JPH10212509A - Production of hydrogen storage alloy powder - Google Patents

Production of hydrogen storage alloy powder

Info

Publication number
JPH10212509A
JPH10212509A JP9027254A JP2725497A JPH10212509A JP H10212509 A JPH10212509 A JP H10212509A JP 9027254 A JP9027254 A JP 9027254A JP 2725497 A JP2725497 A JP 2725497A JP H10212509 A JPH10212509 A JP H10212509A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
alloy powder
powder
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9027254A
Other languages
Japanese (ja)
Inventor
Masatoshi Ishii
政利 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP9027254A priority Critical patent/JPH10212509A/en
Publication of JPH10212509A publication Critical patent/JPH10212509A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for inexpensively producing the hydrogen storage alloy powder appropriate as the high-capacity and durable negative electrode for a nickel-hydrogen secondary battery. SOLUTION: The molten hydrogen storage alloy shown by (La)XR1- X ((NiM)5-y Coy )Z/5 is quenched by the rotary-disk method rotating at 10-70m/sec peripheral speed and powdered. In the formula, R is at least one kind selected from Ce, Pr and Nd, M is at least one kind selected from Al, Cu, Fe, Mn, Ti and Zr, (x) is 0.5 to 1, (y) is 0.1 to 0.5, and (z) is 4.0 to 6.0.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はニッケル水素二次電
池の負電極に用いられる水素吸蔵合金粉末の製造方法に
関し、特に、長寿命で高容量のニッケル水素二次電池を
実現するための水素吸蔵合金粉末の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hydrogen storage alloy powder used for a negative electrode of a nickel-metal hydride secondary battery, and more particularly to a hydrogen storage for realizing a long-life, high-capacity nickel-metal hydride secondary battery. The present invention relates to a method for producing an alloy powder.

【0002】[0002]

【従来技術】水素を吸蔵・放出する水素吸蔵合金が発見
されて以来、その応用は水素貯蔵手段にとどまらず多方
面に試みられているが、特にアルカリ二次電池は実用化
されており、用いる水素吸蔵合金の水素吸蔵能の高容量
化、水素の吸蔵放出の繰り返しに対する長寿命化が図ら
れている。即ち、当初に検討された、CaCu5 型結晶
構造を有するLaNi5 合金は、Laの一部を、Ce、
Pr、Ndその他の希土類元素に置換し、Niの一部を
Al、Co、Mn等の遷移金属元素で置換することによ
って高容量化・長寿命化が図られてきた。ところが、こ
のような水素吸蔵合金を電池用負電極として用いた場合
には、電池の高容量化と長寿命化を同時に満足させるこ
とは非常に困難であった。従って、容量を更に高める為
にLaを多く含む組成にすると、アルカリに対する耐腐
食性が劣化し、寿命が短くなったり、また、合金のコス
トを押さえる為にCoの含有量を少なくすると、寿命は
ますます短くなるという欠点があった。
2. Description of the Related Art Since the discovery of a hydrogen storage alloy that absorbs and releases hydrogen, its application has been attempted not only in hydrogen storage means but in various fields. In particular, alkaline secondary batteries have been put to practical use and The hydrogen storage alloy has been designed to have a high hydrogen storage capacity and a long service life against repeated storage and release of hydrogen. That is, the LaNi 5 alloy having the CaCu 5 type crystal structure, which was initially studied, has a part of La, Ce,
Higher capacity and longer life have been achieved by substituting Pr, Nd or other rare earth elements, and substituting part of Ni with transition metal elements such as Al, Co and Mn. However, when such a hydrogen storage alloy is used as a negative electrode for a battery, it has been extremely difficult to satisfy both the high capacity and the long life of the battery at the same time. Therefore, if a composition containing a large amount of La is used to further increase the capacity, the corrosion resistance to alkali deteriorates, and the life is shortened. Also, if the content of Co is reduced to suppress the cost of the alloy, the life is shortened. The disadvantage was that it became shorter and shorter.

