JPH10149813A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH10149813A
JPH10149813A JP8323475A JP32347596A JPH10149813A JP H10149813 A JPH10149813 A JP H10149813A JP 8323475 A JP8323475 A JP 8323475A JP 32347596 A JP32347596 A JP 32347596A JP H10149813 A JPH10149813 A JP H10149813A
Authority
JP
Japan
Prior art keywords
negative electrode
solid electrolyte
electrolyte
polymer solid
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8323475A
Other languages
Japanese (ja)
Inventor
Maruo Jinno
丸男 神野
Mikiya Yamazaki
幹也 山崎
Toshiyuki Noma
俊之 能間
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8323475A priority Critical patent/JPH10149813A/en
Publication of JPH10149813A publication Critical patent/JPH10149813A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To suppress the volume change or a negative electrode in charge/ discharge and prevent the peeling off and drop in adhesion of carbon to enhance the charge/discharge characteristics of a lithium secondary battery by containing a polymer solid electrolyte SB with the specified Young's modulus in the negative electrode. SOLUTION: Carbon such as graphite and petroleum coke is kneaded together with a binder to prepare slurry, and the slurry is applied to a current collector, dried to prepare a negative electrode using the carbon as a lithium ion absorbing material. A solution prepared by dissolving an electrolyte salt in an oligomer for forming a matrix of a polymer solid electrolyte SB by polymerization is impregnated into the negative electrode to contain the polymer solid electrolyte SB, and the negative electrode 2 is manufactured. Young's modulus of the polymer solid electrolyte SB is specified to 0.1×10<4> to 3.5×10<4> kgf/cm<2> , and the content in the negative electrode is specified to 7.5-25wt%. The negative electrode 2 and a specified positive electrode 1 are faced through a layer 3 made of a polymer solid electrolyte SA, and they are housed in a battery case to manufacture a lithium secondary battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、正極と、高分子固
体電解質と、炭素をリチウムイオン吸蔵材とする負極と
を備えるリチウム二次電池に係わり、詳しくは充放電サ
イクル特性を改善することを目的とした、負極の改良に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery having a positive electrode, a solid polymer electrolyte, and a negative electrode using carbon as a lithium ion storage material. The present invention relates to an improvement of a negative electrode.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
リチウム二次電池の電解質として、リチウムイオン伝導
性に優れる液体電解質が使用されているが、液体電解質
には、漏液、電極物質の溶出などの問題がある。
2. Description of the Related Art
Liquid electrolytes having excellent lithium ion conductivity are used as electrolytes for lithium secondary batteries, but liquid electrolytes have problems such as liquid leakage and elution of electrode materials.

【0003】そこで、近年、このような問題が無い固体
電解質、とくに薄膜成形が容易であり、比較的安価であ
る高分子固体電解質が、リチウム二次電池の電解質とし
て注目され、その実用化のための研究が盛んに行われて
いる。
[0003] In recent years, a solid electrolyte free from such problems, especially a polymer solid electrolyte which is easy to form a thin film and is relatively inexpensive, has attracted attention as an electrolyte for a lithium secondary battery. Research is being actively conducted.

【0004】また、従来、リチウム二次電池の負極材料
として、金属リチウムが使用されていたが、金属リチウ
ムには樹枝状の電析リチウムの成長に因り内部短絡が起
こる虞れがあった。そこで、近年、このような問題の無
い黒鉛、コークス等の炭素が負極材料として提案されて
いる。
Conventionally, metallic lithium has been used as a negative electrode material of a lithium secondary battery. However, internal short-circuiting may occur in metallic lithium due to the growth of dendritic lithium. Therefore, in recent years, carbon such as graphite and coke which does not have such a problem has been proposed as a negative electrode material.

【0005】しかしながら、負極のリチウムイオン吸蔵
材として炭素を使用し、電解質として高分子固体電解質
を使用したリチウム二次電池には、充放電サイクル特性
が良くないという問題がある。これは、充放電時のリチ
ウムイオンの吸蔵及び放出に伴う負極の体積変化が大き
いために、炭素が負極から脱落したり、負極と高分子固
体電解質との密着性が低下したりするからである。
[0005] However, a lithium secondary battery using carbon as a lithium ion storage material of a negative electrode and using a solid polymer electrolyte as an electrolyte has a problem that charge / discharge cycle characteristics are not good. This is because the volume change of the negative electrode due to occlusion and release of lithium ions during charging and discharging is large, so that carbon may fall off from the negative electrode or the adhesion between the negative electrode and the solid polymer electrolyte may be reduced. .

