JP2001284162A - Conductive paste and laminated electronic component, and their manufacturing method - Google Patents

Conductive paste and laminated electronic component, and their manufacturing method

Info

Publication number
JP2001284162A
JP2001284162A JP2000096539A JP2000096539A JP2001284162A JP 2001284162 A JP2001284162 A JP 2001284162A JP 2000096539 A JP2000096539 A JP 2000096539A JP 2000096539 A JP2000096539 A JP 2000096539A JP 2001284162 A JP2001284162 A JP 2001284162A
Authority
JP
Japan
Prior art keywords
electronic component
powder
dielectric layer
internal electrode
conductive paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000096539A
Other languages
Japanese (ja)
Other versions
JP4548897B2 (en
Inventor
Kenichi Iwasaki
健一 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000096539A priority Critical patent/JP4548897B2/en
Publication of JP2001284162A publication Critical patent/JP2001284162A/en
Application granted granted Critical
Publication of JP4548897B2 publication Critical patent/JP4548897B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a conductive paste and laminated electronic components, and their manufacturing method, with which the deterioration of an insulation resistance can be suppressed, even when a dielectric layer is made thin. SOLUTION: This conductive paste is made mainly of Ni powder and desirably contains a Cr powder of 0.01 wt.% or less in all metallic elements, and a Co powder of 0.05 wt.% or less in all metallic elements.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、導電性ペーストお
よび積層型電子部品並びにその製法に関し、特に、Ni
を主成分とする導電性ペースト、およびNiを主成分と
する内部電極層を用いた積層型電子部品並びにその製法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive paste, a laminated electronic component, and a method for producing the same.
The present invention relates to a multilayered electronic component using a conductive paste containing Ni as a main component and an internal electrode layer containing Ni as a main component, and a method for producing the same.

【0002】[0002]

【従来技術】従来、積層型電子部品としては、積層セラ
ミックコンデンサ、積層型圧電アクチュエータ、圧電ト
ランス等が知られており、そのうち積層セラミックコン
デンサについては、従来、誘電体層と内部電極層とが交
互に積層され、各誘電体層が内部電極層によって各々挟
持されたコンデンサ本体と、該コンデンサ本体の両端部
に形成された外部端子とから構成されている。
2. Description of the Related Art Conventionally, as a multilayer electronic component, a multilayer ceramic capacitor, a multilayer piezoelectric actuator, a piezoelectric transformer, and the like are known. Among the multilayer ceramic capacitors, a dielectric layer and an internal electrode layer are conventionally alternated. And a capacitor body in which each dielectric layer is sandwiched between internal electrode layers, and external terminals formed at both ends of the capacitor body.

【0003】近年、各種電子部品に対しては、軽量小型
化の要求がより厳しくなり、その要求を満足するために
積層セラミックコンデンサにあっては、比誘電率の高い
誘電体材料を用いること、誘電体層および内部電極の厚
みを薄くしてさらに多層化を進めること等が行われてい
る。
[0003] In recent years, the demand for weight reduction and miniaturization of various electronic components has become more severe. In order to satisfy the demand, a multilayer ceramic capacitor must use a dielectric material having a high relative dielectric constant. The thickness of the dielectric layer and the internal electrode is reduced to further increase the number of layers.

【0004】近年の積層セラミックコンデンサにおいて
は、Niなどの卑金属を内部電極として用いることが行
われているが、Ni等の卑金属類は一般に低い平衡酸素
分圧を有するため、大気中、高温にて焼成すると酸化物
が形成され、導電性が低下するという問題がある。した
がって焼成は卑金属が酸化されない非酸化性雰囲気で行
わなければならない。
In recent multilayer ceramic capacitors, a base metal such as Ni is used as an internal electrode. However, since base metals such as Ni generally have a low equilibrium oxygen partial pressure, they are used in the atmosphere at high temperatures. When sintering, an oxide is formed, and there is a problem that conductivity is reduced. Therefore, firing must be performed in a non-oxidizing atmosphere in which the base metal is not oxidized.

【0005】そして、このような非酸化性雰囲気での焼
成により誘電体層が還元されるが、この還元された誘電
体層の誘電特性を向上させるため、酸化処理(再酸化処
理)することが行われている。
[0005] The firing in such a non-oxidizing atmosphere reduces the dielectric layer. In order to improve the dielectric characteristics of the reduced dielectric layer, an oxidation treatment (re-oxidation treatment) is required. Is being done.

【0006】このような卑金属を内部電極とする従来の
積層セラミックコンデンサの製法は、一般に、Ni粉末
を含有する内部電極パターンと、有機バインダを含有す
る誘電体層成形体を複数交互に積層し、コンデンサ本体
成形体を作製し、これを大気中300〜400℃程度で
脱有機バインダ処理(以下、脱バイという。)した後、
非酸化性雰囲気で焼結してコンデンサ本体を作製し、こ
のコンデンサ本体を焼成温度よりも少々低い温度で酸化
処理し、この後、コンデンサ本体の両端部に外部端子を
形成することにより作製されていた。
The conventional method of manufacturing a multilayer ceramic capacitor using a base metal as an internal electrode generally involves alternately laminating a plurality of internal electrode patterns containing Ni powder and a plurality of dielectric layer molded bodies containing an organic binder. After forming a capacitor body molded body and removing it from the organic binder at about 300 to 400 ° C. in the air (hereinafter referred to as “bubble removal”),
The capacitor body is manufactured by sintering in a non-oxidizing atmosphere, the capacitor body is oxidized at a temperature slightly lower than the firing temperature, and then external terminals are formed at both ends of the capacitor body. Was.

【0007】しかしながら、従来の製法では、Ni粉末
を含有する内部電極パターンが形成されたコンデンサ本
体成形体を、大気中300〜400℃程度で脱バイした
後、還元雰囲気中で焼成を行うと脱脂が不十分となり易
く、その結果、得られた積層セラミックコンデンサの焼
結性が低下し、クラック等の構造欠陥が発生し易くなる
という問題があった。
However, in the conventional manufacturing method, after the molded body of the capacitor body on which the internal electrode pattern containing the Ni powder is formed is degassed at about 300 to 400 ° C. in the air, and then baked in a reducing atmosphere, the degreasing is performed. Is liable to be insufficient, and as a result, there is a problem that the sinterability of the obtained multilayer ceramic capacitor is reduced and structural defects such as cracks are easily generated.

