JPH10208969A - Laminated ceramic electronic parts - Google Patents

Laminated ceramic electronic parts

Info

Publication number
JPH10208969A
JPH10208969A JP670897A JP670897A JPH10208969A JP H10208969 A JPH10208969 A JP H10208969A JP 670897 A JP670897 A JP 670897A JP 670897 A JP670897 A JP 670897A JP H10208969 A JPH10208969 A JP H10208969A
Authority
JP
Japan
Prior art keywords
ceramic
layer
ceramic layer
thickness
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP670897A
Other languages
Japanese (ja)
Inventor
Nagato Omori
長門 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP670897A priority Critical patent/JPH10208969A/en
Publication of JPH10208969A publication Critical patent/JPH10208969A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the reliability of laminated ceramic electronic parts by preventing the deterioration of the function of a ceramic layer by adjusting the minimum thickness of the ceramic layer to a specific percentage of the average thickness of the ceramic layer or thicker. SOLUTION: In a laminated ceramic capacitor, the ratio of the minimum thickness t2 of a ceramic layer 2 to the average thickness t1 of the layer 2 is controlled to >=80% by adjusting the ruggedness of the boundary surfaces between the layer 2 and internal electrodes 1 so that the ruggedness may not become larger. In order to suppress the ruggedness of the boundary surfaces between the layer 2 and electrodes 1, the green sheet of the ceramic layer 2 is formed by using ceramic particles having small particle sizes or ceramic slurry having high dispersibility between the ceramic particles and a binder or the internal electrodes 1 are formed by using metal particles having small particle sizes. Therefore, the deterioration of the breakdown voltage of the capacitor can be prevented even when the average thickness t1 of the layer 2 becomes <=5μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、セラミック層を
介して複数の内部電極が重なり合うように積層されてな
るセラミック素子を備える積層セラミック電子部品に関
し、特に、セラミック層の厚みを薄くしても、このセラ
ミック層の機能が大きく低下するのを防止できるととも
に、電子部品の信頼性の向上を図ったものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer ceramic electronic component including a ceramic element in which a plurality of internal electrodes are stacked so as to overlap with each other via a ceramic layer. The function of the ceramic layer can be prevented from being greatly reduced, and the reliability of the electronic component is improved.

【0002】[0002]

【従来の技術】積層セラミック電子部品、例えば積層セ
ラミックコンデンサは、図1の断面図に示すように、複
数の内部電極1が誘電体からなるセラミック層2を介し
て重なり合うように配置され、かつ交互に両端部に引き
出されたコンデンサ素子3と、このコンデンサ素子3の
両端部に形成された外部電極4とから構成される。
2. Description of the Related Art As shown in a sectional view of FIG. 1, a multilayer ceramic electronic component, for example, a multilayer ceramic capacitor, has a plurality of internal electrodes 1 arranged so as to overlap with each other via a ceramic layer 2 made of a dielectric material and alternately. The capacitor element 3 is drawn out to both ends and external electrodes 4 formed at both ends of the capacitor element 3.

【0003】この積層セラミックコンデンサは、一般に
次のように製造される。まず、セラミック原料とバイン
ダなどを混合してセラミックスラリーを得て、このスラ
リーからセラミックグリーンシートを成形する。次に、
このセラミックグリーンシート上に、金属粉、例えばA
g、Pd、Ag/Pd合金、Cu、Niなどの金属粉と
有機ビヒクルとを混合した導電ペーストを塗布する。次
いで、この導電ペーストが塗布されたセラミックグリー
ンシートを、所定の枚数、積み重ねて圧着し、この積層
体を焼成することによって、コンデンサ素子3を得、次
いで、このコンデンサ素子3の両端部に外部電極4を形
成して、積層セラミックコンデンサとされる。
[0003] This multilayer ceramic capacitor is generally manufactured as follows. First, a ceramic slurry is obtained by mixing a ceramic raw material and a binder, and a ceramic green sheet is formed from the slurry. next,
On this ceramic green sheet, a metal powder such as A
A conductive paste in which a metal powder such as g, Pd, Ag / Pd alloy, Cu, Ni or the like and an organic vehicle are mixed is applied. Next, a predetermined number of the ceramic green sheets to which the conductive paste is applied are stacked and pressed, and the laminate is fired to obtain a capacitor element 3. Next, external electrodes are provided on both ends of the capacitor element 3. 4 to form a multilayer ceramic capacitor.