【0006】本発明は、上述の問題を解決するべくなさ
れたものであって、負極のリチウムイオン吸蔵材として
炭素を使用し、電解質として高分子固体電解質を使用し
たリチウム二次電池の充放電サイクル特性を改善するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and is directed to a charge / discharge cycle of a lithium secondary battery using carbon as a lithium ion storage material of a negative electrode and a solid polymer electrolyte as an electrolyte. The purpose is to improve the characteristics.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めの本発明に係るリチウム二次電池(本発明電池)は、
正極と、高分子固体電解質SAと、炭素をリチウムイオ
ン吸蔵材とする負極とを備え、負極が、ヤング弾性率
0.1×104 〜3.5×104 kgf/cm2の高分
子固体電解質SBを含有するリチウム二次電池である。
To achieve the above object, a lithium secondary battery according to the present invention (battery of the present invention) comprises:
A positive electrode, a polymer solid electrolyte SA, and a negative electrode using carbon as a lithium ion storage material, wherein the negative electrode has a Young's modulus of 0.1 × 10 4 to 3.5 × 10 4 kgf / cm 2 . This is a lithium secondary battery containing an electrolyte SB.

【0008】炭素としては、黒鉛、石油コークス、クレ
ゾール樹脂焼成炭素、フラン樹脂焼成炭素、ポリアクリ
ロニトリル焼成炭素、気相成長炭素、メソフェーズピッ
チ焼成炭素が例示される。これらの炭素は、充電及び放
電によりリチウムイオンを電気化学的に吸蔵及び放出す
ることが可能なものである。本発明電池の負極は、例え
ば、これらの炭素を結着剤とともに混練してスラリーを
調製し、このスラリーを集電体に塗布し、乾燥して、炭
素をリチウムイオン吸蔵材とする負極(炭素負極)を作
製した後、これに高分子固体電解質SBを含有せしめる
ことにより作製される。
Examples of the carbon include graphite, petroleum coke, cresol resin fired carbon, furan resin fired carbon, polyacrylonitrile fired carbon, vapor grown carbon, and mesophase pitch fired carbon. These carbons can electrochemically occlude and release lithium ions by charging and discharging. For the negative electrode of the battery of the present invention, for example, a slurry is prepared by kneading these carbons together with a binder, the slurry is applied to a current collector, and dried to prepare a negative electrode (carbon having carbon as a lithium ion storage material). After the negative electrode) is manufactured, the negative electrode is manufactured by adding a polymer solid electrolyte SB thereto.

【0009】炭素負極に高分子固体電解質SBを含有せ
しめる方法としては、重合により高分子固体電解質SB
のマトリクスを形成するオリゴマーに電解質塩を溶かし
た溶液、又は、該オリゴマーと溶媒及び電解質塩からな
る電解液とを混合して得た溶液を、負極内部に浸透せし
めた後、浸透せるオリゴマーを重合する方法が挙げられ
る。重合法としては、電子線重合、熱重合、紫外線重合
が例示される。
[0009] As a method for incorporating the polymer solid electrolyte SB into the carbon anode, the polymer solid electrolyte SB is produced by polymerization.
After a solution obtained by dissolving an electrolyte salt in an oligomer that forms a matrix of the above or a solution obtained by mixing the oligomer and an electrolyte solution comprising a solvent and an electrolyte salt is allowed to penetrate inside the negative electrode, the permeated oligomer is polymerized. Method. Examples of the polymerization method include electron beam polymerization, thermal polymerization, and ultraviolet polymerization.