【0008】また、還元雰囲気中で焼成を行うため、誘
電体層成形体に耐還元性材料を用いても得られた積層セ
ラミックコンデンサに構造欠陥が発生し易く、その結
果、高温負荷試験において絶縁抵抗が劣化してしまうと
いう問題があった。
Further, since the firing is performed in a reducing atmosphere, the multilayer ceramic capacitor obtained even when the dielectric layer molded body is made of a reduction-resistant material is likely to have structural defects. There was a problem that the resistance deteriorated.

【0009】従来、このような問題を解決するために、
特開平6−196352号公報では、脱脂工程、焼成工
程、酸化処理工程(酸素欠陥補充ゾーン)での酸素分圧
の範囲を規定することにより、クラックの発生や絶縁抵
抗の劣化を抑制することが行われている。
Conventionally, in order to solve such a problem,
In JP-A-6-196352, generation of cracks and deterioration of insulation resistance can be suppressed by defining ranges of oxygen partial pressures in a degreasing step, a baking step, and an oxidation treatment step (oxygen defect replenishment zone). Is being done.

【0010】[0010]

【発明が解決しようとする課題】近年においては、小型
高容量化のため、誘電体層を薄層化することが行われて
おり、誘電体層が3μm以下とした積層セラミックコン
デンサも開発されている。しかしながら、誘電体層が同
様な焼結状態であれば、誘電体層が薄くなればなる程、
酸素空孔の誘電体層に占める割合は増加し、誘電体層の
絶縁抵抗が劣化し、上記公報に開示された方法では対応
できなくなっている。
In recent years, the thickness of a dielectric layer has been reduced for the purpose of miniaturization and high capacity. A multilayer ceramic capacitor having a dielectric layer of 3 μm or less has also been developed. I have. However, if the dielectric layer is in a similar sintered state, the thinner the dielectric layer,
The proportion of oxygen vacancies in the dielectric layer increases, and the insulation resistance of the dielectric layer deteriorates, making it impossible to cope with the method disclosed in the above publication.

【0011】本発明は、上記課題を鑑みてなされたもの
であり、誘電体層を薄層化した場合でも絶縁抵抗の劣化
を抑制できる導電性ペーストおよび積層型電子部品並び
にその製法を提供することを目的とする。
The present invention has been made in view of the above problems, and provides a conductive paste, a laminated electronic component, and a method for producing the same, which can suppress deterioration of insulation resistance even when a dielectric layer is thinned. With the goal.

【0012】[0012]

【課題を解決するための手段】本発明の導電性ペースト
は、Ni粉末を主成分とし、Cr粉末を含有する導電性
ペーストであって、前記Cr粉末を、全金属成分中0.
01重量%以下含有することを特徴とする。さらにCo
粉末を全金属成分中0.05重量%以下含有することが
望ましい。
The conductive paste of the present invention is a conductive paste containing a Ni powder as a main component and a Cr powder.
It is characterized by containing not more than 01% by weight. Further Co
It is desirable that the powder contains 0.05% by weight or less of all metal components.

【0013】本発明の導電性ペーストではCr粉末を所
定量含有したので、この導電性ペーストを用いて形成さ
れた内部電極パターンと、誘電体層成形体とを交互に積
層してなる電子部品本体成形体を作製し、該電子部品本
体成形体を還元雰囲気中で焼成して電子部品本体を作製
し、この電子部品本体を酸化処理すると、内部電極パタ
ーン中の金属Crは、焼成段階では内部電極層中に金属
Crとして存在しており、焼結には殆ど寄与しないが、
焼成後の焼結体の酸化処理により内部電極中の金属Cr
が酸化され、酸化クロムとなって誘電体層中に拡散固溶
し、酸化クロムの酸化数が減少し、これにより、誘電体
層中の酸素空孔を補償し、絶縁抵抗の劣化を抑制でき
る。
Since the conductive paste of the present invention contains a predetermined amount of Cr powder, an electronic component body formed by alternately laminating an internal electrode pattern formed using this conductive paste and a dielectric layer molded body. When a molded body is produced, the molded body of the electronic component body is fired in a reducing atmosphere to produce an electronic component body, and the electronic component body is oxidized. Although present as metallic Cr in the layer, it hardly contributes to sintering,
Oxidation treatment of the sintered body after firing causes metal Cr in the internal electrode
Is oxidized to form chromium oxide, which diffuses into the dielectric layer and forms a solid solution, thereby reducing the oxidation number of chromium oxide, thereby compensating for oxygen vacancies in the dielectric layer and suppressing deterioration of insulation resistance. .

【0014】このような酸素空孔減少効果は、導電性ペ
ースト中にCo粉末を全金属成分中0.05重量%以下
含有することにより、さらに向上できる。
Such an effect of reducing oxygen vacancies can be further improved by including 0.05% by weight or less of Co powder in the conductive paste in all metal components.

【0015】また、導電性ペースト中にCr粉末を所定
量含有することにより、脱バイ時にCrが酸化され、そ
の酸化クロムの酸素により有機物の分解、除去を促進で
き、脱バイ性を向上し、積層セラミックコンデンサの焼
結性を向上でき、これにより、クラック等の構造欠陥を
抑制できる。
[0015] Further, by containing a predetermined amount of Cr powder in the conductive paste, Cr is oxidized at the time of debuffing, and the decomposition and removal of organic substances can be promoted by the oxygen of the chromium oxide, thereby improving the debuffing property. The sinterability of the multilayer ceramic capacitor can be improved, thereby suppressing structural defects such as cracks.

【0016】上記のような製法の結果、本発明の積層型
電子部品は、Niを主成分とする内部電極層と誘電体層
とを交互に積層してなる電子部品本体と、前記内部電極
層に電気的に接続する外部端子とを具備する積層型電子
部品であって、前記誘電体層中にCrを金属換算で0.
0025重量%以下含有することになる。Coを、誘電
体層中に金属換算で0.0125重量%以下含有するこ
とが望ましい。
As a result of the above-described manufacturing method, the multilayer electronic component of the present invention comprises an electronic component main body in which internal electrode layers mainly composed of Ni and dielectric layers are alternately laminated, and the internal electrode layer. A multilayer electronic component having an external terminal electrically connected to Cr.
0025% by weight or less will be contained. It is desirable that Co be contained in the dielectric layer in an amount of 0.0125% by weight or less in terms of metal.