【0004】ところが、この積層セラミックコンデンサ
は、図1の断面図の円Aで囲んだ部分の拡大図である図
2に示すように、セラミック層2と内部電極1との境界
面で凹凸がみられ、セラミック層2の厚みが部分的に薄
くなる傾向がある。
However, as shown in FIG. 2, which is an enlarged view of a portion surrounded by a circle A in the sectional view of FIG. 1, the multilayer ceramic capacitor has unevenness at the boundary surface between the ceramic layer 2 and the internal electrode 1. Therefore, the thickness of the ceramic layer 2 tends to be partially reduced.

【0005】ところで、このような積層セラミックコン
デンサは、近年ますます大容量化が強く求められてお
り、このため、セラミック層2の厚みをより薄くする方
法などがとられる。
[0005] In recent years, such multilayer ceramic capacitors have been increasingly required to have a larger capacity in recent years. For this reason, a method of reducing the thickness of the ceramic layer 2 and the like have been adopted.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、このセ
ラミック層2の厚みを薄くした場合、特にその厚みの平
均寸法t1が5μm以下になってくると、上記凹凸の影
響でセラミック層2の厚みの最小寸法t2が薄くなるこ
とによって、積層セラミックコンデンサの破壊電圧が大
きく低下するとともに、信頼性が悪くなる問題が起こ
る。
However, when the thickness of the ceramic layer 2 is reduced, particularly when the average thickness t1 of the ceramic layer 2 becomes 5 μm or less, the minimum thickness of the ceramic layer 2 is affected by the above-mentioned unevenness. When the dimension t2 is reduced, the breakdown voltage of the multilayer ceramic capacitor is greatly reduced, and the reliability is deteriorated.

【0007】そこで、本発明は、上記の問題を解決する
ために、セラミック層の平均厚みを5μm以下になって
も、破壊電圧などのセラミック層の機能が大きく低下す
るのを防止できるとともに、信頼性の高い積層セラミッ
ク電子部品を提供することを目的とする。
In order to solve the above-mentioned problems, the present invention can prevent the function of the ceramic layer such as the breakdown voltage from being greatly reduced even when the average thickness of the ceramic layer is reduced to 5 μm or less. It is an object to provide a multilayer ceramic electronic component having high performance.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、セラミック層を介して複数の内部電極が
重なり合うように積層され、前記セラミック層の厚みの
平均寸法が5μm以下であるセラミック素子を備える積
層セラミック電子部品において、前記セラミック層の厚
みの最小寸法が平均寸法の80%以上であることを特徴
とする積層セラミック電子部品である。本発明によれ
ば、積層セラミック電子部品のセラミック層の厚みの平
均寸法が5μm以下になっても、このセラミック層の厚
みの最小寸法を平均厚みの80%以上にしたことから、
セラミック層の機能が大きく低下するのを防止できると
ともに、電子部品の信頼性が向上する。
In order to achieve the above-mentioned object, the present invention relates to a ceramic wherein a plurality of internal electrodes are stacked so as to overlap each other via a ceramic layer, and the average thickness of the ceramic layer is 5 μm or less. A multilayer ceramic electronic component comprising an element, wherein a minimum dimension of the thickness of the ceramic layer is 80% or more of an average dimension. According to the present invention, even when the average dimension of the thickness of the ceramic layer of the multilayer ceramic electronic component becomes 5 μm or less, the minimum dimension of the thickness of the ceramic layer is set to 80% or more of the average thickness.
The function of the ceramic layer can be prevented from being significantly reduced, and the reliability of the electronic component is improved.

【0009】[0009]

【発明の実施の形態】本発明の積層セラミック電子部
品、例えば積層セラミックコンデンサを、図1、図2を
用いて説明する。この図1、図2に示す積層セラミック
コンデンサは、先の従来技術の説明にも用いたものであ
り、重複する説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A multilayer ceramic electronic component of the present invention, for example, a multilayer ceramic capacitor will be described with reference to FIGS. The multilayer ceramic capacitors shown in FIGS. 1 and 2 are also used in the description of the prior art described above, and overlapping description will be omitted.

【0010】本発明の積層セラミックコンデンサは、図
1の断面図の円Aで囲んだ部分の拡大図である図2に示
すところの、セラミック層2と内部電極1との境界面の
凹凸が大きくならないようにして、セラミック層2の厚
みの平均寸法t1に対する最小寸法t2の比率が80%
以上になるようにして形成されたものである。このt
1、t2の寸法は、図1、図2の断面図に示すところ
の、任意のセラミック層2の厚みを測定して得られたも
のである。
In the multilayer ceramic capacitor of the present invention, as shown in FIG. 2, which is an enlarged view of a portion surrounded by a circle A in the sectional view of FIG. 1, the unevenness of the boundary surface between the ceramic layer 2 and the internal electrode 1 is large. In this case, the ratio of the minimum dimension t2 to the average dimension t1 of the thickness of the ceramic layer 2 is 80%.
It is formed as described above. This t
The dimensions 1 and t2 are obtained by measuring the thickness of an arbitrary ceramic layer 2 as shown in the cross-sectional views of FIGS.

【0011】従って、本発明によれば、積層セラミック
コンデンサのセラミック層2の厚みの平均寸法t1が5
μm以下になっても、このセラミック層2の破壊電圧が
大きく低下するのを防止できるとともに、電子部品の信
頼性の向上が図れる。
Therefore, according to the present invention, the average thickness t1 of the ceramic layer 2 of the multilayer ceramic capacitor is 5
Even if the thickness is less than μm, it is possible to prevent the breakdown voltage of the ceramic layer 2 from being greatly reduced, and to improve the reliability of the electronic component.

【0012】上述のセラミック層2と内部電極1との境
界面の凹凸が大きくならないようにするための具体策
は、次のものが採用し得る。
The following can be adopted as a concrete measure for preventing the above-mentioned unevenness of the boundary surface between the ceramic layer 2 and the internal electrode 1 from becoming large.

【0013】セラミックグリーンシートを形成するセ
ラミック原料粉末を微粉化したり、篩いなどに通したり
して粒径の小さいセラミック原料粉末を使用すること。
これによって、セラミックグリーンシート全体が緻密に
なり、焼成して得られるセラミック層2の表面の凹凸の
発生が抑えられる。セラミック原料粉末とバインダと
の分散性がより良好なセラミックスラリーを使用してセ
ラミックグリーンシートを形成すること。これによっ
て、セラミックグリーンシートの密度が均一になり、焼
成して得られるセラミック層2の表面の凹凸の発生が抑
えられる。内部電極1となる金属粉を微粉化したり、
篩いなどに通したりして、粒径の小さい金属粉を使用す
ること。これによって、焼成して得られる内部電極1に
大きな塊が発生しにくくなり、内部電極1の表面の凹凸
の発生が抑えられ、結果としてセラミック層2の凹凸が
抑えられる。
The use of a ceramic raw material powder having a small particle size by pulverizing a ceramic raw material powder for forming a ceramic green sheet or passing through a sieve or the like.
Thereby, the entire ceramic green sheet becomes dense, and the occurrence of unevenness on the surface of the ceramic layer 2 obtained by firing is suppressed. Forming a ceramic green sheet using a ceramic slurry having a better dispersibility between the ceramic raw material powder and the binder. Thereby, the density of the ceramic green sheets becomes uniform, and the occurrence of irregularities on the surface of the ceramic layer 2 obtained by firing is suppressed. The metal powder that becomes the internal electrode 1 is pulverized,
Use metal powder with a small particle size, such as through a sieve. As a result, a large lump is less likely to be generated in the internal electrode 1 obtained by firing, and the occurrence of unevenness on the surface of the internal electrode 1 is suppressed, and as a result, the unevenness of the ceramic layer 2 is suppressed.

【0014】次に、上記の本発明の積層セラミック電子
部品(積層セラミックコンデンサ)の効果を確認するた
めに、以下の実験を行った。
Next, in order to confirm the effects of the multilayer ceramic electronic component (multilayer ceramic capacitor) of the present invention, the following experiment was conducted.

【0015】セラミック層2の厚みの平均寸法t1が3
μmと5μmの各積層セラミックコンデンサを、セラミ
ック層2の厚みの平均寸法t1に対する最小寸法t2の
比率(%)を種々変更して作成した。具体的には、内部
電極に含まれるAg/Pd合金の粒径を変えて、セラミ
ック層2の厚みの平均寸法t1に対する最小寸法t2の
比率(%)が87%、83%、80%、77%、74%
になるように種々の積層セラミックコンデンサを作成し
た。そして、この積層セラミックコンデンサの破壊電圧
および寿命試験の評価を行った。この寿命試験は、t1
が5μmの場合、150℃、64V(直流電圧)の負荷
を、t1が3μmの場合、150℃、25V(直流電
圧)の負荷をそれぞれ500時間かけた。
The average thickness t1 of the ceramic layer 2 is 3
μm and 5 μm multilayer ceramic capacitors were produced by variously changing the ratio (%) of the minimum dimension t2 to the average dimension t1 of the thickness of the ceramic layer 2. Specifically, by changing the particle size of the Ag / Pd alloy included in the internal electrode, the ratio (%) of the minimum dimension t2 to the average dimension t1 of the thickness of the ceramic layer 2 is 87%, 83%, 80%, and 77%. %, 74%
Various multilayer ceramic capacitors were produced as follows. Then, the breakdown voltage and the life test of the multilayer ceramic capacitor were evaluated. This life test is t1
Is 5 μm, a load of 150 ° C. and 64 V (DC voltage) is applied, and when t1 is 3 μm, a load of 150 ° C. and 25 V (DC voltage) is applied for 500 hours.

【0016】なお、セラミック層2の厚みの平均寸法t
1および最小寸法t2の測定は、積層セラミックコンデ
ンサを研磨して断面を電子顕微鏡を用いて行い、そこか
らt2/t1の比率(%)を求めた。
The average thickness t of the thickness of the ceramic layer 2
The measurements of 1 and the minimum dimension t2 were made by polishing the multilayer ceramic capacitor and performing a cross section using an electron microscope, and the ratio (%) of t2 / t1 was determined therefrom.

【0017】上記の実験結果は以下の表1の通りであ
る。
The results of the above experiments are shown in Table 1 below.

【0018】[0018]

【表1】 [Table 1]

【0019】この表1の結果より、t1が5μmの場
合、t2/t1の比率が77%と74%のものは、破壊
電圧の平均値が205Vと185Vとなり、しかも、寿
命試験での絶縁抵抗不良数が18個と25個発生してい
る。これに対し、t2/t1の比率が80%〜87%の
ものは、破壊電圧の平均値が305V〜325Vと高
く、80%以上にすることにより、例えば前者の77%
のものに比べ破壊電圧の平均値が約149%以上向上し
ている、しかも、寿命試験での絶縁抵抗不良数が0個と
信頼性が良くなっている。
From the results in Table 1, when t1 is 5 μm, the average breakdown voltage is 205 V and 185 V when the ratio of t2 / t1 is 77% and 74%, and the insulation resistance in the life test is high. The number of defects is 18 and 25. On the other hand, when the ratio of t2 / t1 is 80% to 87%, the average value of the breakdown voltage is as high as 305V to 325V.
The average value of the breakdown voltage is improved by about 149% or more as compared with that of the above, and the number of insulation resistance failures in the life test is 0, and the reliability is improved.

【0020】また、t1が3μmの場合についても、表
1の実験結果より、t2/t1の比率が77%と74%
のものは、破壊電圧の平均値が70Vと65Vとなり、
しかも、寿命試験での絶縁抵抗不良数が15個と19個
発生している。これに対し、t2/t1の比率が80%
〜87%のものは、破壊電圧の平均値が100V〜11
0Vと高く、80%以上にすることにより、例えば前者
の77%のものに比べ破壊電圧の平均値が約143%以
上向上している、しかも、寿命試験での絶縁抵抗不良数
が0個と信頼性が良くなっている。
Also, in the case where t1 is 3 μm, according to the experimental results in Table 1, the ratio of t2 / t1 is 77% and 74%.
The average value of the breakdown voltage is 70V and 65V,
In addition, 15 and 19 insulation resistance failures have occurred in the life test. On the other hand, the ratio of t2 / t1 is 80%
8787% have an average breakdown voltage of 100 V10011
By increasing the voltage to 0 V and 80% or more, for example, the average value of the breakdown voltage is improved by about 143% or more as compared with the former of 77%, and the number of insulation resistance failures in the life test is reduced to zero. Reliability has improved.

【0021】従って、上記結果より、セラミック層2の
厚みの平均寸法t1が5μm以下になっても、t2/t
1の比率を80%以上とすることにより、破壊電圧が大
きく低下するのを防止できて、電子部品の信頼性の向上
が図れることが分かる。
Therefore, from the above results, even if the average thickness t1 of the ceramic layer 2 becomes 5 μm or less, t2 / t
It can be seen that by setting the ratio of 1 to 80% or more, the breakdown voltage can be prevented from greatly decreasing, and the reliability of the electronic component can be improved.

【0022】なお、表1の破壊電圧の欄の値は、評価サ
ンプル数50個の破壊電圧の平均値を示し、寿命試験の
欄の値は、評価サンプル数50個に対する絶縁抵抗不良
数を示している。
The values in the breakdown voltage column in Table 1 show the average values of the breakdown voltages of 50 evaluation samples, and the values in the life test column show the number of insulation resistance failures with respect to the 50 evaluation samples. ing.

【0023】また、今回の実験では、t1が3μmを下
回るものや、t2/t1の比率が87%を越えるものの
評価は行っていないが、上記実験の評価結果と同様の効
果が得られるものと考えられる。
Also, in this experiment, the evaluation was not made for the case where t1 is less than 3 μm or the case where the ratio of t2 / t1 exceeds 87%, but it is assumed that the same effect as the evaluation result of the above experiment can be obtained. Conceivable.

【0024】また、上記実験では、導電ペーストの金属
粉にAg/Pd合金を用いたが、それに限るものでな
く、Ag、Pd、Cu、Niなどの他の金属粉であって
もよい。
In the above experiment, the Ag / Pd alloy was used as the metal powder of the conductive paste. However, the present invention is not limited to this, and other metal powders such as Ag, Pd, Cu, and Ni may be used.

【0025】なお、本発明に係わる積層セラミック電子
部品は、セラミック層を介して複数の内部電極が重なり
合うように積層されてなるセラミック素子を備えるもの
であれば、上記実施例の積層セラミックコンデンサに限
らず、例えば、積層セラミックバリスタなどの他の積層
セラミック電子部品にも等しく適用することができる。
The multilayer ceramic electronic component according to the present invention is not limited to the multilayer ceramic capacitor of the above embodiment as long as it has a ceramic element in which a plurality of internal electrodes are stacked so as to overlap with each other via a ceramic layer. For example, the present invention can be equally applied to other multilayer ceramic electronic components such as a multilayer ceramic varistor.

【0026】[0026]

【発明の効果】以上のように、本発明によれば、セラミ
ック層を介して複数の内部電極が重なり合うように積層
されてなるセラミック素子を備える積層セラミック電子
部品において、そのセラミック層の厚みの平均寸法が5
μm以下になっても、このセラミック層の厚みの最小寸
法を平均寸法の80%以上にしたことにより、セラミッ
ク層の機能が大きく低下するのを防止できるとともに、
信頼性の高い積層セラミック電子部品を提供することが
できる。
As described above, according to the present invention, in a multilayer ceramic electronic component including a ceramic element in which a plurality of internal electrodes are stacked so as to overlap with each other via a ceramic layer, the average of the thickness of the ceramic layer is obtained. Dimension is 5
Even if the thickness is less than μm, by setting the minimum dimension of the thickness of the ceramic layer to 80% or more of the average dimension, it is possible to prevent the function of the ceramic layer from being significantly reduced,
A highly reliable multilayer ceramic electronic component can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の積層セラミック電子部品の一例である
積層セラミックコンデンサの断面図である。
FIG. 1 is a sectional view of a multilayer ceramic capacitor which is an example of a multilayer ceramic electronic component of the present invention.

【図2】図1の円Aで囲んだ部分を示した拡大図であ
る。
FIG. 2 is an enlarged view showing a portion surrounded by a circle A in FIG.

【符号の説明図】[Explanation of symbols]

1・・・内部電極 2・・・セラミック層 t1・・・セラミック層の厚みの平均寸法 t2・・・セラミック層の厚みの最小寸法 1: Internal electrode 2: Ceramic layer t1: Average thickness of ceramic layer t2: Minimum thickness of ceramic layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 セラミック層を介して複数の内部電極が
重なり合うように積層され、前記セラミック層の厚みの
平均寸法が5μm以下であるセラミック素子を備える積
層セラミック電子部品において、 前記セラミック層の厚みの最小寸法が平均寸法の80%
以上であることを特徴とする積層セラミック電子部品。
1. A multilayer ceramic electronic component comprising: a ceramic element in which a plurality of internal electrodes are stacked so as to overlap with each other via a ceramic layer, and wherein the ceramic layer has an average thickness of 5 μm or less; The minimum dimension is 80% of the average dimension
A multilayer ceramic electronic component as described above.
JP670897A 1997-01-17 1997-01-17 Laminated ceramic electronic parts Pending JPH10208969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP670897A JPH10208969A (en) 1997-01-17 1997-01-17 Laminated ceramic electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP670897A JPH10208969A (en) 1997-01-17 1997-01-17 Laminated ceramic electronic parts

Publications (1)

Publication Number Publication Date
JPH10208969A true JPH10208969A (en) 1998-08-07

Family

ID=11645806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP670897A Pending JPH10208969A (en) 1997-01-17 1997-01-17 Laminated ceramic electronic parts

Country Status (1)

Country Link
JP (1) JPH10208969A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6404616B2 (en) 1999-12-24 2002-06-11 Taiyo Yuden Co., Ltd. Multilayer ceramic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6404616B2 (en) 1999-12-24 2002-06-11 Taiyo Yuden Co., Ltd. Multilayer ceramic capacitor

Similar Documents

Publication Publication Date Title
JP6766996B2 (en) Multilayer ceramic electronic components and their manufacturing methods
US9129752B2 (en) Ceramic electronic component and method of manufacturing the same
JP5093351B2 (en) Multilayer ceramic capacitor
JP5711696B2 (en) Multilayer ceramic electronic components
JP6257060B2 (en) Multilayer ceramic electronic components
JP6161950B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
CN104282438A (en) Ceramic electronic component and method for manufacturing the same
JP7435993B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor containing the same
US20140022698A1 (en) Laminated ceramic electronic component and method of fabricating the same
JP2013214698A (en) Conductive paste composition for internal electrode and multilayer ceramic electronic component including the same
US11062847B2 (en) Capacitor component and method for manufacturing the same
JP2004189588A (en) Dielectric ceramic, method of manufacturing the same, and monolithic ceramic capacitor
JP2020023423A (en) Dielectric composition and electronic component using the same
US20230335338A1 (en) Multilayer electronic component and method for manufacturing multilayer electronic component
US20120048452A1 (en) Method of manufacturing ceramic paste for multilayer ceramic electronic component and method of manufacturing multilayer ceramic electronic component having the same
JP2010212503A (en) Laminated ceramic capacitor
JP2009266716A (en) Conductive paste, and manufacturing method of laminated ceramic capacitor
JPH10208969A (en) Laminated ceramic electronic parts
JP2004179349A (en) Laminated electronic component and its manufacturing method
JP3939281B2 (en) Electrode paste and method for manufacturing ceramic electronic component using the same
WO2015040881A1 (en) Ceramic green sheet, method for manufacturing multilayer ceramic capacitor, and multilayer ceramic capacitor
KR102193957B1 (en) Capacitor device
JP4517689B2 (en) Conductive paste and multilayer electronic component using the same
JP2001284162A (en) Conductive paste and laminated electronic component, and their manufacturing method
JP2006269918A (en) Laminated ceramic capacitor and manufacturing method thereof