【0010】炭素負極に含有せしめる高分子固体電解質
SBは、セパレータを兼ねる高分子固体電解質SAと同
種のものであってもよい。高分子固体電解質SBの溶媒
としては、ポリエチレンオキシド、ポリプロピレンオキ
シド、ポリエチレンオキシドとポリプロピレンオキシド
との共重合体、ポリエーテルイミド、ポリエーテルスル
ホン、ポリスルホン、ポリシロキサンが例示される。ま
た、高分子固体電解質SBの電解質塩としては、LiP
6 、LiAsF6 、LiSbF6 、LiClO4 、L
iBF4 、LiCF3 SO3 、LiN(CF3 SO2
2 が例示される。
The solid polymer electrolyte SB contained in the carbon negative electrode may be of the same type as the solid polymer electrolyte SA serving also as a separator. Examples of the solvent for the polymer solid electrolyte SB include polyethylene oxide, polypropylene oxide, a copolymer of polyethylene oxide and polypropylene oxide, polyetherimide, polyether sulfone, polysulfone, and polysiloxane. As the electrolyte salt of the polymer solid electrolyte SB, LiP
F 6 , LiAsF 6 , LiSbF 6 , LiClO 4 , L
iBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 )
2 is exemplified.

【0011】炭素負極に含有せしめる高分子固体電解質
SBのヤング弾性率は、0.1×104 〜3.5×10
4 kgf/cm2 に規制される。ヤング弾性率がこの範
囲を外れると、良好な充放電サイクル特性が得られな
い。また、炭素負極に含有せしめる高分子固体電解質S
Bの好ましい量は、7.5〜25重量%である。含有量
が7.5重量%未満の場合は過少なため本発明の効果が
充分に得られず、一方25重量%を超えた場合は、活物
質の量を減らす必要があり、容量が低下する。
The Young's modulus of the solid polymer electrolyte SB contained in the carbon anode is 0.1 × 10 4 to 3.5 × 10 4
Regulated to 4 kgf / cm 2 . If the Young's modulus is out of this range, good charge / discharge cycle characteristics cannot be obtained. Further, the polymer solid electrolyte S contained in the carbon anode
The preferred amount of B is between 7.5 and 25% by weight. When the content is less than 7.5% by weight, the effect of the present invention cannot be sufficiently obtained because the content is too small. On the other hand, when the content exceeds 25% by weight, the amount of the active material needs to be reduced, and the capacity decreases. .

【0012】本発明は、炭素負極の改良に関する。それ
ゆえ、正極には、Li含有コバルト酸化物、Li含有バ
ナジウム酸化物、Li含有マンガン酸化物、Li含有ニ
ッケル酸化物、Li含有鉄酸化物、Li含有クロム酸化
物、Li含有チタン酸化物などの、リチウム二次電池用
として従来公知の正極活物質を特に制限無く用いること
ができる。
[0012] The present invention relates to improvements in carbon anodes. Therefore, for the positive electrode, Li-containing cobalt oxide, Li-containing vanadium oxide, Li-containing manganese oxide, Li-containing nickel oxide, Li-containing iron oxide, Li-containing chromium oxide, Li-containing titanium oxide, etc. Conventionally known positive electrode active materials for lithium secondary batteries can be used without any particular limitation.

【0013】本発明電池は、炭素負極が所定のヤング弾
性率の高分子固体電解質SBを含有しているので、充放
電サイクル特性に優れる。この理由は、高分子固体電解
質SBが発現する弾性が充放電時の炭素の体積変化を吸
収するため、充放電時の負極全体の体積変化が小さくな
り、炭素の極板からの脱落や、負極と高分子固体電解質
SAとの密着性の低下が抑制されるためと推察される。
The battery of the present invention is excellent in charge-discharge cycle characteristics because the carbon negative electrode contains the polymer solid electrolyte SB having a predetermined Young's modulus. The reason is that the elasticity expressed by the polymer solid electrolyte SB absorbs the volume change of carbon at the time of charge / discharge, so that the volume change of the whole negative electrode at the time of charge / discharge becomes small, and the carbon drops from the electrode plate, It is speculated that the decrease in adhesion between the polymer and the polymer solid electrolyte SA is suppressed.

【0014】[0014]

【実施例】本発明を実施例に基づいてさらに詳細に説明
するが、本発明は下記実施例に何ら限定されるものでは
なく、その要旨を変更しない範囲で適宜変更して実施す
ることが可能なものである。
EXAMPLES The present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples and can be carried out by appropriately changing the scope of the invention without changing its gist. It is something.