【0017】特に、誘電体層が3μm以下と薄くなれば
なるほど、誘電体層中の酸素空孔濃度が高くなるため、
本発明は、このような誘電体層厚みが3μm以下の積層
型電子部品への適用が効果的である。
In particular, the thinner the dielectric layer is 3 μm or less, the higher the oxygen vacancy concentration in the dielectric layer becomes.
The present invention is effectively applied to such a multilayer electronic component having a dielectric layer thickness of 3 μm or less.

【0018】[0018]

【発明の実施の形態】積層型電子部品としては、積層セ
ラミックコンデンサ、積層型圧電アクチュエータ、圧電
トランス等があるが、本発明を積層セラミックコンデン
サに適用した例について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As multilayer electronic components, there are multilayer ceramic capacitors, multilayer piezoelectric actuators, piezoelectric transformers and the like. An example in which the present invention is applied to a multilayer ceramic capacitor will be described.

【0019】本発明の積層セラミックコンデンサからな
る積層型電子部品は、図1に示すように、Niを主成分
とする内部電極層1と誘電体層3とを交互に積層してな
る電子部品本体5と、内部電極層1に電気的に交互に接
続する外部端子7とから構成されている。そして、誘電
体層3中にはCrを金属換算で0.0025重量%以
下、特には0.0005〜0.0125重量%含有して
いる。また、誘電体層3中には、さらにCoを金属換算
で0.125重量%以下、特には0.0025〜0.1
25重量%含有することが望ましい。
As shown in FIG. 1, a multilayer electronic component comprising a multilayer ceramic capacitor according to the present invention is an electronic component body in which an internal electrode layer 1 mainly composed of Ni and a dielectric layer 3 are alternately laminated. 5 and external terminals 7 that are electrically connected to the internal electrode layers 1 alternately. The dielectric layer 3 contains Cr in an amount of 0.0025% by weight or less, particularly 0.0005 to 0.0125% by weight in terms of metal. The dielectric layer 3 further contains Co in an amount of 0.125% by weight or less, particularly 0.0025 to 0.1% in terms of metal.
It is desirable to contain 25% by weight.

【0020】内部電極層1はNiを主成分とするもの
で、Niと、他の金属、例えばCuとの合金であっても
良い。また、誘電体層3は、非還元性を有する誘電体で
あれば良いが、特に、BaTiO3を主成分とし、Mg
O、MnO2、Y23等の希土類元素酸化物を含有する
ものが望ましい。
The internal electrode layer 1 is mainly composed of Ni, and may be an alloy of Ni and another metal, for example, Cu. The dielectric layer 3 may be a non-reducing dielectric material. In particular, the dielectric layer 3 is mainly composed of BaTiO 3 and MgO.
Those containing a rare earth element oxide such as O, MnO 2 and Y 2 O 3 are desirable.

【0021】誘電体層3には、図2に示すようにCrが
酸化クロムとして拡散しており、内部電極層1中には存
在していない。尚、図2では、誘電体層3中の酸化クロ
ムを点で表した。本発明の誘電体層3の厚みは3μm以
下とされているが、このように誘電体層3が薄くなれば
なるほど、誘電体層3中の酸素空孔濃度が高くなるた
め、酸素空孔を補償する本発明が有効になる。
As shown in FIG. 2, Cr diffuses into the dielectric layer 3 as chromium oxide and does not exist in the internal electrode layer 1. In FIG. 2, chromium oxide in the dielectric layer 3 is represented by dots. Although the thickness of the dielectric layer 3 of the present invention is set to 3 μm or less, the thinner the dielectric layer 3 is, the higher the oxygen vacancy concentration in the dielectric layer 3 becomes. The compensating invention becomes effective.

【0022】このような積層セラミックコンデンサは、
Ni粉末を主成分とし、Cr粉末を全金属成分中0.0
1重量%以下含有する導電性ペーストを用いて形成され
た内部電極パターンと、誘電体層成形体とを交互に積層
した電子部品本体成形体を作製し、このコンデンサ本体
成形体を還元雰囲気中で焼成してコンデンサ本体を作製
し、該コンデンサ本体を酸化処理することにより得られ
る。
Such a multilayer ceramic capacitor is
Ni powder as a main component, and Cr powder in 0.0% of all metal components
An electronic component main body is formed by alternately laminating an internal electrode pattern formed by using a conductive paste containing 1% by weight or less and a dielectric layer molded body, and the capacitor main body is formed in a reducing atmosphere. It is obtained by firing to produce a capacitor body and oxidizing the capacitor body.

【0023】即ち、本発明の導電性ペーストは、Ni粉
末を主成分とし、Cr粉末を全金属成分中0.01重量
%以下含有するものである。このようにCr粉末を全金
属成分中0.01重量%以下含有したのは、0.01重
量%よりも多いと、内部電極パターン中のCrが、焼結
後の酸化処理によっても誘電体層中に拡散しきれず、内
部電極層中に残存し、これにより内部電極層中のNi粒
子間の接続が悪くなり、内部電極層の導通抵抗が増大
し、容量が低下してしまうからである。また、導電性ペ
ースト中の金属粉末同士の凝集が起こり易く、金属粉末
の分散性が低下するからである。さらにNi粉末の分散
に必要な有機バインダの量が多くなり、脱バイが困難と
なるからである。
That is, the conductive paste of the present invention contains Ni powder as a main component and Cr powder in an amount of 0.01% by weight or less based on all metal components. As described above, the content of the Cr powder of 0.01% by weight or less in all the metal components is that if the content is more than 0.01% by weight, the Cr in the internal electrode pattern may be oxidized after the sintering to the dielectric layer. This is because they cannot be diffused completely and remain in the internal electrode layer, which deteriorates the connection between the Ni particles in the internal electrode layer, increases the conduction resistance of the internal electrode layer, and lowers the capacity. In addition, aggregation of the metal powders in the conductive paste easily occurs, and the dispersibility of the metal powders is reduced. Further, the amount of the organic binder necessary for dispersing the Ni powder increases, and it becomes difficult to remove the binder.

【0024】Cr粉末の全金属成分中に占める割合は、
上記した点、および積層セラミックコンデンサの酸化処
理工程において酸素空孔を十分補充し、高温負荷試験に
おける絶縁抵抗の劣化を防止するという点から0.00
2〜0.005重量%含有することが望ましい。
The proportion of the Cr powder in the total metal component is as follows:
In view of the above points and the point that oxygen vacancies are sufficiently replenished in the oxidation treatment step of the multilayer ceramic capacitor to prevent deterioration of insulation resistance in a high temperature load test, 0.00
Desirably, the content is 2 to 0.005% by weight.