【0003】[0003]

【発明が解決しようとする課題】本発明者らは上記の欠
点を解決すべく鋭意検討した結果、La含有率が高くC
o含有率が低い水素吸蔵合金の溶湯を、高速で回転する
円盤上に注ぎ急冷して製造した水素吸蔵合金粉末を負電
極に使用した場合には、安価に、二次電池の放電容量を
大きく向上させることができると共に、サイクル寿命特
性を向上させることができるということを見い出し、本
発明に到達した。従って、本発明の目的は、高容量で長
寿命の、ニッケル水素二次電池用負電極用として好適な
水素吸蔵合金粉末の安価な製造方法を提供することにあ
る。
The inventors of the present invention have conducted intensive studies to solve the above-mentioned drawbacks.
o When a hydrogen storage alloy powder with a low content is poured onto a rotating disk at a high speed and a quenched hydrogen storage alloy powder is used for the negative electrode, the discharge capacity of the secondary battery is increased at low cost. The present invention has been found to be able to improve the cycle life characteristics while improving the cycle life characteristics. Therefore, an object of the present invention is to provide an inexpensive method for producing a high-capacity, long-life hydrogen storage alloy powder suitable for a negative electrode of a nickel-metal hydride secondary battery.

【0004】[0004]

【課題を解決するための手段】本発明の上記の目的は
(La)X 1 -X{( NiM) 5-y Coy Z/5 で表さ
れる水素吸蔵合金の溶湯を、周速が10〜70m/秒で
回転する回転円盤法によって急冷し粉末化することを特
徴とする水素吸蔵合金粉末の製造方法によって達成され
た。但し、式中のRは、Ce、Pr、Ndから選ばれる
少なくとも1種、MはAl、Cu、Fe、Mn、Ti及
びZrから選ばれる少なくとも1種であり、xは0.5
〜1、yは0.1〜0.5、zは4.0〜6.0であ
る。
SUMMARY OF THE INVENTION The object of the present invention is to provide a method for producing a molten metal of a hydrogen storage alloy represented by (La) X R 1 -X {(NiM) 5-y Co yZ / 5 at a peripheral speed of Has been achieved by a method for producing a hydrogen storage alloy powder, wherein the powder is quenched and powdered by a rotating disk method rotating at 10 to 70 m / sec. Here, R in the formula is at least one selected from Ce, Pr and Nd, M is at least one selected from Al, Cu, Fe, Mn, Ti and Zr, and x is 0.5
-1, y is 0.1-0.5, and z is 4.0-6.0.

【0005】本発明で使用する水素吸蔵合金は前記した
式で表されるが、特に電池とした場合のサイクル寿命を
良好とする観点から、MmNi5 系の水素吸蔵合金を用
いることが好ましい。上記金属中のMmは、La、C
e、Pr及びNd等の希土類元素の混合物からなるミッ
シュメタルと呼ばれるものである。MmNi5 系の水素
吸蔵合金は、サイクル寿命を良好とする観点から、Ni
の一部をMnで置換すると共に、Alによって置換した
ものであることが好ましく、更に、Coで少量置換した
ものであることが好ましい。
[0005] hydrogen-absorbing alloy used in the present invention has the formula described above, in particular from the viewpoint of good cycle life in the case of a battery, it is preferable to use a MmNi 5 system hydrogen absorbing alloy. Mm in the above metal is La, C
This is called misch metal made of a mixture of rare earth elements such as e, Pr and Nd. From the viewpoint of improving the cycle life, MmNi 5 -based hydrogen storage alloy
Is preferably substituted with Mn and partially with Al, and more preferably with a small amount of Co.