【0015】〔正極の作製〕正極活物質としてのLiC
oO2 粉末85重量部と、導電剤としての炭素粉末10
重量部と、結着剤としてのポリフッ化ビニリデン粉末5
重量部のNMP(N−メチル−2−ピロリドン)溶液と
を混合してスラリーを調製し、このスラリーをフェライ
ト系ステンレス鋼からなる集電体の片面にドクターブレ
ード法により塗布して活物質層を形成した後、150°
Cで乾燥して、直径10mmの円盤状の正極を作製し
た。活物質層の乾固後の厚みは約80μmであった。
[Preparation of positive electrode] LiC as positive electrode active material
85 parts by weight of oO 2 powder and carbon powder 10 as a conductive agent
Parts by weight and polyvinylidene fluoride powder 5 as a binder
A slurry is prepared by mixing a NPT (N-methyl-2-pyrrolidone) solution in parts by weight with NMP (N-methyl-2-pyrrolidone), and the slurry is applied to one surface of a current collector made of ferritic stainless steel by a doctor blade method to form an active material layer. After forming, 150 °
C to produce a disk-shaped positive electrode having a diameter of 10 mm. The thickness of the active material layer after drying was about 80 μm.

【0016】〔負極の作製〕黒鉛粉末95重量部とポリ
フッ化ビニリデン粉末5重量部のNMP溶液とを混合し
てスラリーを調製し、このスラリーをフェライト系ステ
ンレス鋼からなる集電体の片面にドクターブレード法に
より塗布して活物質層を形成した後、150°Cで乾燥
して、直径10mmの円盤状の負極を作製した。活物質
層の乾固後の厚みは約70μmであった。
[Preparation of Negative Electrode] A slurry was prepared by mixing 95 parts by weight of graphite powder and 5 parts by weight of polyvinylidene fluoride powder to prepare a slurry, and the slurry was applied to one surface of a current collector made of ferritic stainless steel by a doctor. After coating by a blade method to form an active material layer, the active material layer was dried at 150 ° C. to produce a disk-shaped negative electrode having a diameter of 10 mm. The thickness of the active material layer after drying was about 70 μm.

【0017】次いで、化学式:CH2 =CH−COO−
(CH2 −CH2 −O)n −CH2−CH3 (n:約4
00)で表されるアクリレート系オリゴマー1重量部
と、エチレンカーボネート400mlとジメチルカーボ
ネート600mlとの混合溶媒にLiClO4 を1モル
溶かした電解液5重量部、4.5重量部、4重量部、
3.5重量部、3重量部、2.5重量部、2重量部、
1.5重量部、1重量部、0.75重量部又は0.5重
量部とを混合し、かくして得た混合液に、上記の負極を
浸漬し、該混合液を負極内部に浸透させた後、エレクト
ロカーテン式電子線照射装置(出力:200kV;照射
線量:2Mrad)を使用して、浸透せるアクリレート
系オリゴマーを重合して、ゲル状の高分子固体電解質S
Bを含有する負極を作製した。また、別途、上記と同じ
アクリレート系オリゴマー94重量部にLiClO4
重量部を溶かした溶液に、上記の負極を浸漬し、エレク
トロカーテン式電子線照射装置を使用して、浸透せるア
クリレート系オリゴマーを重合して、固形の高分子固体
電解質SBを含有する負極を作製した。なお、負極の理
論容量を正極のそれの約1.1倍とした。
Next, the chemical formula: CH 2 CHCH—COO—
(CH 2 —CH 2 —O) n —CH 2 —CH 3 (n: about 4
5 parts by weight of an electrolytic solution obtained by dissolving 1 mol of LiClO 4 in a mixed solvent of 1 part by weight of an acrylate oligomer represented by the formula (00) and 400 ml of ethylene carbonate and 600 ml of dimethyl carbonate, 4.5 parts by weight, 4 parts by weight,
3.5 parts by weight, 3 parts by weight, 2.5 parts by weight, 2 parts by weight,
1.5 parts by weight, 1 part by weight, 0.75 parts by weight or 0.5 parts by weight were mixed, and the above-described negative electrode was immersed in the mixed solution thus obtained, and the mixed solution was permeated into the inside of the negative electrode. Thereafter, the acrylate-based oligomer to be permeated is polymerized by using an electron curtain type electron beam irradiation apparatus (output: 200 kV; irradiation dose: 2 Mrad), and a gel polymer solid electrolyte S
A negative electrode containing B was produced. Separately, 94 parts by weight of the same acrylate oligomer as above was added to LiClO 4
The above negative electrode is immersed in a solution in which parts by weight are dissolved, and an acrylate-based oligomer to be permeated is polymerized using an electro-curtain type electron beam irradiation device to produce a negative electrode containing a solid polymer solid electrolyte SB. did. The theoretical capacity of the negative electrode was about 1.1 times that of the positive electrode.