【0025】また、導電性ペースト中には、さらにCo
粉末を全金属成分中0.05重量%以下含有することが
望ましい。このようなCo粉末についても、上記Cr粉
末と同様の効果があり、このようなCo粉末を所定量含
有せしめることにより、さらに誘電体層の酸素空孔減少
効果を大きく発揮でき、絶縁抵抗の劣化を抑制できる。
The conductive paste further contains Co.
It is desirable that the powder contains 0.05% by weight or less of all metal components. Such a Co powder also has the same effect as the Cr powder. By including such a Co powder in a predetermined amount, the effect of reducing oxygen vacancies in the dielectric layer can be further enhanced, and the insulation resistance is deteriorated. Can be suppressed.

【0026】このようなCo粉末は、内部電極層の導通
抵抗の増大を抑制し、金属粉末の分散性の悪化を防止
し、脱バイを良好にするとともに、積層セラミックコン
デンサの酸化処理工程において酸素空孔を十分補充する
という点から、全金属成分中0.001〜0.03重量
%含有することが望ましい。
Such Co powder suppresses an increase in the conduction resistance of the internal electrode layer, prevents the dispersibility of the metal powder from deteriorating, improves the de-buying, and reduces the oxygen content in the oxidation process of the multilayer ceramic capacitor. From the viewpoint of sufficiently replenishing the vacancies, it is desirable to contain 0.001 to 0.03% by weight in all the metal components.

【0027】導電性ペースト中のNi粉末の形状には、
球状、フレーク状、突起状あるいは不定形があり、特に
限定するものでないが、内部電極層のNi充填性を高め
る点で球状であることが望ましい。Ni粉末の平均粒径
は、内部電極層の薄層化と厚みバラツキを低減するとい
う理由から、比表面積径として求めた値(BET値)で
0.05〜0.8μmであることが望ましい。
The shape of the Ni powder in the conductive paste is as follows:
There are spheres, flakes, protrusions, or irregular shapes, and the shape is not particularly limited, but is preferably spherical from the viewpoint of enhancing the Ni filling property of the internal electrode layer. The average particle diameter of the Ni powder is desirably 0.05 to 0.8 μm as a value (BET value) determined as a specific surface area diameter from the viewpoint of reducing the thickness of the internal electrode layer and reducing variations in thickness.

【0028】また、本発明の導電性ペースト中には、セ
ラミックグリーンシートの表面に塗布し、同時焼成する
場合において、共材としてセラミックグリーンシートと
同じ材質の原料粉末を所定量添加しても良く、これによ
りグリーンシートとの密着性を向上するとともに、セラ
ミックスと導体との焼成による収縮率および熱膨張係数
を近似させることができる。
When the conductive paste of the present invention is applied to the surface of a ceramic green sheet and fired simultaneously, a predetermined amount of a raw material powder of the same material as the ceramic green sheet may be added as a co-material. Thus, the adhesion to the green sheet can be improved, and the contraction rate and the coefficient of thermal expansion of the ceramic and the conductor due to firing can be approximated.

【0029】このような導電性ペーストは、金属粉末4
0〜50重量%と、有機物成分50〜60重量%とを混
合し、3本ロール等により混練することにより、導電性
ペーストが得られる。有機物成分としては、ペースト化
するための各種樹脂や溶剤あるいは粒子の凝集や分散不
良を防止するための分散材等が種々含有される。
Such a conductive paste is made of metal powder 4
A conductive paste is obtained by mixing 0 to 50% by weight and 50 to 60% by weight of the organic component and kneading the mixture with a three roll or the like. As the organic component, various resins and solvents for forming a paste, and various dispersants for preventing agglomeration and poor dispersion of particles are contained.

【0030】溶剤は用いる有機バインダー樹脂と相溶す
るものであれば特に限定されるものではなく、例えば炭
化水素類、アルコール類等が使用できる。
The solvent is not particularly limited as long as it is compatible with the organic binder resin used. For example, hydrocarbons, alcohols and the like can be used.

【0031】次に、本発明の積層セラミックコンデンサ
の製造方法について説明する。まず、耐還元性を有する
誘電体材料からなる誘電体粉末を用いて、ドクターブレ
ード法、引き上げ法、リバースロールコータ法、グラビ
アコータ法、スクリーン印刷法、グラビア印刷等の成形
法によりシート状の誘電体成形体を作製する。
Next, a method for manufacturing the multilayer ceramic capacitor of the present invention will be described. First, using a dielectric powder made of a dielectric material having reduction resistance, a sheet-like dielectric material is formed by a molding method such as a doctor blade method, a pulling method, a reverse roll coater method, a gravure coater method, a screen printing method, and a gravure printing method. A molded body is produced.

【0032】耐還元性を有する誘電体材料としては、具
体的には、BaTiO3−MnO−MgO−Y23等が
好適に使用できる。また、このシート状の誘電体成形体
の厚みは、小型、大容量化という理由から0.5〜10
μm、特に、厚み4μm以下であることが望ましい。
As a reduction resistant dielectric material, specifically, BaTiO 3 —MnO—MgO—Y 2 O 3 can be suitably used. In addition, the thickness of the sheet-shaped dielectric molded body is 0.5 to 10 because of its small size and large capacity.
μm, particularly preferably 4 μm or less.

【0033】次に、このシート状の誘電体成形体の表面
に、上述した導電性ペーストを内部電極パターン状にス
クリーン印刷法により塗布する。内部電極パターンの厚
みは、コンデンサの小型、高信頼性化という点から2μ
m以下、特には1μm以下であることが望ましい。
Next, the above-mentioned conductive paste is applied to the surface of the sheet-shaped dielectric molded body in a form of an internal electrode by screen printing. The thickness of the internal electrode pattern is 2μ from the viewpoint of miniaturization and high reliability of the capacitor.
m or less, particularly preferably 1 μm or less.