【0006】本発明においては、電池とした場合に低コ
ストで、高容量、長寿命の水素吸蔵合金粉末を製造する
という観点から、水素吸蔵合金の溶湯を高速で回転する
円盤上に注ぎ、急冷すると共に粉末化する。本発明にお
ける急冷による粉末化に際しては、円盤の周速度を10
〜70m/秒の高速で回転させることが好ましく、特に
20〜40m/秒とすることが好ましい。周速度が10
m/秒より遅いと十分な冷却速度を得られず、偏析の無
い合金を得ることができないのでサイクル寿命特性は向
上しない。また、70m/秒より速いと、設備コストが
高くなるので工業生産に向かない。
In the present invention, from the viewpoint of producing a low-cost, high-capacity, long-life hydrogen-absorbing alloy powder in the case of a battery, a molten metal of the hydrogen-absorbing alloy is poured onto a rotating disk at a high speed and quenched. And pulverize. When powdering by quenching in the present invention, the peripheral speed of the disk is set to 10
It is preferable to rotate at a high speed of up to 70 m / sec, and it is particularly preferable to make it rotate at 20 to 40 m / sec. Peripheral speed is 10
If the speed is lower than m / sec, a sufficient cooling rate cannot be obtained, and an alloy without segregation cannot be obtained, so that the cycle life characteristics are not improved. On the other hand, if the speed is higher than 70 m / sec, the equipment cost becomes high, so that it is not suitable for industrial production.

【0007】放電容量を大きくする為には、Laの含有
量が原子比で0.5以上必要であり、特に0.75以上
であることが好ましい。Laの量が原子比で0.5より
少ないと放電容量は不充分である。また、高容量にする
と共に低コスト化する為に、Coの含有量は原子比で
0.1〜0.5であることが好ましく、特に0.2〜
0.4の範囲であることが好ましい。0.5より多い
と、高価になる上放電容量も低下する。0.1より少な
いと、安価にはなるもののサイクル寿命特性が低下す
る。
[0007] In order to increase the discharge capacity, the content of La must be 0.5 or more in atomic ratio, particularly preferably 0.75 or more. If the amount of La is less than 0.5 in atomic ratio, the discharge capacity is insufficient. Further, in order to increase the capacity and reduce the cost, the content of Co is preferably 0.1 to 0.5 in atomic ratio, particularly 0.2 to 0.5.
It is preferably in the range of 0.4. If it is more than 0.5, the cost becomes high and the discharge capacity decreases. If it is less than 0.1, the cycle life characteristics will be deteriorated although the cost will be reduced.

【0008】本発明による水素吸蔵合金が、高容量であ
りながら長寿命である理由は、高速冷却するので元素の
偏析が生ずることなく均質な組織となり、Laが合金組
織の中で均一に分散する上結晶粒子も小さい為に、Co
量が少なくても、水素吸蔵放出過程における体積変化を
吸収し易く、サイクル寿命特性を向上させることができ
るからと推定される。
The reason that the hydrogen storage alloy according to the present invention has a long life while having a high capacity is that since it is cooled at a high speed, it has a homogeneous structure without segregation of elements, and La is uniformly dispersed in the alloy structure. Since the upper crystal particles are also small, Co
It is presumed that even if the amount is small, it is easy to absorb the volume change in the hydrogen storage and release process, and the cycle life characteristics can be improved.

【0009】本発明においては、サイクル寿命特性を向
上させるために、急冷で得られた粉末を700〜110
0℃で熱処理することが好ましい。700℃以下で熱処
理してもサイクル寿命特性を向上させることができず、
1100℃以上で熱処理すると粉末が融着するので粉砕
しなければなくなる上、温度が高すぎるために元素の偏
析がおこり、サイクル寿命特性が低下する。
In the present invention, in order to improve the cycle life characteristics, the powder obtained by quenching is 700-110.
Heat treatment at 0 ° C. is preferred. Even if the heat treatment is performed at 700 ° C. or less, the cycle life characteristics cannot be improved.
If heat treatment is performed at a temperature of 1100 ° C. or more, the powder is fused and must be pulverized. In addition, since the temperature is too high, segregation of elements occurs, and the cycle life characteristics deteriorate.

【0010】[0010]

【発明の実施の形態】本発明においては、例えば、前記
した組成の金属元素の混合物を公知の高周波誘導炉等を
用いて溶解し、周速が10〜70m/秒という高速で回
転する円盤上に注いで急冷し、粉末として回収し、必要
に応じてこれを熱処理した後粉砕し、所望の粒度分布を
持つ粉末とすることによって、本発明の水素吸蔵合金粉
末を得ることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, for example, a mixture of metal elements having the above-mentioned composition is melted by using a known high-frequency induction furnace or the like, and is rotated on a disk rotating at a high peripheral speed of 10 to 70 m / sec. , Quenched, collected as a powder, heat-treated if necessary, and then pulverized to obtain a powder having a desired particle size distribution, whereby the hydrogen storage alloy powder of the present invention can be obtained.

【0011】[0011]

【発明の効果】本発明によると、放電容量が高く、サイ
クル寿命特性に優れたニッケル水素二次電極用の負電極
に好適な水素吸蔵合金を極めて安価に得ることができ
る。
According to the present invention, a hydrogen storage alloy having a high discharge capacity and excellent cycle life characteristics and suitable for a negative electrode of a nickel-metal hydride secondary electrode can be obtained at very low cost.

【0012】[0012]

【実施例】以下、実施例によって本発明を更に詳述する
が、本発明はこれによって限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited thereto.

【0013】実施例及び比較例 ミッシュメタルとして、La50〜100重量%、Pr
2重量%、Nd3重量%、残部がCeであるMmを用
い、Mm1.00に対し、Al、Co、Mn、Niが原
子比で各々0.3、0〜0.6、0.2及び3.9〜
4.5となるように各元素を秤量し、それらをアルゴン
雰囲気下の高周波溶解炉で溶解し、周速が7〜75m/
秒で回転している、直径が3.5cmの円盤上に水素吸
蔵合金の溶湯を注ぎ、水素吸蔵合金粉末を得た。得られ
た水素吸蔵合金粉末を600〜1150℃で熱処理した
後、必要なものは粉砕して、平均粒径が32μmの水素
吸蔵合金粉末を得た。比較として、上記組成の各元素を
高周波溶解炉で溶解し、水冷鋳型に鋳込んで水素吸蔵合
金を作製し、1050℃で熱処理した後粉砕した他は同
様の方法で、平均粒径が32μmの水素吸蔵合金粉末を
得た。
Examples and Comparative Examples As misch metal, La 50 to 100% by weight, Pr
Mm of 2% by weight, 3% by weight of Nd, and the balance of Ce was used, and Al, Co, Mn, and Ni were in atomic ratios of 0.3, 0 to 0.6, 0.2, and 3 with respect to Mm of 1.00. .9-
Each element was weighed so as to be 4.5 and melted in a high-frequency melting furnace under an argon atmosphere, and the peripheral speed was 7 to 75 m /
The molten metal of the hydrogen storage alloy was poured onto a disk having a diameter of 3.5 cm rotating in seconds, to obtain a hydrogen storage alloy powder. After heat-treating the obtained hydrogen storage alloy powder at 600 to 1150 ° C, necessary ones were pulverized to obtain a hydrogen storage alloy powder having an average particle diameter of 32 µm. As a comparison, each element of the above composition was melted in a high-frequency melting furnace, cast into a water-cooled mold to produce a hydrogen storage alloy, heat-treated at 1050 ° C., and then pulverized, except that the average particle size was 32 μm. A hydrogen storage alloy powder was obtained.

【0014】電池の作製 処理した粉末を2g採取し、3%のポリビニルアルコー
ル(重合度2000)水溶液0.5gを加えて混合し、
ぺーストとした。得られたペーストを、繊維状Ni支持
体に塗着して乾燥した後加圧成型し、厚みが0.5mm
の負極を得た。ついで、酸化ニッケル正極として、公知
の方法で作製された燒結式ニッケル正極を用いると共
に、セパレータとしてポリプロピレン系不織布、電解液
として6規定の水酸化カリウム水溶液を使用し、負極と
組み合わせて負極規制の開放型ニッケル−水素二次電池
を作製し、下記のようにして初期活性及び初期容量を測
定した。
2 g of the prepared powder of the battery was collected, and 0.5 g of a 3% aqueous solution of polyvinyl alcohol (degree of polymerization 2000) was added and mixed.
Paste. The resulting paste was applied to a fibrous Ni support, dried, and then pressure molded to a thickness of 0.5 mm.
A negative electrode was obtained. Then, as a nickel oxide positive electrode, a sintered nickel positive electrode manufactured by a known method is used, a polypropylene nonwoven fabric is used as a separator, a 6N aqueous potassium hydroxide solution is used as an electrolyte, and the negative electrode is opened in combination with the negative electrode. A nickel-hydrogen secondary battery was manufactured, and the initial activity and the initial capacity were measured as described below.

【0015】放電容量及びサイクル寿命特性の評価 上記の如くして得られた電池を、20℃の一定温度下
で、180mAで5時間充電する一方、電池電圧が1.
0Vになるまで120mAの電流で放電させるサイクル
を繰り返して、20サイクル目の値を初期容量とする一
方、サイクル寿命特性は、200サイクル時の放電容量
の低下を1サイクル当りの劣化率として評価した。評価
結果は表1に示した通りである。尚、表中で*印を付し
た実験No.のものは比較例である。
Evaluation of Discharge Capacity and Cycle Life Characteristics The battery obtained as described above was charged at 180 mA for 5 hours at a constant temperature of 20 ° C., while the battery voltage was 1.
The cycle of discharging with a current of 120 mA until 0 V was repeated, and the value at the 20th cycle was used as the initial capacity. On the other hand, the cycle life characteristics were evaluated by considering the decrease in the discharge capacity at 200 cycles as the deterioration rate per cycle. . The evaluation results are as shown in Table 1. In addition, the experiment No. marked with * in the table. Is a comparative example.

【0016】[0016]

【表1】 [Table 1]

【0017】実験No.1〜3、及び同6の結果から、本
発明の水素吸蔵合金粉末は、放電特性が非常に大きい上
サイクル寿命特性が良好であることが実証されている。
尚、実験No.6、及び同9〜13の結果から、熱処理温
度が600℃までであると、容量、サイクル寿命とも満
足いくものではないが、700〜1100℃で熱処理を
行うと、放電容量及びサイクル寿命特性とも改善される
ことが確認された。
Experiment No. The results of 1 to 3 and 6 demonstrate that the hydrogen storage alloy powder of the present invention has very large discharge characteristics and good cycle life characteristics.
In addition, experiment No. 6 and 9 to 13, the heat treatment temperature up to 600 ° C. does not satisfy both the capacity and the cycle life. However, when the heat treatment is performed at 700 to 1100 ° C., both the discharge capacity and the cycle life characteristics are low. It was confirmed to be improved.

【0018】一方、1150℃で熱処理したものは、粉
砕が困難である上放電容量及びサイクル寿命特性とも低
下した。また、実験No.6、14〜16の結果から、L
aの量が50%/Mm以上の場合には、長寿命でありな
がら放電容量が大きくなることが確認された。更に、実
験No.6、17〜20の結果から、Coが原子比で0.
1〜0.5の場合に、大きな放電容量を保ちながらサイ
クル寿命特性が良好となることが確認された。
On the other hand, when heat-treated at 1150 ° C., it was difficult to pulverize, and the discharge capacity and cycle life characteristics were reduced. Experiment No. From the results of 6, 14 to 16, L
When the amount of a was 50% / Mm or more, it was confirmed that the discharge capacity was increased while having a long life. Experiment No. From the results of 6, 17 to 20, Co was 0.1 in atomic ratio.
In the case of 1 to 0.5, it was confirmed that the cycle life characteristics were improved while maintaining a large discharge capacity.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】(La)X 1 -X{( NiM) 5-y
y Z/5 で表される水素吸蔵合金の溶湯を、周速が1
0〜70m/秒で回転する回転円盤法によって急冷し粉
末化することを特徴とする水素吸蔵合金粉末の製造方
法。但し、式中の、RはCe、Pr、Ndから選ばれる
少なくとも1種、MはAl、Cu、Fe、Mn、Ti及
びZrから選ばれる少なくとも1種であり、xは0.5
〜1、yは0.1〜0.5、zは4.0〜6.0であ
る。
1. (La) X R 1 -X {(NiM) 5-y C
o yを The molten metal of the hydrogen storage alloy expressed by Z / 5
A method for producing a hydrogen storage alloy powder, wherein the powder is quenched and powdered by a rotating disk method rotating at 0 to 70 m / sec. Here, in the formula, R is at least one selected from Ce, Pr, and Nd, M is at least one selected from Al, Cu, Fe, Mn, Ti, and Zr, and x is 0.5
-1, y is 0.1-0.5, and z is 4.0-6.0.
【請求項2】得られた粉末を、700〜1100℃で更
に熱処理する請求項1に記載された水素吸蔵合金粉末の
製造方法。
2. The method for producing a hydrogen storage alloy powder according to claim 1, wherein the obtained powder is further heat-treated at 700 to 1100 ° C.
【請求項3】yの値が0.2〜0.4である、請求項1
又は2に記載された水素吸蔵合金粉末。
3. The method according to claim 1, wherein the value of y is between 0.2 and 0.4.
Or the hydrogen storage alloy powder described in 2.
【請求項4】請求項1〜3の何れかに記載された製造方
法により得られた水素吸蔵合金粉末を用いた電極。
4. An electrode using the hydrogen storage alloy powder obtained by the production method according to claim 1.
JP9027254A 1997-01-27 1997-01-27 Production of hydrogen storage alloy powder Pending JPH10212509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9027254A JPH10212509A (en) 1997-01-27 1997-01-27 Production of hydrogen storage alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9027254A JPH10212509A (en) 1997-01-27 1997-01-27 Production of hydrogen storage alloy powder

Publications (1)

Publication Number Publication Date
JPH10212509A true JPH10212509A (en) 1998-08-11

Family

ID=12215950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9027254A Pending JPH10212509A (en) 1997-01-27 1997-01-27 Production of hydrogen storage alloy powder

Country Status (1)

Country Link
JP (1) JPH10212509A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019108120A1 (en) * 2017-11-28 2019-06-06 Nilar International Ab Milling of recovered negative electrode material
CN110496968A (en) * 2019-09-19 2019-11-26 中国核动力研究设计院 A kind of zirconium alloy powder and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019108120A1 (en) * 2017-11-28 2019-06-06 Nilar International Ab Milling of recovered negative electrode material
CN110496968A (en) * 2019-09-19 2019-11-26 中国核动力研究设计院 A kind of zirconium alloy powder and preparation method thereof

Similar Documents

Publication Publication Date Title
CN111471895B (en) Hydrogen storage alloy containing gadolinium and nickel, cathode, battery and preparation method
JP3828922B2 (en) Low Co hydrogen storage alloy
EP1227165B1 (en) Hydrogen-occluding alloy and process for producing the same
JP3603013B2 (en) Hydrogen storage alloy and nickel hydrogen secondary battery
JP3266980B2 (en) Hydrogen storage alloy, method for producing the same, and hydrogen storage alloy electrode
JP2001040442A (en) Hydrogen storage alloy
JP2655074B2 (en) Hydrogen storage alloy and its electrode
JPH10212509A (en) Production of hydrogen storage alloy powder
EP1059684B1 (en) Process for producing a hydrogen absorbing alloy, and hydrogen absorbing alloy electrodes
JP3279994B2 (en) Hydrogen storage alloy powder and negative electrode for alkaline storage battery
JP2792955B2 (en) Hydrogen storage alloy for hydrogen electrode
WO2000036171A1 (en) Hydrogen storage alloy and method for preparation thereof
JP2000234134A (en) Hydrogen storage alloy, and electrode using the same
JPH11269501A (en) Manufacture of hydrogen occlusion alloy powder, and hydrogen occlusion alloy electrode
JP2001294958A (en) Hydrogen storage alloy for nickel-hydrogen secondary battery and its producing method
JP2000239769A (en) Rare earth hydrogen storage alloy and electrode using it
JP4441936B2 (en) Hydrogen storage electrode
CN111118346B (en) Zirconium or titanium containing A2B7 type hydrogen storage alloy, negative electrode, battery and preparation method
WO2001069700A1 (en) Hydrogen absorbing alloy and negative electrode for nickel-metal hydride secondary cell
JP2004218017A (en) Hydrogen storage alloy
JP2002069511A (en) Method for producing hydrogen storage alloy and hydrogen storage alloy electrode
JP2000073134A (en) LaNi5 HYDROGEN STORAGE ALLOY AND ELECTRODE USING THE SAME
JP2000192177A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery
JPH11152533A (en) Hydrogen storage alloy and its production
JPH1025528A (en) Hydrogen storage alloy