【0018】次いで、上記と同じアクリレート系オリゴ
マー94重量部にLiClO4 6重量部を溶かした溶液
を、上記の高分子固体電解質SBを含有する負極の片面
に塗布し、先と同じエレクトロカーテン式電子線照射装
置(出力:200kV;照射線量:2Mrad)を使用
して、塗布せるアクリレート系オリゴマーを重合して、
負極の上にセパレータを兼ねる高分子固体電解質SAか
らなる層を形成した。この層の厚みは約50μmであっ
た。
Next, a solution obtained by dissolving 6 parts by weight of LiClO 4 in 94 parts by weight of the same acrylate-based oligomer as described above is applied to one surface of the negative electrode containing the solid polymer electrolyte SB, and the same electrocurtain-type electron Using an X-ray irradiation device (output: 200 kV; irradiation dose: 2 Mrad), the acrylate oligomer to be applied is polymerized,
On the negative electrode, a layer composed of a polymer solid electrolyte SA also serving as a separator was formed. The thickness of this layer was about 50 μm.

【0019】〔リチウム二次電池の作製〕高分子固体電
解質SAからなる層に正極の活物質層を重ね合わせて電
極体を作製し、これを使用して、扁平形のリチウム二次
電池A〜Mを作製した。各電池の負極に含有させた高分
子固体電解質SBのヤング弾性率を表1に示す。ヤング
弾性率は、引張圧縮試験機を使用して、JIS K63
01(試験速度:200mm/分;試験温度:25°
C)に準拠して、荷重−伸長率曲線より求めた値であ
る。なお、試験片の幅及び厚みはマイクロメーターを使
用して測定した。
[Preparation of Lithium Secondary Battery] An electrode body is prepared by superposing a positive electrode active material layer on a layer composed of a polymer solid electrolyte SA, and this is used to form flat lithium secondary batteries A to M was produced. Table 1 shows the Young's modulus of the solid polymer electrolyte SB contained in the negative electrode of each battery. The Young's modulus was measured using a tensile compression tester according to JIS K63.
01 (test speed: 200 mm / min; test temperature: 25 °)
This is a value obtained from a load-elongation rate curve according to C). The width and thickness of the test piece were measured using a micrometer.

【0020】[0020]

【表1】 [Table 1]

【0021】図1は、作製したリチウム二次電池の断面
模式図であり、図示の電池BAは、正極1、高分子固体
電解質SBを含有する負極2、負極2と一体形成された
高分子固体電解質SAからなる層3、正極缶4、負極缶
5、正極集電体6、負極集電体7及びポリプロピレン製
の絶縁パッキング8などからなる。
FIG. 1 is a schematic cross-sectional view of a manufactured lithium secondary battery. The illustrated battery BA includes a positive electrode 1, a negative electrode 2 containing a polymer solid electrolyte SB, and a polymer solid body integrally formed with the negative electrode 2. It comprises a layer 3, made of an electrolyte SA, a positive electrode can 4, a negative electrode can 5, a positive electrode current collector 6, a negative electrode current collector 7, an insulating packing 8 made of polypropylene, and the like.

【0022】正極1及び負極2は、高分子固体電解質S
Aからなる層3を介して対向して正極缶4及び負極缶5
が形成する電池ケース内に収納されており、正極1は正
極集電体6を介して正極缶4に、又負極2は負極集電体
7を介して負極缶5に接続され、電池内部に生じた化学
エネルギーを正極缶4及び負極缶5の両端子から電気エ
ネルギーとして外部へ取り出し得るようになっている。
The positive electrode 1 and the negative electrode 2 are made of a solid polymer electrolyte S
A positive electrode can 4 and a negative electrode can 5
The positive electrode 1 is connected to the positive electrode can 4 via the positive electrode current collector 6, and the negative electrode 2 is connected to the negative electrode can 5 via the negative electrode current collector 7. The generated chemical energy can be taken out from both terminals of the positive electrode can 4 and the negative electrode can 5 as electric energy.

【0023】〈各電池の1サイクル目及び200サイク
ル目の放電容量〉各電池を、25°Cにて、電流密度1
00μA/cm2 で4.2Vまで充電した後、電流密度
100μA/cm2 で2.75Vまで放電して、各電池
の1サイクル目及び200サイクル目の正極1cm2
たりの放電容量(mAh/cm2)を求めた。結果を先
の表1に示す。
<Discharge capacity at the first cycle and 200th cycle of each battery> Each battery was subjected to a current density of 1 at 25 ° C.
After charging at 00μA / cm 2 to 4.2 V, a current density of 100 .mu.A / cm 2 and discharged to 2.75V at a discharge capacity of the positive electrode 1 cm 2 per 1 cycle and 200th cycle of each battery (mAh / cm 2 ) Asked. The results are shown in Table 1 above.

【0024】表1に示すように、負極が含有する高分子
固体電解質SBのヤング弾性率が0.1×104 〜3.
5×104 kgf/cm2 の場合に、200サイクル目
の放電容量が大きい。この事実から、炭素をリチウムイ
オン吸蔵材とする負極にヤング弾性率が0.1×104
〜3.5×104 kgf/cm2 の高分子固体電解質S
Bを含有せしめることにより、充放電サイクル特性に優
れたリチウム二次電池が得られることが分かる。
As shown in Table 1, the Young's modulus of the solid polymer electrolyte SB contained in the negative electrode is 0.1 × 10 4 to 3 × 10 4 .
In the case of 5 × 10 4 kgf / cm 2 , the discharge capacity at the 200th cycle is large. From this fact, the Young's modulus of the negative electrode using carbon as the lithium ion storage material is 0.1 × 10 4
~ 3.5 × 10 4 kgf / cm 2 solid polymer electrolyte S
It can be seen that by adding B, a lithium secondary battery having excellent charge / discharge cycle characteristics can be obtained.

【0025】[0025]

【発明の効果】本発明電池は、充放電サイクル特性に優
れる。
The battery of the present invention has excellent charge / discharge cycle characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で作製した扁平形のリチウム二次電池の
断面図である。
FIG. 1 is a cross-sectional view of a flat lithium secondary battery manufactured in an example.

【符号の説明】[Explanation of symbols]

BA 扁平形のリチウム二次電池(高分子固体電解質電
池) 1 正極 2 ヤング弾性率が0.1×104 〜3.5×104
kgf/cm2の高分子固体電解質SBを含有する負極 3 セパレータを兼ねる高分子固体電解質SAからな
る層
BA Flat lithium secondary battery (polymer solid electrolyte battery) 1 Positive electrode 2 Young's modulus is 0.1 × 10 4 to 3.5 × 10 4
Negative electrode containing kgf / cm 2 of solid polymer electrolyte SB 3 Layer composed of solid polymer electrolyte SA also serving as separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Koji Nishio 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】正極と、高分子固体電解質SAと、炭素を
リチウムイオン吸蔵材とする負極とを備えるリチウム二
次電池において、前記負極が、ヤング弾性率0.1×1
4〜3.5×104 kgf/cm2 の高分子固体電解
質SBを含有していることを特徴とするリチウム二次電
池。
1. A lithium secondary battery comprising a positive electrode, a polymer solid electrolyte SA, and a negative electrode using carbon as a lithium ion storage material, wherein the negative electrode has a Young's modulus of 0.1 × 1.
0 4 ~3.5 × 10 4 lithium secondary battery, characterized by containing the solid polymer electrolyte SB of kgf / cm 2.
【請求項2】高分子固体電解質SBが、重合により高分
子固体電解質SBのマトリクスを形成するオリゴマーに
電解質塩を溶かした溶液、又は、該オリゴマーと溶媒及
び電解質塩からなる電解液とを混合して得た溶液を、負
極内部に浸透せしめた後、浸透せるオリゴマーを重合し
て得られたものである請求項1記載のリチウム二次電
池。
2. A polymer solid electrolyte SB is a solution in which an electrolyte salt is dissolved in an oligomer which forms a matrix of the polymer solid electrolyte SB by polymerization, or a mixture of the oligomer and an electrolyte solution comprising a solvent and an electrolyte salt. 2. The lithium secondary battery according to claim 1, wherein the solution is obtained by permeating the solution obtained in the negative electrode and then polymerizing the permeating oligomer.
JP8323475A 1996-11-18 1996-11-18 Lithium secondary battery Pending JPH10149813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8323475A JPH10149813A (en) 1996-11-18 1996-11-18 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8323475A JPH10149813A (en) 1996-11-18 1996-11-18 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH10149813A true JPH10149813A (en) 1998-06-02

Family

ID=18155109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8323475A Pending JPH10149813A (en) 1996-11-18 1996-11-18 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH10149813A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027857A1 (en) * 2000-09-29 2002-04-04 Dai-Ichi Kogyo Seiyaku Co., Ltd. Process for producing a lithium secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07272757A (en) * 1994-03-29 1995-10-20 Yuasa Corp Battery
JPH08167415A (en) * 1994-12-14 1996-06-25 Sanyo Electric Co Ltd Thin type high polymer solid electrolyte battery and its manufacture
JPH08255610A (en) * 1995-03-17 1996-10-01 Canon Inc Lithium secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07272757A (en) * 1994-03-29 1995-10-20 Yuasa Corp Battery
JPH08167415A (en) * 1994-12-14 1996-06-25 Sanyo Electric Co Ltd Thin type high polymer solid electrolyte battery and its manufacture
JPH08255610A (en) * 1995-03-17 1996-10-01 Canon Inc Lithium secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027857A1 (en) * 2000-09-29 2002-04-04 Dai-Ichi Kogyo Seiyaku Co., Ltd. Process for producing a lithium secondary battery

Similar Documents

Publication Publication Date Title
KR100246713B1 (en) Vinylidene fluoride polymer-based binder solution and electrode-forming composition
US9012088B2 (en) Anode composition comprising acrylonitrile-acrylic acid copolymer as binder, method for preparing the anode composition and lithium secondary battery using the anode composition
CN101515640B (en) Cathode and lithium ion secondary battery containing same
US5851504A (en) Carbon based electrodes
JP3213459B2 (en) Non-aqueous electrolyte secondary battery
JPWO2019181869A1 (en) Carbon nanotube dispersion liquid, secondary battery electrode slurry, secondary battery electrode slurry manufacturing method, secondary battery electrode and secondary battery
JP3868231B2 (en) Carbon material, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2003012311A (en) Production method of polymer coated carbon material, negative-electrode material and lithium ion secondary battery
CN112615111A (en) High-liquid-retention self-repairing diaphragm, preparation method thereof and lithium ion battery
KR100306870B1 (en) Polymer electrolyte and lithium-polymer battery using the same
JPWO2019181871A1 (en) Binder composition for secondary battery, conductive material paste for secondary battery electrode, slurry composition for secondary battery electrode, method for manufacturing slurry composition for secondary battery electrode, electrode for secondary battery and secondary battery
JPH113710A (en) Lithium secondary battery
JPH11288704A (en) Lithium secondary battery
JP2000294291A (en) Polymer electrolyte battery
JP2001148258A (en) Non-aqueous electrolytic solution and lithium secondary battery
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using it
JP2023543242A (en) Lithium secondary battery manufacturing method and lithium secondary battery manufactured thereby
KR101623637B1 (en) Slurry composition for electrode and lithium-ion Battery
JPH1145725A (en) Lithium battery
JPH10149813A (en) Lithium secondary battery
JPH08124597A (en) Solid electrolytic secondary cell
JP2000173653A (en) Nonaqueous electrolyte battery
JP3433079B2 (en) Lithium secondary battery
JP4004158B2 (en) Polymer electrolyte lithium secondary battery
JP3398051B2 (en) Polymer electrolyte secondary battery