【0034】そして、導電性ペーストが塗布されたシー
ト状の誘電体成形体を複数枚積層圧着し、この積層成形
体を大気中250〜300℃または酸素分圧0.1〜1
Paの低酸素雰囲気中500〜800℃で脱バイした
後、非酸化性雰囲気で1100〜1200℃で2〜3時
間焼成し、電子部品本体を作製する。
Then, a plurality of sheet-like dielectric molded bodies coated with the conductive paste are laminated and pressed, and the laminated molded bodies are placed in the air at 250 to 300 ° C. or an oxygen partial pressure of 0.1 to 1.
After debubbling at 500 to 800 ° C. in a low oxygen atmosphere of Pa, baking is performed at 1100 to 1200 ° C. for 2 to 3 hours in a non-oxidizing atmosphere to produce an electronic component body.

【0035】さらに、所望の誘電特性を得るために、酸
素分圧が0.1〜10-4Pa程度の低酸素分圧下、90
0〜1100℃で3〜10時間再酸化処理を施すことに
より、還元された誘電体層が酸化され、良好な絶縁特性
を有する誘電体層となる。
Further, in order to obtain a desired dielectric property, the oxygen partial pressure is set to 90.degree. Under a low oxygen partial pressure of about 0.1 to 10.sup.- 4 Pa.
By performing the reoxidation treatment at 0 to 1100 ° C. for 3 to 10 hours, the reduced dielectric layer is oxidized, and becomes a dielectric layer having good insulating properties.

【0036】焼成は非酸化性雰囲気中で行われるため、
導電性ペースト中のCrは焼成段階では内部電極中に金
属Crとして存在しており、焼結には殆ど寄与しない
が、焼結後の酸化処理により内部電極中の金属Crが酸
化され、酸化クロムとなって誘電体層中に均一に拡散固
溶し、酸化クロムの酸化数が減少し、誘電体層中の酸素
空孔を補償し、酸素空孔が減少するので絶縁抵抗の劣化
を抑制できる。
Since the firing is performed in a non-oxidizing atmosphere,
Cr in the conductive paste is present as metal Cr in the internal electrode at the firing stage, and hardly contributes to sintering. However, the oxidation treatment after sintering oxidizes the metal Cr in the internal electrode, resulting in chromium oxide. As a result, it diffuses and dissolves uniformly in the dielectric layer, reduces the oxidation number of chromium oxide, compensates for oxygen vacancies in the dielectric layer, and reduces oxygen vacancies. .

【0037】最後に、得られた焼結体(電子部品本体)
の両端部に、端子ペーストを塗布し、内部電極と電気的
に接続された外部端子を形成し、積層セラミックコンデ
ンサが作製される。
Finally, the obtained sintered body (electronic component body)
A terminal paste is applied to both ends of the substrate to form external terminals electrically connected to the internal electrodes, thereby producing a multilayer ceramic capacitor.

【0038】以上のような導電性ペーストを用いて形成
された内部電極パターンと、誘電体成形体とを交互に積
層して電子部品本体成形体を作製し、非酸化性雰囲気中
において焼成し、この後、酸化処理すると、この酸化処
理により内部電極中の金属Crが酸化され、酸化クロム
となって誘電体層中に均一に拡散固溶し、酸化クロムの
酸化数が減少して誘電体層中の酸素空孔を減少し、絶縁
抵抗の劣化を抑制できる。
An internal electrode pattern formed using the conductive paste as described above and a dielectric molded body are alternately laminated to produce an electronic component body molded body, which is fired in a non-oxidizing atmosphere, Thereafter, when an oxidation treatment is performed, the metal Cr in the internal electrode is oxidized by the oxidation treatment to become chromium oxide, which is uniformly diffused and solid-dissolved in the dielectric layer. Oxygen vacancies therein can be reduced, and deterioration of insulation resistance can be suppressed.

【0039】また、導電性ペースト中に含有されるCr
粉末は全金属成分中0.01重量%以下含有であるた
め、積層セラミックコンデンサを作製した場合に、Cr
は酸化クロムとなって誘電体層中に完全に拡散し、内部
電極層中には残存していないため、Ni粒子間の接続が
良好である。また、導電性ペースト中の金属粉末同士の
凝集が起こり難く、このためNi粉末の分散に必要な分
散剤の量を少なくでき、脱バイを良好に行うことがで
き、積層セラミックコンデンサの焼結性を向上して、ク
ラック等の構造欠陥を防止できる。
In addition, Cr contained in the conductive paste
Since the powder contains 0.01% by weight or less of all metal components, when a multilayer ceramic capacitor is produced,
Becomes chromium oxide, which is completely diffused in the dielectric layer and does not remain in the internal electrode layer, so that the connection between the Ni particles is good. In addition, the metal powder in the conductive paste is less likely to agglomerate, so that the amount of the dispersant required for dispersing the Ni powder can be reduced, the de-buying can be performed well, and the sintering property of the multilayer ceramic capacitor can be improved. And structural defects such as cracks can be prevented.

【0040】[0040]

【実施例】まず、PETフィルム上に、BaTiO3
MgCO3、MnCO3およびY23粉末、ブチラール樹
脂、およびトルエンからなるセラミックスラリーを作製
し、これをドクターブレード法により塗布し、乾燥機内
で60℃で15秒間乾燥後、これを剥離して厚み9μm
のセラミックグリーンシートを形成し、これを10枚積
層して端面セラミックグリーンシート層を形成した。そ
して、これらの端面セラミックグリーンシート層を、9
0℃で30分の条件で乾燥させた。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, BaTiO 3 ,
A ceramic slurry made of MgCO 3 , MnCO 3 and Y 2 O 3 powder, butyral resin, and toluene was prepared, applied by a doctor blade method, dried at 60 ° C. for 15 seconds in a drier, and peeled off. 9μm thickness
Was formed, and ten sheets were laminated to form an end face ceramic green sheet layer. Then, these end face ceramic green sheet layers are
It was dried at 0 ° C. for 30 minutes.

【0041】この端面セラミックグリーンシート層を台
板上に配置し、プレス機により圧着して台板上にはりつ
けた。
The ceramic green sheet layer at the end face was placed on a base plate, pressed by a press machine and glued on the base plate.

【0042】一方、PETフィルム上に、上記と同一の
セラミックスラリーをドクターブレード法により塗布
し、60℃で15秒間乾燥後、厚み4μmのセラミック
グリーンシートを多数作製した。
On the other hand, the same ceramic slurry as described above was applied on a PET film by a doctor blade method, dried at 60 ° C. for 15 seconds, and a number of ceramic green sheets having a thickness of 4 μm were prepared.

