenuation coefficient of ultrasonic waves, or the crystal grain size obtained therefrom are obtained by calculating the thickness resonance spectrum and calculating the thickness resonance spectrum. In this means, since the thickness resonance spectrum necessary for obtaining these physical quantities is measured using the first means or the second means, even when measuring these physical quantities, Highly accurate measurement can be performed in a short time in contact. The electromagnetic ultrasonic measurement method refers to a method of measuring a certain amount using electromagnetic ultrasonic waves.
[0024]
A fourth means for solving the above problem is the third means, wherein the thickness of the metal thin plate is obtained from the obtained ultrasonic thickness resonance spectrum and the known sound velocity of the metal thin plate. It is characterized by .
[0025]
It is a well-known fact that if the ultrasonic thickness resonance spectrum of a metal thin plate and the speed of sound in the metal thin plate are known, the plate thickness of the metal thin plate can be obtained. In this means, among these, the first means or the second means is used to measure the ultrasonic thickness resonance spectrum. It can be carried out.
[0026]
A fifth means for solving the above-mentioned problem is the fifth means, wherein the sound velocity of the metal thin plate is obtained from the obtained ultrasonic thickness resonance spectrum and the known plate thickness of the metal thin plate. It is characterized by .
[0027]
It is a well-known fact that if the ultrasonic thickness resonance spectrum of a metal thin plate and the plate thickness of the metal thin plate are known, the speed of sound in the metal thin plate can be obtained. In this means, among these, the first means or the second means is used to measure the ultrasonic thickness resonance spectrum. It can be carried out.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. This embodiment generates and detects ultrasonic waves in the thickness direction by an electromagnetic ultrasonic method on a hot rolled steel sheet having a nominal thickness of 1.2 mm, which is an object to be inspected, and obtains a thickness resonance spectrum of the hot rolled steel sheet from this, The plate thickness is measured from now on.
[0029]
FIG. 1 shows a configuration of an apparatus for carrying out an embodiment of the present invention. In FIG. 1, 1 is an object to be inspected, 2 is an ultrasonic wave propagating through the object to be inspected, and 3 is a chirp pulse waveform. Generation means, 4 is a voltage amplifier, 5 is a diplexer, 6 is an electromagnetic ultrasonic sensor, 7 is a preamplifier, 8 is an AD converter, 9 is frequency analysis means, and 10 is a plate thickness calculation means.
[0030]
First, the chirp pulse waveform generating means 3 generates a chirp pulse wave having a pulse width of 10 μs and a frequency band of 0 to 10 MHz, and transmits the waveform to the voltage amplifier 4. FIG. 2 shows an example of a chirp pulse waveform used in this embodiment. Here, the frequency band machine generated by the chirped pulse wave generating means 3 only needs to include the resonance frequency of a hot-rolled steel sheet having a nominal thickness of 1.2 mm, which is the object to be inspected 2, and the pulse width is also allowed for measurement. It does not matter as long as it is within time.
[0031]
However, the resonance frequency fr is given by the following equation (1).
fr = v · n / (2d)… (1)
Where v is the speed of sound
d: thickness
n: A positive integer. Of course, since the actual resonance frequency is unknown and can be obtained by measurement, the resonance frequency used here means an assumed resonance frequency.
[0032]
The voltage amplifier 4 amplifies the waveform sent from the chirped pulse wave generating means to a voltage of 1.2 kV and transmits it to the diplexer 5. Here, the voltage to be amplified may be any voltage as long as it is within the withstand voltage of the electromagnetic ultrasonic sensor, and the intensity of the ultrasonic wave generated by the electromagnetic ultrasonic sensor increases as the amplification degree increases. The diplexer 5 sends the amplified high-voltage chirp pulse waveform to the electromagnetic ultrasonic sensor 6, and sends the received waveform received from the electromagnetic ultrasonic sensor 6 to the preamplifier 7 after the transmission is completed.
[0033]
The preamplifier 7 amplifies the received waveform by 60 dB and transmits it to the AD converter 8. Here, the degree of amplification of the preamplifier is not limited as long as it is greater than the amplitude that can be received by the AD converter and does not saturate, but is preferably as large as possible. The AD converter 8 digitizes the received waveform and sends it to the frequency analysis means 9. FIG. 3 shows an example of the received waveform digitized by the AD converter 8.
[0034]
The frequency analysis means 9 performs frequency analysis on the received waveform to obtain a spectrum. FIG. 4 shows a spectrum obtained by performing FFT on the received waveform shown in FIG.
[0035]
The spectrum shown in FIG. 4 is a part of the frequency component of the chirped pulse wave that resonates with its thickness when the ultrasonic wave propagates in the plate thickness direction. Each spectrum peak represents the resonance frequency. It is shown. FIG. 5 is an enlarged view of the first resonance spectrum of FIG.
[0036]
The plate thickness calculation means 10 determines the resonance frequency from this resonance spectrum, and calculates the plate thickness by the equation (1). In an actual example, the thickness could be measured as 1.15 mm using the equation (1) from the first resonance frequency of 1.40 MHz obtained from FIG. Here, the sound velocity was a shear wave velocity of steel of 3.23 μs / mm. FIG. 5 is an enlarged view of the first resonance spectrum of FIG.
[0037]
Here, in order to obtain the resonance frequency, the resonance peak of the lowest frequency is read from the spectrum to obtain the first resonance frequency, but the resonance frequency can also be obtained from the difference between adjacent resonance peaks.
[0038]
In this embodiment, the sound speed of the object to be inspected is known, and the resonance frequency is obtained from the spectrum to obtain the plate thickness. Conversely, if the plate thickness is known, the sound speed can be measured. Furthermore, since the resonance frequency attenuation can be obtained from the resonance peak profile of the spectrum, the crystal grain size can also be calculated by measuring the attenuation.
[0039]
【The invention's effect】
As described above, in the invention according to claim 1 of the present invention, the resonance spectrum can be measured with high accuracy in a measurement time close to the pulse reflection method.
In the invention according to claim 2, a waveform having a flat frequency characteristic can be expressed with the shortest pulse width.
In the inventions according to claims 3 to 5, it is possible to perform high-accuracy measurement in a short time in contact with an actual line.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of an apparatus for carrying out an embodiment of the present invention.
FIG. 2 is a diagram showing an example of a chirp pulse waveform used in the present embodiment.
FIG. 3 is a diagram showing an example of a received waveform digitized by an AD converter.
4 is a diagram showing a spectrum obtained by performing FFT on the received waveform shown in FIG. 3 by frequency analysis means. FIG.
5 is an enlarged view of the first resonance spectrum of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Test object 2 ... Ultrasonic wave 3 which propagates in test object ... Chirp pulse waveform generation means 4 ... Voltage amplifier 5 ... Diplexer 6 ... Electromagnetic ultrasonic sensor 7 ... Preamplifier 8 ... AD converter 9 ... Frequency analysis means 10: Plate thickness calculation means

Claims (4)

電磁超音波法を用いて、金属薄板の板厚方向に伝播する超音波を発生及び検出し、当該金属薄板の厚さ方向の超音波厚み共振スペクトルを測定する方法であって、当該金属薄板の表面と裏面との間で共鳴振動を起こす周波数成分を含み、かつ板厚の超音波伝搬時間よりも長い時間幅をもつパルス幅内で連続的に周波数変化をする1つのチャープパルス波形を超音波送信波形として用い、パルス送信後に得られる受信波形を周波数解析することによって厚み共振スペクトルを測定することを特徴とする金属薄板の厚み共振スペクトル測定方法。An electromagnetic ultrasonic method is used to generate and detect ultrasonic waves propagating in the thickness direction of a thin metal plate, and to measure an ultrasonic thickness resonance spectrum in the thickness direction of the thin metal plate , One chirp pulse waveform that contains frequency components that cause resonance vibration between the front and back surfaces and that continuously changes in frequency within a pulse width that is longer than the ultrasonic wave propagation time of the plate thickness. A method for measuring a thickness resonance spectrum of a thin metal plate, wherein the thickness resonance spectrum is measured by frequency analysis of a reception waveform obtained after pulse transmission, which is used as a transmission waveform. 金属薄板の物理量を測定する方法であって、請求項に記載の金属薄板の厚み共振スペクトル測定方法を、その工程中に含むことを特徴とする金属薄板の電磁超音波計測方法。A method for measuring a physical quantity of a metal thin plate, comprising the method of measuring a thickness resonance spectrum of a metal thin plate according to claim 1 in the process thereof. 請求項に記載の金属薄板の電磁超音波計測方法であって、求められた超音波厚み共振スペクトルと既知である前記金属薄板の音速より、前記金属薄板の板厚を求めることを特徴とする金属薄板の電磁超音波計測方法。The electromagnetic ultrasonic measurement method for a thin metal plate according to claim 2 , wherein the thickness of the thin metal plate is obtained from the obtained ultrasonic thickness resonance spectrum and the known sound velocity of the thin metal plate. Electromagnetic ultrasonic measurement method for thin metal plates. 請求項に記載の金属薄板の電磁超音波計測方法であって、求められた超音波厚み共振スペクトルと既知である前記金属薄板の板厚より、前記金属薄板の音速を求めることを特徴とする金属薄板の電磁超音波計測方法。The electromagnetic ultrasonic measurement method for a metal thin plate according to claim 2 , wherein the sound velocity of the metal thin plate is obtained from the obtained ultrasonic thickness resonance spectrum and the known plate thickness of the metal thin plate. Electromagnetic ultrasonic measurement method for thin metal plates.
JP2000165369A 2000-06-02 2000-06-02 Method for measuring thickness resonance spectrum of metal thin plate and method for measuring electromagnetic ultrasonic wave of metal thin plate Expired - Fee Related JP4534309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000165369A JP4534309B2 (en) 2000-06-02 2000-06-02 Method for measuring thickness resonance spectrum of metal thin plate and method for measuring electromagnetic ultrasonic wave of metal thin plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000165369A JP4534309B2 (en) 2000-06-02 2000-06-02 Method for measuring thickness resonance spectrum of metal thin plate and method for measuring electromagnetic ultrasonic wave of metal thin plate

Publications (2)

Publication Number Publication Date
JP2001343365A JP2001343365A (en) 2001-12-14
JP4534309B2 true JP4534309B2 (en) 2010-09-01

Family

ID=18668845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000165369A Expired - Fee Related JP4534309B2 (en) 2000-06-02 2000-06-02 Method for measuring thickness resonance spectrum of metal thin plate and method for measuring electromagnetic ultrasonic wave of metal thin plate

Country Status (1)

Country Link
JP (1) JP4534309B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4106400B2 (en) 2003-09-05 2008-06-25 株式会社テクノネットワーク四国 Thickness measuring device and thickness measuring method
JP4653624B2 (en) * 2005-10-04 2011-03-16 新日本製鐵株式会社 Crystal grain size measuring device, crystal grain size measuring method, program, and computer-readable storage medium
JP5059344B2 (en) * 2006-05-18 2012-10-24 株式会社ニチゾウテック Plate thickness measuring apparatus and measuring method
JP4884925B2 (en) * 2006-11-07 2012-02-29 新日本製鐵株式会社 Plating thickness measuring device, plating thickness measuring method, program, and computer-readable storage medium
JP2009025093A (en) * 2007-07-18 2009-02-05 Nichizou Tec:Kk Electromagnetic ultrasonic measuring device, and measuring method of plate thickness and stress using electromagnetic ultrasonic wave
KR100905583B1 (en) * 2007-12-27 2009-07-02 주식회사 포스코 Method for Measuring Thickness of Slag and Method for Desulfurizing Molten Steel Using Noise Value
JP5072789B2 (en) * 2008-09-19 2012-11-14 新日本製鐵株式会社 Method and apparatus for measuring longitudinal and transverse sound velocities in materials by laser ultrasonic method
US10605789B2 (en) * 2017-02-23 2020-03-31 Southern Research Institute Ultrasonic inspection system employing spectral and time domain processing of ultrasonic signal
CN113030425B (en) * 2021-02-01 2023-01-03 中北大学 Explosive stability evaluation experimental device for equivalent simulation projectile penetration steel target

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309211A (en) * 1989-05-24 1990-12-25 Aavan Tekunosu:Kk Ultrasonic measuring method and apparatus
JPH10505408A (en) * 1994-05-12 1998-05-26 サザン・リサーチ・インスティテュート Ultrasonic spectroscopy material inspection method and apparatus
JPH1194808A (en) * 1997-09-25 1999-04-09 Nkk Corp Ultrasonic flaw detection of steel plate
JP2000097918A (en) * 1998-09-25 2000-04-07 Nkk Corp Ultrasonic flaw detection method for steel pipe, and apparatus therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52121386A (en) * 1976-04-06 1977-10-12 Tokyo Keiki Kk Ultrasonic flaw detecting method and apparatus for metallic material
JPS617465A (en) * 1984-06-20 1986-01-14 Mitsubishi Electric Corp Ultrasonic wave tester
JP3575252B2 (en) * 1997-11-13 2004-10-13 Jfeスチール株式会社 Electromagnetic ultrasonic measurement method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309211A (en) * 1989-05-24 1990-12-25 Aavan Tekunosu:Kk Ultrasonic measuring method and apparatus
JPH10505408A (en) * 1994-05-12 1998-05-26 サザン・リサーチ・インスティテュート Ultrasonic spectroscopy material inspection method and apparatus
JPH1194808A (en) * 1997-09-25 1999-04-09 Nkk Corp Ultrasonic flaw detection of steel plate
JP2000097918A (en) * 1998-09-25 2000-04-07 Nkk Corp Ultrasonic flaw detection method for steel pipe, and apparatus therefor

Also Published As

Publication number Publication date
JP2001343365A (en) 2001-12-14

Similar Documents

Publication Publication Date Title
Edwards et al. Characterisation of defects in the railhead using ultrasonic surface waves
Edwards et al. Depth gauging of defects using low frequency wideband Rayleigh waves
US6057927A (en) Laser-ultrasound spectroscopy apparatus and method with detection of shear resonances for measuring anisotropy, thickness, and other properties
Fan et al. Ultrasonic surface wave propagation and interaction with surface defects on rail track head
Hayashi et al. Non-contact estimation of thickness and elastic properties of metallic foils by laser-generated Lamb waves
Clorennec et al. Nondestructive evaluation of cylindrical parts using laser ultrasonics
Moreau et al. On-line measurement of texture, thickness and plastic strain ratio using laser-ultrasound resonance spectroscopy
Hayashi et al. Generation of narrowband elastic waves with a fiber laser and its application to the imaging of defects in a plate
Goujon et al. Behaviour of acoustic emission sensors using broadband calibration techniques
Hayashi et al. Single mode extraction from multiple modes of Lamb wave and its application to defect detection
US20210293947A1 (en) Continuous wave ultrasound or acoustic non-destructive testing
JP4534309B2 (en) Method for measuring thickness resonance spectrum of metal thin plate and method for measuring electromagnetic ultrasonic wave of metal thin plate
JP4997636B2 (en) Non-destructive diagnostic method for structures
JP2011047763A (en) Ultrasonic diagnostic device
JP2000241397A (en) Method and apparatus for detecting surface defect
JP2697508B2 (en) Ultrasonic thickness measurement method of furnace wall
Murav’ev et al. Acoustic assessment of the internal stress and mechanical properties of differentially hardened rail
JPH08201356A (en) Sonic velocity measuring method for solid material and ultrasonic probe
JP2001311615A (en) Method and apparatus for non-contact ultrasonic thickness measuring
JP4617540B2 (en) Ultrasonic characteristic measuring method, acoustic anisotropy measuring method, and acoustic anisotropy measuring apparatus
JP2001343366A (en) Crystal grain measuring method and device for metal sheet
JP2818615B2 (en) Ultrasonic measuring device
JPH07248317A (en) Ultrasonic flaw detecting method
JP4411734B2 (en) Hot ultrasonic thickness gauge and thickness measurement method
JP2626361B2 (en) Ultrasonic phase velocity curve determination method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070323

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees