JP2001040442A - Hydrogen storage alloy - Google Patents

Hydrogen storage alloy

Info

Publication number
JP2001040442A
JP2001040442A JP11363882A JP36388299A JP2001040442A JP 2001040442 A JP2001040442 A JP 2001040442A JP 11363882 A JP11363882 A JP 11363882A JP 36388299 A JP36388299 A JP 36388299A JP 2001040442 A JP2001040442 A JP 2001040442A
Authority
JP
Japan
Prior art keywords
hydrogen storage
alloy
storage alloy
crystal structure
type crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11363882A
Other languages
Japanese (ja)
Inventor
Kiyotaka Yasuda
清隆 安田
Minoru Sakai
実 酒井
Akira Uchiyama
朗 内山
Takashi Okifuji
貴嗣 沖藤
Yoshiki Sakaguchi
善樹 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP11363882A priority Critical patent/JP2001040442A/en
Publication of JP2001040442A publication Critical patent/JP2001040442A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an alloy excellent in hydrogen storage characteristics, having pulverizing characteristics, good initial characteristics and outputting characteristics and excellent in durability and preservability by allowing it to have a prescribed CaCu5 type crystal structure, reducing the containing ratio of Co and extremely reducing the containing ratios of Mn and Al as corrosive components. SOLUTION: This alloy has a CaCu5 type crystal structure expressed by the formula I. In the formula I, Mm denotes misch metal, and 3.7<=a<=4.2, 0<b<=0.3, 0<c<=0.4, 0.2<=d<=0.4, b+c<0.5, 5.00<=a+b+c+d<=5.20 are satisfied. Preferably, it is an alloy having a CaCu5 type crystal structure expressed by the formula II. In the formula II, Mm denotes misch metal, X denotes Fe and/or Cu, and 3.7<=a<=4.2, 0<b<=0.3, 0<c<=0.4, 0.2<=d<=0.4, 0<e<=0.4, b+c<0.5, 5.00<=a+b+c+d+e<=5.20 are satisfied. Moreover, the content of La in Mm is controlled to 20 to 30 wt.% in the hydrogen alloy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金に関
し、詳しくは合金中のコバルト、マンガン、アルミニウ
ムの含有割合を極めて少なくしつつ、微粉化特性及び水
素吸蔵特性(PCT特性)に優れ、しかも電池特性とし
て重要な、初期活性に優れるばかりか、電動工具等の高
出力特性やハイブリッド電気自動車用途の低温特性が良
好で、しかも耐久性や保存性について高い信頼性を有す
る水素吸蔵合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy, and more particularly, to an alloy having an extremely small content of cobalt, manganese, and aluminum, excellent pulverization characteristics and hydrogen storage characteristics (PCT characteristics), and The present invention relates to a hydrogen storage alloy having excellent initial activity, which is important as battery characteristics, high power characteristics of electric tools and the like, and good low-temperature characteristics for hybrid electric vehicles, and high reliability in durability and storage stability.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
ニッケル−カドミウム蓄電池に代わる高容量アルカリ蓄
電池として、水素吸蔵合金を負極に用いたニッケル−水
素蓄電池(二次電池)が注目されている。この水素吸蔵
合金は、現在では希土類系の混合物であるMm(ミッシ
ュメタル)とNi、Al、Mn、Coとの5元素の水素
吸蔵合金が汎用されている。
2. Description of the Related Art In recent years,
As a high-capacity alkaline storage battery that replaces a nickel-cadmium storage battery, a nickel-hydrogen storage battery (secondary battery) using a hydrogen storage alloy for a negative electrode has attracted attention. At present, as the hydrogen storage alloy, a five-element hydrogen storage alloy of Mm (mish metal), which is a rare earth-based mixture, and Ni, Al, Mn, and Co is widely used.

【0003】このMm−Ni−Mn−Al−Co合金
は、La系のそれに比べて比較的安価な材料で負極を構
成でき、サイクル寿命が長く、過充電時の発生ガスによ
る内圧上昇が少ない密閉型ニッケル水素蓄電池を得るこ
とができることから、電極材料として広く用いられてい
る。
[0003] This Mm-Ni-Mn-Al-Co alloy can form a negative electrode with a relatively inexpensive material as compared with a La-based alloy, has a long cycle life, and has a small internal pressure rise due to gas generated during overcharge. Since it is possible to obtain a nickel-metal hydride storage battery, it is widely used as an electrode material.

【0004】現在用いられているMm−Ni−Mn−A
l−Co合金は、合金の微粉化を抑制してサイクル寿命
を長くしているが、一般的にこの微粉化抑制のためには
10重量%程度のCo(原子比で0.6〜1.0)を必
要とすることが知られている。また、優れた水素吸蔵特
性及び耐食性を得るためにも一定量のCoの含有は必要
とされている。
[0004] Currently used Mm-Ni-Mn-A
The l-Co alloy suppresses the pulverization of the alloy and prolongs the cycle life. Generally, however, to suppress the pulverization, about 10% by weight of Co (at an atomic ratio of 0.6 to 1. 0) is known. Further, in order to obtain excellent hydrogen storage characteristics and corrosion resistance, a certain amount of Co is required.

【0005】しかしながら、Coの含有率が高いとそれ
だけ原料コストが高くなり、原料コストの面から問題視
されている。特に、電気自動車用電源(EV:Electric
Vehicle)等の大型電池への適用やニッケル−水素蓄電
池の更なる市場の増大に対しては、原料コストは、電極
負極材料の選定において大きな割合を占め、このことが
問題となっていた。
However, the higher the Co content, the higher the raw material cost, and this is regarded as a problem from the viewpoint of raw material cost. In particular, power supplies for electric vehicles (EV: Electric
For the application to large batteries such as vehicles and the further increase in the market for nickel-hydrogen storage batteries, the raw material cost accounts for a large proportion in the selection of the electrode negative electrode material, which has been a problem.

【0006】このような問題を解決するために、特開平
9−213319号公報には、Mm−Ni−Mn−Al
−Co系合金の組成を変化させ、これにさらに少量の1
元素を加えることが提案されている。同公報に記載の水
素吸蔵合金粉末を負極に用いることによって、Coが少
量にも拘わらず、合金の微粉化による負極の劣化を一定
限度抑制し、電池のサイクル寿命を長くすることができ
る。
[0006] To solve such a problem, Japanese Patent Application Laid-Open No. 9-213319 discloses Mm-Ni-Mn-Al.
-The composition of the Co-based alloy was changed, and
It has been proposed to add elements. By using the hydrogen storage alloy powder described in the publication for the negative electrode, the deterioration of the negative electrode due to the pulverization of the alloy can be suppressed to a certain extent and the cycle life of the battery can be prolonged despite the small amount of Co.

【0007】しかしながら、特開平9−213319号
公報にある組成合金は、必ずしも特性が安定しておら
ず、そのため本発明者らによる特開平11−15253
3号公報では、良好な初期活性を得るための組成と製造
方法が提案されており、これにより低Co合金は特定の
用途で使用されるに至っている。
However, the characteristics of the composition alloy disclosed in Japanese Patent Application Laid-Open No. 9-213319 are not always stable, and therefore, the inventors of the present invention disclosed in Japanese Patent Application Laid-Open No. 11-15253.
No. 3 proposes a composition and a production method for obtaining a good initial activity, whereby a low Co alloy has been used for a specific application.

【0008】しかるに、同公報(特開平9−21331
9号公報、特開平11−152533号公報)に開示の
水素吸蔵合金を用いた場合には、出力特性、特に低温で
の出力が十分ではなく、電動工具等の高出力特性やハイ
ブリッド電気自動車用途としては使用できないという問
題がある。
However, the same publication (Japanese Patent Laid-Open No. 9-21331)
No. 9, JP-A-11-152533), the output characteristics, especially at low temperatures, are not sufficient, and the high output characteristics of electric tools and the like, and the use for hybrid electric vehicles are not sufficient. There is a problem that can not be used.

【0009】さらに、水素吸蔵合金には特に電気自動車
に適用した場合、長期使用時の耐久や高温保存時の腐食
に対して高い信頼性が求められている。しかしながら、
一般に広く使用されている水素吸蔵合金には、特性維持
のために必要とされている必須元素のMnやAlが、M
nとAlの総和で0.7モル程度含有されており、これ
ら元素が電池の充放電サイクル時や保存時に腐食して電
池劣化を起こすことが問題となっている。
[0009] Further, especially when applied to electric vehicles, the hydrogen storage alloy is required to have high durability against long-term use and high reliability against corrosion during high-temperature storage. However,
In general, hydrogen storage alloys that are widely used include Mn and Al, which are essential elements required for maintaining characteristics,
About 0.7 mol is contained in total of n and Al, and there is a problem that these elements are corroded during a charge / discharge cycle or storage of the battery to cause battery deterioration.

【0010】従って、本発明の目的は、コバルトの含有
割合を少なくすることと同時に、合金中の腐食成分であ
るマンガン及びアルミニウムの含有割合を極めて少なく
して、水素吸蔵特性に優れると共に、微粉化特性や良好
な初期特性や出力特性を有し、しかも耐久性や保存性に
ついて高い信頼性を有する水素吸蔵合金を提供すること
にある。
Accordingly, it is an object of the present invention to reduce the content of cobalt, and at the same time, to extremely reduce the content of manganese and aluminum, which are corrosive components in the alloy, to provide excellent hydrogen storage properties and fine powder. An object of the present invention is to provide a hydrogen storage alloy having characteristics, good initial characteristics and output characteristics, and having high reliability in durability and storage stability.

【0011】[0011]

【課題を解決するための手段】本発明者等は種々の研究
を重ねた結果、マンガン及びアルミニウムの含有量を従
来より低減し、かつミッシュメタル中のランタン量を調
整し、ABx型合金組成を特定の化学量論比とすること
によって、上記目的を達成し得ることを知見した。
As a result of various studies, the present inventors have found that the content of manganese and aluminum is reduced, the amount of lanthanum in misch metal is adjusted, and the ABx type alloy composition is adjusted. It has been found that the above object can be achieved by using a specific stoichiometric ratio.

【0012】本発明は、上記知見に基づきなされたもの
で、一般式 MmNia Mnb Alc Cod e (式中、Mmはミッシュメタル、XはFe及び/又はC
u、3.7≦a≦4.2、0≦b≦0.3、0≦c≦
0.4、0.2≦d≦0.4、0≦e≦0.4、5.0
0≦a+b+c+d+e≦5.20、但しb=c=0の
場合を除く、また0<b≦0.3、かつ0<c≦0.4
の場合は、b+c<0.5である)で表されるCaCu
5 型の結晶構造を有することを特徴とする水素吸蔵合金
を提供するものである。
[0012] The present invention has been made based on the above findings, the general formula MmNi a Mn b Al c Co d X e ( wherein, Mm is the mischmetal, X is Fe and / or C
u, 3.7 ≦ a ≦ 4.2, 0 ≦ b ≦ 0.3, 0 ≦ c ≦
0.4, 0.2 ≦ d ≦ 0.4, 0 ≦ e ≦ 0.4, 5.0
0 ≦ a + b + c + d + e ≦ 5.20, except when b = c = 0, and 0 <b ≦ 0.3 and 0 <c ≦ 0.4
B + c <0.5 in the case of
It is intended to provide a hydrogen storage alloy having a 5- type crystal structure.

【0013】[0013]

【発明の実施の形態】本発明の水素吸蔵合金は、一般式 MmNia Mnb Alc Cod e (式中、Mmはミッシュメタル、XはFe及び/又はC
u、3.7≦a≦4.2、0≦b≦0.3、0≦c≦
0.4、0.2≦d≦0.4、0≦e≦0.4、5.0
0≦a+b+c+d+e≦5.20、但しb=c=0の
場合を除く、また0<b≦0.3、かつ0<c≦0.4
の場合は、b+c<0.5である)で表されるCaCu
5 型の結晶構造を有するAB5 型水素吸蔵合金である。
Hydrogen storage alloy of the embodiment of the present invention have the general formula MmNi a Mn b Al c Co d X e ( wherein, Mm is the mischmetal, X is Fe and / or C
u, 3.7 ≦ a ≦ 4.2, 0 ≦ b ≦ 0.3, 0 ≦ c ≦
0.4, 0.2 ≦ d ≦ 0.4, 0 ≦ e ≦ 0.4, 5.0
0 ≦ a + b + c + d + e ≦ 5.20, except when b = c = 0, and 0 <b ≦ 0.3 and 0 <c ≦ 0.4
B + c <0.5 in the case of
AB 5 type hydrogen storage alloy having a 5 type crystal structure.

【0014】ここで、MmはLa、Ce、Pr、Nd、
Sm等の希土類系の混合物であるミッシュメタルであ
る。Mm中のLaの含有量は、60〜90重量%(水素
吸蔵合金中では20〜30重量%)であることが望まし
い。また、この水素吸蔵合金は、CaCu5 型の結晶構
造を有するAB5 型水素吸蔵合金であり、AB5.005.
20のBサイトリッチの非化学量論組成である。
Here, Mm is La, Ce, Pr, Nd,
It is a misch metal that is a rare earth-based mixture such as Sm. The content of La in Mm is desirably 60 to 90% by weight (20 to 30% by weight in a hydrogen storage alloy). This hydrogen storage alloy is an AB 5 type hydrogen storage alloy having a CaCu 5 type crystal structure, and AB 5.00 to 5.
20 B-site rich non-stoichiometric composition.

【0015】この水素吸蔵合金において、Nia Mnb
Alc Cod e (XはCu及び/又はFe)の組成割
合(原子比)は、下記の関係を有するものである。すな
わち、Niの割合は3.7≦a≦4.2であり、Mnの
割合は0≦b≦0.3であり、Alの割合は0≦c≦
0.4であり、Coの割合は0.2≦d≦0.4であ
り、Xの割合は0≦e≦0.4であり、かつa+b+c
+d+eが5.00〜5.20の範囲にある。但し、b
=c=0の場合は除かれる。また、0<b≦0.3、か
つ0<c≦0.4の場合は、b+c<0.5である。
In this hydrogen storage alloy, Ni a Mn b
Al c Co d X e (X is Cu and / or Fe) composition ratios (atomic ratios) of are those having the following relationship. That is, the ratio of Ni is 3.7 ≦ a ≦ 4.2, the ratio of Mn is 0 ≦ b ≦ 0.3, and the ratio of Al is 0 ≦ c ≦
0.4, the ratio of Co is 0.2 ≦ d ≦ 0.4, the ratio of X is 0 ≦ e ≦ 0.4, and a + b + c
+ D + e is in the range of 5.00 to 5.20. Where b
= C = 0 is excluded. When 0 <b ≦ 0.3 and 0 <c ≦ 0.4, b + c <0.5.

【0016】上記のように、Niの割合aは3.7〜
4.2、望ましくは3.9〜4.1であり、aが3.7
未満では初期活性特性や出力特性が良好でなく、4.2
を超えると微粉化特性や寿命特性の劣化が認められる。
As described above, the proportion a of Ni is 3.7 to 3.7.
4.2, desirably 3.9 to 4.1, and a is 3.7
If less than 4.2, the initial activation characteristics and output characteristics are not good, and
If it exceeds 300, deterioration of pulverization characteristics and life characteristics are observed.

【0017】Mnの割合bは0〜0.3、好ましくは0
〜0.25であり、bが0.3を超えると鋳造の条件に
よっては結晶粒界の均質化のための熱処理を施してもM
nを含む偏析を消失できない部位が生じ、腐食を促進す
る場合が認められ、耐久性や保存性について高い信頼性
が得られない。
The ratio b of Mn is 0 to 0.3, preferably 0.
When b exceeds 0.3, even if a heat treatment for homogenizing grain boundaries is performed depending on casting conditions, M
There are sites where segregation including n cannot be eliminated, which may promote corrosion, and high reliability in durability and storage stability cannot be obtained.

【0018】Alの割合cは0〜0.4、好ましくは0
〜0.25であり、0.4を超えると保存性について高
い信頼性が得られない。
The proportion c of Al is 0 to 0.4, preferably 0 to 0.4.
If it exceeds 0.4, high reliability of storage stability cannot be obtained.

【0019】MnとAlの総量b+cが0となることは
なく、またMnとAlのいずれも含む場合には、その総
量b+cが0.5未満である。b+cが0.5以上であ
ると初期の活性が損なわれるばかりか、耐久性や保存性
について高い信頼性が得られない。
The total amount b + c of Mn and Al does not become 0, and when both Mn and Al are included, the total amount b + c is less than 0.5. When b + c is 0.5 or more, not only initial activity is impaired, but also high reliability in durability and storage stability cannot be obtained.

【0020】Coの割合dは0.2〜0.4であり、d
が0.2未満では水素吸蔵特性や微粉化特性に劣り、
0.4を超えるとCoの割合が多くなり、コストの低減
が図れない。
The proportion d of Co is 0.2 to 0.4,
Is less than 0.2, the hydrogen storage properties and the pulverization properties are inferior,
If it exceeds 0.4, the proportion of Co increases, and cost cannot be reduced.

【0021】Xの割合eは0〜0.4、好ましくは0〜
0.3であり、eが0.4を超えると初期活性特性や出
力特性が損なわれ、また、水素吸蔵量も損なわれる。
The proportion e of X is 0 to 0.4, preferably 0 to 0.4.
When e exceeds 0.4, the initial activation characteristics and output characteristics are impaired, and the hydrogen storage amount is impaired.

【0022】a+b+c+d+e(以下、場合によって
xと総称する)は5.00〜5.20であり、xが5.
00未満では電池寿命や微粉化特性が損なわれ、5.2
0を超えた場合には、水素吸蔵特性が減少すると同時に
出力特性も損なわれる。
A + b + c + d + e (hereinafter sometimes collectively referred to as x) is 5.00 to 5.20, and x is 5.
If it is less than 00, the battery life and pulverization characteristics are impaired, and 5.2
If it exceeds 0, the hydrogen storage characteristics decrease and the output characteristics also deteriorate.

【0023】次に、本発明の水素吸蔵合金の好ましい製
造方法について説明する。先ず、上記で示したような合
金組成となるように、水素吸蔵合金原料を秤量、混合
し、例えば誘導加熱による高周波加熱溶解炉を用いて、
上記水素吸蔵合金原料を溶解して溶湯となす、これを鋳
型、例えば水冷型の鋳型に流し込んで水素吸蔵合金を1
350〜1550℃で鋳造する。また、この際の鋳湯温
度は1200〜1450℃である。
Next, a preferred method for producing the hydrogen storage alloy of the present invention will be described. First, the hydrogen storage alloy raw material is weighed and mixed so as to have the alloy composition as described above, for example, using a high-frequency heating melting furnace by induction heating,
The above-mentioned hydrogen storage alloy material is melted to form a molten metal, which is poured into a mold, for example, a water-cooled mold to reduce the hydrogen storage alloy to 1
Cast at 350-1550 ° C. The casting temperature at this time is 1200 to 1450 ° C.

【0024】次に、得られた水素吸蔵合金を不活性ガス
雰囲気中、例えばアルゴンガス中で熱処理する。熱処理
条件は1070〜1100℃、1〜6時間である。この
ような熱処理を行うのは、鋳造された合金の組織には通
常Mn主体の微細な粒界偏析が認められるが、これを加
熱することによって均質化するためである。
Next, the obtained hydrogen storage alloy is heat-treated in an inert gas atmosphere, for example, an argon gas. The heat treatment conditions are 1070 to 1100 ° C. for 1 to 6 hours. Such heat treatment is performed because the structure of the cast alloy usually has fine grain boundary segregation mainly composed of Mn, but is homogenized by heating.

【0025】このようにして、コバルト、マンガン、ア
ルミニウムの含有割合を低減したにも拘わらず、微粉化
特性及び水素吸蔵特性に優れると共に、良好な出力特性
及び初期特性を有し、しかも耐久性や保存性について高
い信頼性を有する水素吸蔵合金が得られる。
In this way, despite having reduced the content ratio of cobalt, manganese and aluminum, it has excellent pulverization characteristics and hydrogen storage characteristics, has good output characteristics and initial characteristics, and has high durability and durability. A hydrogen storage alloy having high reliability in storage stability can be obtained.

【0026】この水素吸蔵合金は、粗粉砕、微粉砕後、
高出力用アルカリ蓄電池の負極として好適に用いられ
る。かかるアルカリ蓄電池は、初期特性や低温高出力特
性が良好で、合金の微粉化による負極の劣化が抑制さ
れ、サイクル寿命の長いものとなる。
The hydrogen storage alloy is subjected to coarse pulverization and fine pulverization.
It is suitably used as a negative electrode of a high-output alkaline storage battery. Such an alkaline storage battery has good initial characteristics and low-temperature high-output characteristics, suppresses deterioration of the negative electrode due to pulverization of the alloy, and has a long cycle life.

【0027】[0027]

【実施例】以下、本発明を実施例等に基づき具体的に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments and the like.

【0028】[実施例1]Mm、Ni、Mn、Al、C
o及びFeを合金組成でMmNi4.2 Mn0.2 Al0.3
Co0.4 Fe0.1 (AB5.2 )となるように、各水素吸
蔵合金原料を秤量、混合し、その混合物をルツボに入れ
て高周波溶解炉に固定し、10-4〜10-5Torrまで
真空状態にした後、アルゴンガス雰囲気中で加熱溶解し
た後、水冷式銅鋳型に流し込み、1350℃(鋳湯温度
1250℃)で鋳造を行い、合金を得た。さらに、この
合金をアルゴンガス雰囲気中で、1080℃、3時間熱
処理を行い、水素吸蔵合金を得た。
[Example 1] Mm, Ni, Mn, Al, C
o and Fe in alloy composition of MmNi 4.2 Mn 0.2 Al 0.3
Each hydrogen storage alloy raw material is weighed and mixed so that Co 0.4 Fe 0.1 (AB 5.2 ), and the mixture is placed in a crucible and fixed in a high-frequency melting furnace, and evacuated to 10 -4 to 10 -5 Torr. Then, after heating and melting in an argon gas atmosphere, the mixture was poured into a water-cooled copper mold and cast at 1350 ° C. (casting temperature 1250 ° C.) to obtain an alloy. Further, this alloy was heat-treated at 1080 ° C. for 3 hours in an argon gas atmosphere to obtain a hydrogen storage alloy.

【0029】[実施例2〜20及び比較例1〜6]合金
組成を表1に示したように変更した以外は、実施例1と
同様にして水素吸蔵合金を得た。
Examples 2 to 20 and Comparative Examples 1 to 6 Hydrogen storage alloys were obtained in the same manner as in Example 1 except that the alloy compositions were changed as shown in Table 1.

【0030】[特性評価]実施例1〜20及び比較例1
〜6で得られた水素吸蔵合金について、下記に示す方法
によってPCT容量、微粉化残存率、初期容量、電極寿
命、出力特性、保存腐食(Al及びMn)を測定した。
結果を表2に示す。
[Evaluation of Characteristics] Examples 1 to 20 and Comparative Example 1
With respect to the hydrogen storage alloys obtained in Nos. 6 to 6, PCT capacity, residual ratio of micronized powder, initial capacity, electrode life, output characteristics, and storage corrosion (Al and Mn) were measured by the following methods.
Table 2 shows the results.

【0031】<PCT容量>45℃で測定した吸蔵特性
から計算した。H/M:0〜0.5MPa
<PCT capacity> Calculated from the storage characteristics measured at 45 ° C. H / M: 0 to 0.5 MPa

【0032】<微粉化残存率>PCT装置で、粒度22
〜53ミクロンに調整した水素吸蔵合金に、30bar
の水素ガスを導入して水素を吸蔵させ、その後脱蔵排気
する処理を10回繰り返した後、サイクル試験前の平均
粒度に対するサイクル試験後の平均粒度の比で計算し、
比較例1の値を100とした指数で表示した。
<Residual rate of pulverization>
30 bar for hydrogen storage alloy adjusted to ~ 53 microns
After the process of introducing hydrogen gas to occlude hydrogen and then evacuating and evacuating it 10 times was repeated, the ratio of the average particle size after the cycle test to the average particle size before the cycle test was calculated,
It was indicated by an index with the value of Comparative Example 1 being 100.

【0033】(電極セルの作製)粒度22〜53ミクロ
ンに調整した水素吸蔵合金粉末を、導電材及び結合材と
共に所定量混合し、得られた混合粉をプレスしてペレッ
ト電極を作製し、負極とした。このペレット負極を、十
分な容量の正極(焼結式水酸化ニッケル)でセパレータ
を間にして挟み込み、比重1.30のKOH水溶液中に
浸漬させモデルセルを作製した。 (充放電条件の設定) 1)初期活性化試験 ・充電0.2C−130%;放電0.2C−0.7Vカ
ット ・サイクル:15サイクル ・温度:20℃ 2)出力特性 ・充電0.2C−130%;放電1C−0.7Vカット ・温度:0℃ 3)寿命試験 ・充電2C/3−1h;放電2C/3−1h ・サイクル:100サイクル
(Preparation of Electrode Cell) A predetermined amount of a hydrogen storage alloy powder adjusted to a particle size of 22 to 53 microns was mixed with a conductive material and a binder, and the obtained powder mixture was pressed to prepare a pellet electrode, and a negative electrode was prepared. And The negative electrode of the pellet was sandwiched by a positive electrode (sintered nickel hydroxide) having a sufficient capacity with a separator interposed therebetween, and immersed in a KOH aqueous solution having a specific gravity of 1.30 to produce a model cell. (Setting of charge / discharge conditions) 1) Initial activation test ・ Charge 0.2C-130%; Discharge 0.2C-0.7V cut ・ Cycle: 15 cycles ・ Temperature: 20 ° C 2) Output characteristics ・ Charge 0.2C -130%; Discharge 1C-0.7V cut ・ Temperature: 0 ° C 3) Life test ・ Charge 2C / 3-1h; Discharge 2C / 3-1h ・ Cycle: 100 cycles

【0034】<初期容量>上記初期活性試験で、1サイ
クル目の放電容量の値を表示した。
<Initial Capacity> In the above initial activity test, the value of the discharge capacity at the first cycle was indicated.

【0035】<電極寿命>上記寿命試験後、充電0.2
C−130%、放電0.2C−0.7Vカット時の放電
容量を測定し、活性化後の初期放電容量に対する比を残
存容量として評価した。
<Electrode Life> After the above life test, charge 0.2
The discharge capacity at the time of cutting C-130% and discharge 0.2C-0.7V was measured, and the ratio to the initial discharge capacity after activation was evaluated as the remaining capacity.

【0036】<出力特性>初期活性化後、上記条件によ
り0℃、1Cでの低温ハイレートでの放電容量を測定し
た。
<Output Characteristics> After the initial activation, the discharge capacity at a low temperature and a high rate at 0 ° C. and 1 C was measured under the above conditions.

【0037】<保存腐食>保存時の腐食挙動を評価する
のに、分級した水素吸蔵合金粉末を比重1.30のKO
H水溶液中に、75℃で48時間放置し、マンガン及び
アルミニウムの溶出試験を行い、ICP化学分析にて定
量し、比較例1の値をそれぞれ100とした場合の指数
で表示した。
<Storage Corrosion> In order to evaluate the corrosion behavior during storage, classified hydrogen storage alloy powder was subjected to KO having a specific gravity of 1.30.
It was left in an aqueous H solution at 75 ° C. for 48 hours to perform a dissolution test of manganese and aluminum, quantified by ICP chemical analysis, and indicated by an index when the value of Comparative Example 1 was 100.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】表2の結果から明らかなように、実施例1
〜20は比較例1〜6よりも初期容量が大幅に高く、ま
た保存性にも優れている。
As is clear from the results in Table 2, Example 1
Nos. To 20 have significantly higher initial capacities than Comparative Examples 1 to 6, and also have excellent storage stability.

【0041】[0041]

【発明の効果】以上説明したように、本発明の水素吸蔵
合金は、コバルトの含有割合を極めて少なくすることと
同時に、合金中の腐食成分であるマンガン及びアルミニ
ウムの含有割合を極めて少なくし、水素吸蔵特性に優れ
ると共に、微粉化特性や良好な出力特性及び初期特性を
有し、しかも耐久性や保存性について高い信頼性を有す
る。
As described above, in the hydrogen storage alloy of the present invention, the content ratio of manganese and aluminum, which are corrosion components in the alloy, is extremely reduced while the content ratio of cobalt is extremely reduced. It has excellent occlusion characteristics, has pulverization characteristics, good output characteristics and initial characteristics, and has high reliability in durability and storage stability.

フロントページの続き (72)発明者 坂口 善樹 広島県竹原市本町2−7−1Continued on the front page (72) Inventor Yoshiki Sakaguchi 2-7-1 Honcho, Takehara-shi, Hiroshima

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 一般式 MmNia Mnb Alc Cod (式中、Mmはミッシュメタル、3.7≦a≦4.2、
0<b≦0.3、0<c≦0.4、0.2≦d≦0.
4、b+c<0.5、5.00≦a+b+c+d≦5.
20)で表されるCaCu5 型の結晶構造を有すること
を特徴とする水素吸蔵合金。
1. A general formula MmNi a Mn b Al c Co d ( wherein, Mm is the mischmetal, 3.7 ≦ a ≦ 4.2,
0 <b ≦ 0.3, 0 <c ≦ 0.4, 0.2 ≦ d ≦ 0.
4, b + c <0.5, 5.00 ≦ a + b + c + d ≦ 5.
20) A hydrogen storage alloy having a CaCu 5 type crystal structure represented by the following 20).
【請求項2】 一般式 MmNia Mnb Alc Cod e (式中、Mmはミッシュメタル、XはFe及び/又はC
u、3.7≦a≦4.2、0<b≦0.3、0<c≦
0.4、0.2≦d≦0.4、0<e≦0.4、b+c
<0.5、5.00≦a+b+c+d+e≦5.20)
で表されるCaCu5 型の結晶構造を有することを特徴
とする水素吸蔵合金。
Wherein in the general formula MmNi a Mn b Al c Co d X e ( wherein, Mm is the mischmetal, X is Fe and / or C
u, 3.7 ≦ a ≦ 4.2, 0 <b ≦ 0.3, 0 <c ≦
0.4, 0.2 ≦ d ≦ 0.4, 0 <e ≦ 0.4, b + c
<0.5, 5.00 ≦ a + b + c + d + e ≦ 5.20)
A hydrogen storage alloy having a CaCu 5 type crystal structure represented by the following formula:
【請求項3】 一般式 MmNia Alc Cod (式中、Mmはミッシュメタル、3.7≦a≦4.2、
0<c≦0.4、0.2≦d≦0.4、5.00≦a+
c+d≦5.20)で表されるCaCu5 型の結晶構造
を有することを特徴とする水素吸蔵合金。
3. In the general formula MmNi a Al c Co d (wherein, Mm is the mischmetal, 3.7 ≦ a ≦ 4.2,
0 <c ≦ 0.4, 0.2 ≦ d ≦ 0.4, 5.00 ≦ a +
c + d ≦ 5.20) A hydrogen storage alloy having a CaCu 5 type crystal structure represented by the following formula:
【請求項4】 一般式 MmNia Alc Cod e (式中、Mmはミッシュメタル、XはFe及び/又はC
u、3.7≦a≦4.2、0<c≦0.4、0.2≦d
≦0.4、0<e≦0.4、5.00≦a+c+d+e
≦5.20)で表されるCaCu5 型の結晶構造を有す
ることを特徴とする水素吸蔵合金。
Wherein the general formula MmNi a Al c Co d X e ( wherein, Mm is the mischmetal, X is Fe and / or C
u, 3.7 ≦ a ≦ 4.2, 0 <c ≦ 0.4, 0.2 ≦ d
≦ 0.4, 0 <e ≦ 0.4, 5.00 ≦ a + c + d + e
≦ 5.20) A hydrogen storage alloy having a CaCu 5 type crystal structure represented by the following formula:
【請求項5】 一般式 MmNia Mnb Cod (式中、Mmはミッシュメタル、3.7≦a≦4.2、
0<b≦0.3、0.2≦d≦0.4、5.00≦a+
b+d≦5.20)で表されるCaCu5 型の結晶構造
を有することを特徴とする水素吸蔵合金。
5. In the general formula MmNi a Mn b Co d (wherein, Mm is the mischmetal, 3.7 ≦ a ≦ 4.2,
0 <b ≦ 0.3, 0.2 ≦ d ≦ 0.4, 5.00 ≦ a +
(b + d ≦ 5.20) A hydrogen storage alloy having a CaCu 5 type crystal structure represented by the following formula:
【請求項6】 一般式 MmNia Mnb Cod e (式中、Mmはミッシュメタル、XはFe及び/又はC
u、3.7≦a≦4.2、0<b≦0.3、0.2≦d
≦0.4、0<e≦0.4、5.00≦a+b+d+e
≦5.20)で表されるCaCu5 型の結晶構造を有す
ることを特徴とする水素吸蔵合金。
6. A general formula MmNi a Mn b Co d X e ( wherein, Mm is the mischmetal, X is Fe and / or C
u, 3.7 ≦ a ≦ 4.2, 0 <b ≦ 0.3, 0.2 ≦ d
≦ 0.4, 0 <e ≦ 0.4, 5.00 ≦ a + b + d + e
≦ 5.20) A hydrogen storage alloy having a CaCu 5 type crystal structure represented by the following formula:
【請求項7】 上記Mm中のLa量が水素合金中20〜
30重量%である請求項1〜6のいずれかに記載の水素
吸蔵合金。
7. The amount of La in said Mm is 20 to 20 in the hydrogen alloy.
The hydrogen storage alloy according to any one of claims 1 to 6, which is 30% by weight.
JP11363882A 1999-05-26 1999-12-22 Hydrogen storage alloy Pending JP2001040442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11363882A JP2001040442A (en) 1999-05-26 1999-12-22 Hydrogen storage alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-146452 1999-05-26
JP14645299 1999-05-26
JP11363882A JP2001040442A (en) 1999-05-26 1999-12-22 Hydrogen storage alloy

Publications (1)

Publication Number Publication Date
JP2001040442A true JP2001040442A (en) 2001-02-13

Family

ID=26477287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11363882A Pending JP2001040442A (en) 1999-05-26 1999-12-22 Hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JP2001040442A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002101855A1 (en) * 2001-06-11 2002-12-19 Santoku Corporation Method for fabricating negative electrode for secondary cell
WO2003054240A1 (en) * 2001-12-13 2003-07-03 Santoku Corporation Hydrogen storage alloy and hydrogen storage alloy powder, method for production thereof, and negative electrode for nickel-hydrogen secondary cell
WO2007040277A1 (en) * 2005-10-06 2007-04-12 Mitsui Mining & Smelting Co., Ltd. LOW-Co HYDROGEN ABSORBING ALLOY
US7314594B2 (en) 2002-12-27 2008-01-01 Mitsui Mining & Smelting Co., Ltd. Hydrogen storage alloy
EP2123782A1 (en) * 2007-01-30 2009-11-25 Chuo Denki Kogyo Co., Ltd. Hydrogen storage alloy, and electrode for nickel-hydrogen battery
WO2012073418A1 (en) * 2010-12-03 2012-06-07 パナソニック株式会社 Hydrogen-storage alloy particles, alloy powder for electrode, and alkaline storage battery
US8535460B2 (en) 2003-08-08 2013-09-17 Mitsui Mining & Smelting Co., Ltd. Low Co hydrogen storage alloy
WO2014155950A1 (en) * 2013-03-29 2014-10-02 パナソニック株式会社 Alloy powder for electrodes, negative electrode for nickel-metal hydride storage batteries using same, and nickel-metal hydride storage battery
WO2018123752A1 (en) 2016-12-26 2018-07-05 三井金属鉱業株式会社 Hydrogen storage alloy
CN116445791A (en) * 2023-04-04 2023-07-18 惠州星燚新材料技术有限公司 Hydrogen storage alloy and preparation process thereof

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367608A (en) * 2001-06-11 2002-12-20 Santoku Corp Manufacturing method of negative electrode for secondary cell
EP1418636A1 (en) * 2001-06-11 2004-05-12 Santoku Corporation Method for fabricating negative electrode for secondary cell
EP1418636A4 (en) * 2001-06-11 2006-04-26 Santoku Corp Method for fabricating negative electrode for secondary cell
US7160502B2 (en) 2001-06-11 2007-01-09 Santoku Corporation Method for producing anode for rechargeable battery
WO2002101855A1 (en) * 2001-06-11 2002-12-19 Santoku Corporation Method for fabricating negative electrode for secondary cell
CN100400691C (en) * 2001-12-13 2008-07-09 株式会社三德 Hydrogen storage alloy and hydrogen storage alloy powder, method for production thereof, and negative electrode for nickel-hydrogen secondary cell
WO2003054240A1 (en) * 2001-12-13 2003-07-03 Santoku Corporation Hydrogen storage alloy and hydrogen storage alloy powder, method for production thereof, and negative electrode for nickel-hydrogen secondary cell
US7314594B2 (en) 2002-12-27 2008-01-01 Mitsui Mining & Smelting Co., Ltd. Hydrogen storage alloy
US9219277B2 (en) 2003-08-08 2015-12-22 Mitsui Mining & Smelting Co., Ltd. Low Co hydrogen storage alloy
US8535460B2 (en) 2003-08-08 2013-09-17 Mitsui Mining & Smelting Co., Ltd. Low Co hydrogen storage alloy
WO2007040277A1 (en) * 2005-10-06 2007-04-12 Mitsui Mining & Smelting Co., Ltd. LOW-Co HYDROGEN ABSORBING ALLOY
EP2123782A1 (en) * 2007-01-30 2009-11-25 Chuo Denki Kogyo Co., Ltd. Hydrogen storage alloy, and electrode for nickel-hydrogen battery
EP2123782A4 (en) * 2007-01-30 2014-01-08 Chuo Denki Kogyo Co Ltd Hydrogen storage alloy, and electrode for nickel-hydrogen battery
WO2012073418A1 (en) * 2010-12-03 2012-06-07 パナソニック株式会社 Hydrogen-storage alloy particles, alloy powder for electrode, and alkaline storage battery
WO2014155950A1 (en) * 2013-03-29 2014-10-02 パナソニック株式会社 Alloy powder for electrodes, negative electrode for nickel-metal hydride storage batteries using same, and nickel-metal hydride storage battery
CN104321911A (en) * 2013-03-29 2015-01-28 松下知识产权经营株式会社 Alloy powder for electrodes, negative electrode for nickel-metal hydride storage batteries using same, and nickel-metal hydride storage battery
JP5861099B2 (en) * 2013-03-29 2016-02-16 パナソニックIpマネジメント株式会社 Alloy powder for electrode, negative electrode for nickel metal hydride storage battery and nickel metal hydride storage battery using the same
US9997776B2 (en) 2013-03-29 2018-06-12 Panasonic Intellectual Property Management Co., Ltd. Alloy powder for electrodes, negative electrode for nickel-metal hydride storage batteries including the same, and nickel-metal hydride storage battery including the same
WO2018123752A1 (en) 2016-12-26 2018-07-05 三井金属鉱業株式会社 Hydrogen storage alloy
US11094932B2 (en) 2016-12-26 2021-08-17 Mitsui Mining & Smelting Co., Ltd. Hydrogen storage alloy
CN116445791A (en) * 2023-04-04 2023-07-18 惠州星燚新材料技术有限公司 Hydrogen storage alloy and preparation process thereof

Similar Documents

Publication Publication Date Title
JP3965209B2 (en) Low Co hydrogen storage alloy
CN111471895A (en) Hydrogen storage alloy containing gadolinium and nickel, cathode, battery and preparation method
JP3828922B2 (en) Low Co hydrogen storage alloy
JP5681729B2 (en) Hydrogen storage alloy powder, negative electrode and nickel metal hydride secondary battery
JP2001040442A (en) Hydrogen storage alloy
JP3881823B2 (en) Hydrogen storage alloy and method for producing the same
JP2008084818A (en) Storage battery and hydrogen-absorbing alloy for same
JP3493516B2 (en) Hydrogen storage alloy and method for producing the same
JP2666249B2 (en) Hydrogen storage alloy for alkaline storage batteries
JP2005133193A (en) LOW Co HYDROGEN STORAGE ALLOY
JP2004285406A (en) Hydrogen storage alloy and electrode for nickel-hydrogen battery using the same
JP2001181763A (en) Hydrogen storage alloy
JP3114677B2 (en) Hydrogen storage alloy and method for producing the same
JP2000144278A (en) Hydrogen occlusion alloy and its production
JP2004218017A (en) Hydrogen storage alloy
JP3930638B2 (en) Hydrogen storage alloy and method for producing the same
JP4573421B2 (en) Hydrogen storage alloy
JPH11269501A (en) Manufacture of hydrogen occlusion alloy powder, and hydrogen occlusion alloy electrode
WO2001069700A1 (en) Hydrogen absorbing alloy and negative electrode for nickel-metal hydride secondary cell
JP2000239769A (en) Rare earth hydrogen storage alloy and electrode using it
JP4091704B2 (en) Hydrogen storage alloy and method for producing the same
JP2003247037A (en) Hydrogen-storage alloy
JP2002075347A (en) Hydrogen storage alloy
JP4462909B2 (en) Hydrogen storage alloy
JP2000160265A (en) Hydrogen storage alloy and its manufacture