【0043】次に、平均粒径0.2μmのNi粉末と、
平均粒径0.05μmのCr粉末、平均粒径0.1μm
のCo粉末の合量45重量%に対して、エチルセルロー
ス5.5重量%とオクチルアルコール94.5重量%か
らなるビヒクル55重量%を3本ロールで混練して内部
電極ペーストを作製した。
Next, Ni powder having an average particle size of 0.2 μm,
Cr powder with average particle size of 0.05 μm, average particle size of 0.1 μm
The internal electrode paste was prepared by kneading 55% by weight of a vehicle composed of 5.5% by weight of ethylcellulose and 94.5% by weight of octyl alcohol with a triple roll with respect to the total amount of 45% by weight of the Co powder.

【0044】この後、得られたセラミックグリーンシー
トの一方主面に、スクリーン印刷装置を用いて、上記し
た内部電極ペーストを内部電極パターン状に印刷し、グ
リーンシート上に長辺と短辺を有する長方形状の内部電
極パターンを複数形成し、乾燥後、剥離した。
Thereafter, the above-mentioned internal electrode paste is printed in an internal electrode pattern on one main surface of the obtained ceramic green sheet using a screen printing apparatus, and has a long side and a short side on the green sheet. A plurality of rectangular internal electrode patterns were formed, dried, and then peeled off.

【0045】この後、端面セラミックグリーンシート層
の上に、内部電極パターンが形成されたグリーンシート
を400枚積層し、この後、端面セラミックグリーンシ
ートを積層し、コンデンサ本体成形体を作製した。
Thereafter, 400 green sheets on which the internal electrode patterns were formed were laminated on the end face ceramic green sheet layer, and thereafter, the end face ceramic green sheets were laminated to produce a capacitor body molded body.

【0046】次に、コンデンサ本体成形体を金型上に載
置し、積層方向からプレス機の加圧板により圧力を段階
的に増加して圧着し、この後さらにコンデンサ本体成形
体の上部にゴム型を配置し、静水圧成形した。
Next, the molded body of the capacitor is placed on a mold, and the pressure is gradually increased by a pressing plate of a press machine from the laminating direction to press the molded body. The mold was placed and isostatically formed.

【0047】この後、このコンデンサ本体成形体を所定
のチップ形状にカットし、大気中300℃または0.1
Paの酸素/窒素雰囲気中500℃に加熱し、脱バイを
行った。さらに、10-7Paの酸素/窒素雰囲気中、1
300℃で2時間焼成し、さらに、10-2Paの酸素/
窒素雰囲気中にて1000℃で再酸化処理を行い、電子
部品本体を得た。焼成後、電子部品本体の端面にCuペ
ーストを900℃で焼き付け、さらにNi/Snメッキ
を施し、内部電極と接続する外部端子を形成した。
After that, the molded body of the capacitor is cut into a predetermined chip shape, and the cut at 300 ° C. or 0.1 ° C. in the atmosphere.
Heating was performed at 500 ° C. in an oxygen / nitrogen atmosphere of Pa to remove the solder. Further, in an oxygen / nitrogen atmosphere of 10 -7 Pa,
Baking at 300 ° C. for 2 hours, and further adding 10 −2 Pa of oxygen /
Reoxidation was performed at 1000 ° C. in a nitrogen atmosphere to obtain an electronic component body. After firing, Cu paste was baked at 900 ° C. on the end surface of the electronic component body, and further subjected to Ni / Sn plating to form external terminals connected to internal electrodes.

【0048】このようにして得られた積層セラミックコ
ンデンサの外形寸法は、幅1.25mm、長さ2.0m
m、厚さ1.25mmであり、内部電極間に介在する誘
電体層の厚みは3μmであった。また誘電体層の有効積
層数は400層であった。
The external dimensions of the multilayer ceramic capacitor thus obtained were 1.25 mm in width and 2.0 m in length.
m, the thickness was 1.25 mm, and the thickness of the dielectric layer interposed between the internal electrodes was 3 μm. The effective number of dielectric layers was 400.

【0049】各サンプルに付いて、下記の測定を行っ
た。結果を表1に示す。
The following measurements were made on each sample. Table 1 shows the results.

【0050】絶縁抵抗計を用いて10Vの直流電圧を1
分間印可して、25℃での絶縁抵抗(IR)を測定し
た。
When a DC voltage of 10 V is applied to the
After applying for one minute, the insulation resistance (IR) at 25 ° C. was measured.

【0051】高温負荷試験では各試料30個を準備し、
温度125℃にて、16Vを負荷して、絶縁抵抗の経時
変化を測定した。故障判定基準としては、絶縁抵抗が初
期値より2桁低下した時点とし、その結果をもとに平均
寿命(平均故障時間)を算出した。
In the high temperature load test, 30 samples were prepared for each sample.
At a temperature of 125 ° C., a load of 16 V was applied, and the change with time of the insulation resistance was measured. As a failure criterion, the time when the insulation resistance dropped by two digits from the initial value was determined, and the average life (average failure time) was calculated based on the result.

【0052】測定電圧1Vで初期容量C0を測定し、次
いで1V/μmの直流電界を25℃にて1000時間印
可した後、無負荷状態で室温にて24時間放置し、エー
ジンク処理を行った。放置後に容量を測定し、初期容量
0から変化量ΔC1を求めて、容量変化率ΔC1/C0
算出した。
The initial capacity C 0 was measured at a measurement voltage of 1 V. Then, a DC electric field of 1 V / μm was applied at 25 ° C. for 1000 hours, and then left at room temperature without load for 24 hours to perform an aging treatment. . After the standing, the capacity was measured, the change amount ΔC 1 was obtained from the initial capacity C 0 , and the capacity change rate ΔC 1 / C 0 was calculated.

【0053】[0053]

【表1】 [Table 1]

【0054】この表1の結果から、本発明の範囲外の試
料5、6では、絶縁抵抗の低下と高温負荷試験での初期
故障はないが、容量のDCエージングにおいて20%以
上の容量の低下がみられた。また、試料5、6について
ICP発光分光分析により分析したところ、誘電体層中
にCr、Coが酸化クロム、酸化コバルトとして存在す
るとともに、内部電極層中にも酸化クロム、酸化コバル
トとして存在していた。これにより、内部電極層中の導
通抵抗が大きくなり、容量が低下した。
From the results shown in Table 1, in the samples 5 and 6 out of the range of the present invention, there is no decrease in the insulation resistance and no initial failure in the high temperature load test, but the capacity decreases by 20% or more in DC aging of the capacity. Was seen. When samples 5 and 6 were analyzed by ICP emission spectroscopy, it was found that Cr and Co were present as chromium oxide and cobalt oxide in the dielectric layer, and also as chromium oxide and cobalt oxide in the internal electrode layer. Was. As a result, the conduction resistance in the internal electrode layer increased, and the capacity decreased.

【0055】一方、本発明の試料では、内部電極層中に
はCr、Coが存在せず、酸化クロム、酸化コバルトと
して誘電体層中に存在していた。また、導電性ペースト
中に添加されるCr量を増加するにつれて、絶縁抵抗が
大きくなり、平均故障時間が延びることが判る。即ち、
10Vでの絶縁抵抗は100MΩ以上あり、絶縁抵抗の
劣化の発生がなく、高温負荷試験での初期故障もない信
頼性の高い積層コンデンサを得ることができた。
On the other hand, in the sample of the present invention, Cr and Co were not present in the internal electrode layer, but were present in the dielectric layer as chromium oxide and cobalt oxide. Further, it can be seen that as the amount of Cr added to the conductive paste increases, the insulation resistance increases, and the average failure time increases. That is,
The insulation resistance at 10 V was 100 MΩ or more, and a highly reliable multilayer capacitor without deterioration of the insulation resistance and no initial failure in a high-temperature load test could be obtained.

【0056】尚、比較例としてCrを添加しない導電ペ
ーストを用いた試料を作製したところ、絶縁抵抗が30
MΩ、平均故障時間が1時間未満となり、絶縁抵抗が大
きく劣化した。
As a comparative example, a sample using a conductive paste to which Cr was not added was prepared.
MΩ, mean time to failure was less than 1 hour, and insulation resistance was significantly degraded.

【0057】また、グリーンシートの厚みを3μmとす
る以外は上記と同様にして、厚みが2μmの誘電体層を
有する積層セラミックコンデンサを作製し、上記と同様
にして特性を評価したところ、グリーンシートの厚みが
4μmの場合と同様の効果が得られることを確認した。
A multilayer ceramic capacitor having a dielectric layer having a thickness of 2 μm was prepared in the same manner as above except that the thickness of the green sheet was changed to 3 μm, and the characteristics were evaluated in the same manner as above. It was confirmed that the same effect as when the thickness was 4 μm was obtained.

【0058】[0058]

【発明の効果】以上詳述したとおり、本発明によれば、
Ni粉末を主成分とし、Cr粉末を全金属成分中0.0
1重量%以下含有する導電性ペーストを用いて形成され
た内部電極パターンと、誘電体層成形体とを交互に積層
して電子部品本体成形体を作製し、この電子部品本体成
形体を還元雰囲気中で焼成して電子部品本体を作製し、
この電子部品本体を酸化処理すると、内部電極パターン
中の金属Crは、焼成段階では内部電極層中に金属Cr
として存在しており、焼結には殆ど寄与しないが、焼成
後の焼結体の酸化処理により内部電極中の金属Crが酸
化され、酸化クロムとなって誘電体層中に拡散固溶し、
酸化クロムの酸化数が減少し、これにより、誘電体層中
の酸素空孔を補償し、絶縁抵抗の劣化を抑制できる。
As described in detail above, according to the present invention,
Ni powder as a main component, and Cr powder in 0.0% of all metal components
An internal electrode pattern formed using a conductive paste containing 1% by weight or less and a dielectric layer molded body are alternately laminated to produce an electronic part body molded body, and this electronic part body molded body is placed in a reducing atmosphere. Firing inside to make the electronic component body,
When the electronic component body is oxidized, the metal Cr in the internal electrode pattern becomes metal Cr in the internal electrode layer at the firing stage.
Although it hardly contributes to sintering, the oxidation treatment of the sintered body after sintering oxidizes the metal Cr in the internal electrodes to become chromium oxide and diffuses into the dielectric layer to form a solid solution.
The oxidation number of chromium oxide is reduced, thereby compensating for oxygen vacancies in the dielectric layer and suppressing deterioration of insulation resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の積層型電子部品を示す断面図である。FIG. 1 is a cross-sectional view showing a multilayer electronic component of the present invention.

【図2】図1の一部を拡大して示す断面図である。FIG. 2 is an enlarged sectional view showing a part of FIG. 1;

【符号の説明】[Explanation of symbols]

1・・・内部電極層 3・・・誘電体層 5・・・電子部品本体 7・・・外部端子 DESCRIPTION OF SYMBOLS 1 ... Internal electrode layer 3 ... Dielectric layer 5 ... Electronic component main body 7 ... External terminal

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】Ni粉末を主成分とし、Cr粉末を含有す
る導電性ペーストであって、前記Cr粉末を、全金属成
分中0.01重量%以下含有することを特徴とする導電
性ペースト。
1. A conductive paste comprising a Ni powder as a main component and a Cr powder, wherein the Cr powder is contained in an amount of 0.01% by weight or less based on all metal components.
【請求項2】Co粉末を全金属成分中0.05重量%以
下含有することを特徴とする請求項1記載の導電性ペー
スト。
2. The conductive paste according to claim 1, wherein the content of the Co powder is 0.05% by weight or less based on all metal components.
【請求項3】Niを主成分とする内部電極層と誘電体層
とを交互に積層してなる電子部品本体と、前記内部電極
層に電気的に接続する外部端子とを具備する積層型電子
部品であって、前記誘電体層中にCrを金属換算で0.
0025重量%以下含有することを特徴とする積層型電
子部品。
3. A laminated electronic device comprising: an electronic component main body in which internal electrode layers mainly composed of Ni and dielectric layers are alternately laminated; and external terminals electrically connected to the internal electrode layers. A part, wherein Cr is contained in the dielectric layer in a metal equivalent of 0.1%.
A multilayer electronic component characterized by containing 0025% by weight or less.
【請求項4】誘電体層の厚みが3μm以下であることを
特徴とする請求項3記載の積層型電子部品。
4. The multilayer electronic component according to claim 3, wherein the thickness of the dielectric layer is 3 μm or less.
【請求項5】誘電体層成形体と内部電極パターンとを交
互に積層してなる電子部品本体成形体を作製する工程
と、該電子部品本体成形体を還元雰囲気中で焼成て、電
子部品本体を作製する工程と、該電子部品本体を酸化処
理する工程とを具備する積層型電子部品の製法であっ
て、前記内部電極パターンを、請求項1または2記載の
導電性ペーストにより作製したことを特徴とする積層型
電子部品の製法。
5. A process for producing an electronic component main body formed by alternately laminating a dielectric layer molded body and an internal electrode pattern, and firing the electronic component main body in a reducing atmosphere to form an electronic component main body. And a step of oxidizing the electronic component body, wherein the internal electrode pattern is formed by the conductive paste according to claim 1 or 2. A unique manufacturing method for laminated electronic components.
JP2000096539A 2000-03-31 2000-03-31 Conductive paste, multilayer electronic component and method for producing the same Expired - Fee Related JP4548897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000096539A JP4548897B2 (en) 2000-03-31 2000-03-31 Conductive paste, multilayer electronic component and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000096539A JP4548897B2 (en) 2000-03-31 2000-03-31 Conductive paste, multilayer electronic component and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001284162A true JP2001284162A (en) 2001-10-12
JP4548897B2 JP4548897B2 (en) 2010-09-22

Family

ID=18611292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000096539A Expired - Fee Related JP4548897B2 (en) 2000-03-31 2000-03-31 Conductive paste, multilayer electronic component and method for producing the same

Country Status (1)

Country Link
JP (1) JP4548897B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332572A (en) * 2004-06-28 2006-12-07 Kyocera Corp Lamination ceramic capacitor and its manufacturing method
US7817402B2 (en) * 2005-03-31 2010-10-19 Tdk Corporation Multilayer ceramic electronic device and method of production of the same
JP2014038820A (en) * 2012-08-20 2014-02-27 Samsung Electro-Mechanics Co Ltd Conductive paste composition for internal electrode and multilayered ceramic electronic component containing the same
WO2024004391A1 (en) * 2022-06-26 2024-01-04 株式会社村田製作所 Conductive paste
WO2024004394A1 (en) * 2022-06-26 2024-01-04 株式会社村田製作所 Multilayer ceramic capacitor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05144608A (en) * 1991-10-25 1993-06-11 Murata Mfg Co Ltd Laminated semiconductor ceramic element
JPH10144559A (en) * 1996-11-05 1998-05-29 Matsushita Electric Ind Co Ltd Terminal electrode paste, laminated electronic component and its manufacture
JPH10214520A (en) * 1997-01-31 1998-08-11 Kyocera Corp Conductive paste
JPH11111564A (en) * 1997-10-06 1999-04-23 Tdk Corp Cr composite electronic component and its production
JPH11135357A (en) * 1997-10-30 1999-05-21 Kyocera Corp Multilayered ceramic capacitor
JPH11144993A (en) * 1997-11-12 1999-05-28 Taiyo Yuden Co Ltd Manufacture of ceramics sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05144608A (en) * 1991-10-25 1993-06-11 Murata Mfg Co Ltd Laminated semiconductor ceramic element
JPH10144559A (en) * 1996-11-05 1998-05-29 Matsushita Electric Ind Co Ltd Terminal electrode paste, laminated electronic component and its manufacture
JPH10214520A (en) * 1997-01-31 1998-08-11 Kyocera Corp Conductive paste
JPH11111564A (en) * 1997-10-06 1999-04-23 Tdk Corp Cr composite electronic component and its production
JPH11135357A (en) * 1997-10-30 1999-05-21 Kyocera Corp Multilayered ceramic capacitor
JPH11144993A (en) * 1997-11-12 1999-05-28 Taiyo Yuden Co Ltd Manufacture of ceramics sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332572A (en) * 2004-06-28 2006-12-07 Kyocera Corp Lamination ceramic capacitor and its manufacturing method
JP4686270B2 (en) * 2004-06-28 2011-05-25 京セラ株式会社 Multilayer ceramic capacitor
US7817402B2 (en) * 2005-03-31 2010-10-19 Tdk Corporation Multilayer ceramic electronic device and method of production of the same
JP2014038820A (en) * 2012-08-20 2014-02-27 Samsung Electro-Mechanics Co Ltd Conductive paste composition for internal electrode and multilayered ceramic electronic component containing the same
WO2024004391A1 (en) * 2022-06-26 2024-01-04 株式会社村田製作所 Conductive paste
WO2024004394A1 (en) * 2022-06-26 2024-01-04 株式会社村田製作所 Multilayer ceramic capacitor

Also Published As

Publication number Publication date
JP4548897B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
KR100351039B1 (en) Monolithic ceramic electronic component and method for making the same
WO2011024582A1 (en) Process for producing multilayered ceramic capacitor, and multilayered ceramic capacitor
JPH11251173A (en) Laminated ceramic electronic component
JP2003068564A (en) Manufacturing method for laminated ceramic electronic component and laminated ceramic electronic component
US11062847B2 (en) Capacitor component and method for manufacturing the same
US6627120B2 (en) Conductive paste and laminated ceramic electronic component
JP4557472B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2000340450A (en) Laminated ceramic capacitor and manufacture thereof
JP4182009B2 (en) Conductive particles, conductive paste, electronic component, multilayer ceramic capacitor and manufacturing method thereof
JP4135443B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2004128328A (en) Electronic component and its manufacturing method
JP2000106035A (en) Conductive paste composition and manufacture of laminated ceramic capacitor using it, as well as laminated ceramic capacitor
JPH1145617A (en) Conductive paste and multilayer ceramic capacitor
JPH10106351A (en) Conductive paste
US20230335338A1 (en) Multilayer electronic component and method for manufacturing multilayer electronic component
JP4548897B2 (en) Conductive paste, multilayer electronic component and method for producing the same
JP2007234330A (en) Conductor paste and electronic part
JP4552260B2 (en) Nickel powder, electrode paste, and electronic component manufacturing method
JP4867948B2 (en) Conductive particles, conductive paste, electronic component, multilayer ceramic capacitor and manufacturing method thereof
JP4432882B2 (en) Multilayer electronic component and manufacturing method thereof
JP3520075B2 (en) Manufacturing method of multilayer ceramic electronic component
JP4427966B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JP2003115416A (en) Conductive paste, method of manufacturing laminated ceramic electronic component, and laminated ceramic electronic component
JP2003277136A (en) Dielectric ceramic composition and multilayer ceramic electronic parts
JP2975459B2 (en) Multilayer ceramic chip capacitors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100706

R150 Certificate of patent or registration of utility model

Ref document number: 4548897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees