JPH10137574A - Production of spherical inorganic particle having large particle diameter - Google Patents

Production of spherical inorganic particle having large particle diameter

Info

Publication number
JPH10137574A
JPH10137574A JP8215226A JP21522696A JPH10137574A JP H10137574 A JPH10137574 A JP H10137574A JP 8215226 A JP8215226 A JP 8215226A JP 21522696 A JP21522696 A JP 21522696A JP H10137574 A JPH10137574 A JP H10137574A
Authority
JP
Japan
Prior art keywords
particles
particle size
granulated
particle diameter
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8215226A
Other languages
Japanese (ja)
Inventor
Tomoharu Ido
智晴 井土
Naoyuki Kurata
尚之 蔵田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Denko Co Ltd
Original Assignee
Nippon Denko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Denko Co Ltd filed Critical Nippon Denko Co Ltd
Priority to JP8215226A priority Critical patent/JPH10137574A/en
Publication of JPH10137574A publication Critical patent/JPH10137574A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a effective producing method of a spherical inorganic particle having a large particle diameter, which satisfies three requirements that the particle diameter of the resultant particle is optionally controlled, the productivity and the yield of a raw material is excellent and a resultant product has high chemical purity. SOLUTION: The producing method of the spherical inorganic particle having large particle diameter is by granulating one or more kinds of an inorganic powder into a prescribe particle size and heating and melting. Concretely the inorganic material to be a raw material is Cr, Al, Ni, Zn, W, Y, Si and the oxide, the oxide precursor, the carbide, the borate and the nitride, the particle diameter of the granulated particle is >=1μm to <=500μm and the granulation is performed in a spray drier and the heating and melting are performed by dispersing into flame, plasma or arc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高強度、高密度、粒
径範囲がそろい、粒度が大きくかつ球状である無機物粒
子の製造方法に係り、さらに詳しくは無機物粒子を造粒
することにより比較的弱く粒子の微粉末が凝集した無機
物造粒粒子を形成させた後、これを火炎もしくはプラズ
マで高温溶融処理することにより一次粒子化させること
を特徴とする粒子径大なる球状無機物粒子の製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing inorganic particles having a high strength, a high density, a uniform particle size range, a large particle size and a spherical shape, and more particularly to a method for producing inorganic particles by granulation. The present invention relates to a method for producing spherical inorganic particles having a large particle diameter, characterized in that after forming inorganic material granulated particles in which fine powders of particles are weakly aggregated, the particles are formed into primary particles by high-temperature melting treatment with a flame or plasma. Things.

【0002】[0002]

【従来の技術】一般に、粒度が大きくかつ球状である無
機物粒子は、分散性及び流動性が良いことから溶射材、
フィラー、インキ、耐火物、構造用セラミック材料、機
能用セラミック材料等、いろいろな分野で用いられてい
る。しかしながら、これまでの粒径が大きくかつ球状と
称される無機物粒子は、提供される粒子の粒度範囲は限
られており、また価格が高価なことが多かったため、よ
り粒度の選択の幅が広く、安価な球状粒子を望む声が大
きかった。従来の粒度の大きな球状無機物粒子の製造方
法としては、粉砕粒子の溶射バーナーによる溶融球状化
法、湿式合成法、及び溶融金属の噴霧による球状化法な
どが知られている 溶射バーナーによる溶融球状化は微粒子無機物を融点以
上の高温に加熱して溶融し、冷却固化したものもしくは
天然に得られる粗大な塊を粉砕して、ある程度の大きさ
の粒子にした後、更に篩分して所望の粒度部分を回収
し、溶射バーナーで加熱、液滴化して球状化を行うもの
である(特開昭62−241541、特開平6−564
45)。
2. Description of the Related Art In general, inorganic particles having a large particle size and a spherical shape have good dispersibility and fluidity, so that a sprayed material,
It is used in various fields such as fillers, inks, refractories, structural ceramic materials, and functional ceramic materials. However, the conventional inorganic particles having a large particle size and being referred to as a sphere have a limited particle size range of provided particles and are often expensive, so that the range of selection of the particle size is wider. There was a great demand for cheap spherical particles. Conventional methods for producing spherical inorganic particles having a large particle size include a melt spheroidization method using a sprayed burner for a pulverized particle, a wet synthesis method, and a spheroidization method by spraying a molten metal. Melt spheroidization using a sprayed burner is known. Is heated to a high temperature above the melting point of the fine particle inorganic substance, melted, crushed and solidified by cooling, or crushing a coarse mass obtained naturally, into particles of a certain size, and further sieving to obtain the desired particle size. The portion is collected, heated and formed into droplets by a thermal spray burner to form a spheroid (Japanese Patent Application Laid-Open Nos. 62-241541, 6-564).
45).

【0003】湿式合成法は、無機金属塩の水溶液を中和
等の化学処理によりゾル化し、空気中に噴射しゲル化す
るとともに球状化し、これを洗浄した後、乾燥、焼成す
る方法(特公平7−64543)及び、無機金属塩の水
溶液から金属酸化物ゾルを調整し、当該溶液に有機溶媒
及び界面活性剤を混合して撹拌することにより球状ゾル
を有した水/油型(以下W/Oと記載する)エマルジョ
ンを形成させ、このエマルジョンに有機溶媒を加え水分
を除去することにより、球状ゾルを球状ゲル化し、球状
ゲルを乾燥後焼成する方法(特願昭63−40839、
特公平7−35253)などが知られている。溶融金属
の噴霧による球状化法には、金属溶湯をノズルから注湯
するとともに不活性ガスを噴射し金属溶湯を噴霧する方
法(特開平4−311510)、あるいは回転円盤に滴
下し遠心噴霧させる方法(特開平5−171229)な
どが知られている。しかしながら、これら三つの方法
は、それぞれ得られる粒子や製造方法自体に問題があ
り、満足すべき方法ではなかった。すなわち、
In the wet synthesis method, an aqueous solution of an inorganic metal salt is formed into a sol by a chemical treatment such as neutralization, sprayed into the air to form a gel and spheroidized, washed, dried and calcined (Japanese Patent Publication No. 7-64543) and a metal oxide sol is prepared from an aqueous solution of an inorganic metal salt, and an organic solvent and a surfactant are mixed with the solution and stirred to form a water / oil type having a spherical sol (hereinafter referred to as W / O) by forming an emulsion, adding an organic solvent to the emulsion, and removing water to form a spherical sol into a spherical gel, drying the spherical gel, and firing it (Japanese Patent Application No. 63-40839;
Japanese Patent Publication No. 7-35253) is known. The spheroidizing method by spraying a molten metal is a method in which a molten metal is poured from a nozzle and an inert gas is injected to spray the molten metal (Japanese Patent Laid-Open No. 4-31510), or a method in which the molten metal is dropped on a rotating disk and centrifugally sprayed. (JP-A-5-171229) and the like are known. However, these three methods were not satisfactory because of the problems in the particles obtained and the production method itself. That is,

【0004】溶射バーナーによる溶融球状化においては
原料となる粒子の製造はほとんどの場合、微粒子無機物
を融点以上の高温に加熱して溶融し、冷却固化したも
の、もしくは天然に得られる粗大な塊を粉砕して、ある
程度の大きさの粒子にした後、更に篩分して所望の粒度
部分を回収したものが使用されるため、使用原料のロス
が大きく高価な原料の場合経済的に大きな問題となる。
また、粒子の粉砕及び分級に伴う汚染の増大や歩留の低
下を招き易いという問題もある。さらに、無機物の種類
によっては、硬度、結晶性により粉砕が難しく事実上所
望粒度が得られないことも多い。これらの理由からこの
方法は主に原料が安価で粒幅度が広く、放射性元素以外
の不純物混入が許される半導体封止樹脂用シリカフィラ
ー製造に利用されているにすぎない。
[0004] In the melt spheroidization using a thermal spray burner, in most cases, the production of particles as a raw material is carried out by heating a fine particle inorganic substance to a temperature higher than its melting point, melting and solidifying it by cooling, or a coarse mass obtained naturally. After pulverizing into particles of a certain size, a material obtained by collecting the desired particle size portion by further sieving is used. Become.
In addition, there is a problem that the contamination and the yield are easily reduced due to the pulverization and classification of the particles. Furthermore, depending on the type of inorganic substance, it is often difficult to pulverize due to hardness and crystallinity, and it is often difficult to obtain a desired particle size. For these reasons, this method is mainly used only for the production of silica fillers for semiconductor encapsulation resins in which the raw material is inexpensive, has a wide grain width and impurities other than radioactive elements can be mixed.

【0005】また湿式合成法では、複雑な化学処理及び
機械処理を行った後、最終的に乾燥、焼成工程が必要で
明らかに工業的な方法とは言い難いものである。さらに
対象粒子、粒度が変わるとそれに合致する新たな原料、
製造条件を検討しなければならない上に原料となる金属
無機塩が高価である場合も多い。また、溶融金属の噴霧
による球状化法は一般的に良く知られている方法である
が、この方法においては原料金属を融点以上に加熱する
ための溶解炉が必要となること、溶解時の炉体等からの
汚染による化学純度の低下、及び溶融金属を霧状にする
際に所定の粒度に調整することが難しいなどの問題があ
る。
[0005] In the wet synthesis method, after a complicated chemical treatment and mechanical treatment, a drying and baking step is finally required, which is obviously not an industrial method. In addition, if the target particle and particle size change, new raw materials that match it,
The production conditions must be considered, and the metal inorganic salt as a raw material is often expensive. Further, the spheroidization method by spraying molten metal is a generally well-known method, but in this method, a melting furnace for heating the raw material metal to a melting point or higher is required, There are problems such as a decrease in chemical purity due to contamination from the body and the like, and difficulty in adjusting molten metal to a predetermined particle size when atomized.

【0006】[0006]

【発明が解決しようとする課題】本発明者らは、こうし
た事情に鑑み、次のような課題を解決するため研究を行
った。すなわち、無機物粒子の製造に当り、特に本発明
者らの目的とするところは次の3点であった。 1)得られる粒子の粒度コントロールを容易に行うこと
ができること。 2)生産性及び歩留を上げること。 3)得られる製品の化学純度を上げること。
SUMMARY OF THE INVENTION In view of such circumstances, the present inventors have conducted research to solve the following problems. That is, in the production of the inorganic particles, the present inventors particularly aimed at the following three points. 1) The particle size of the obtained particles can be easily controlled. 2) To increase productivity and yield. 3) To increase the chemical purity of the resulting product.

【0007】[0007]

【課題を解決するための手段】本発明の要旨とするとこ
ろは次の如くである。 (1)一種もしくは二種以上の無機物粉末を所定の粒度
に造粒した後、加熱溶融することを特徴とする粒子径大
なる球状無機物粒子の製造方法。 (2)原料となる無機物がクロム、チタン、アルミニウ
ム、ニッケル、ジルコニウム、タングステン、イットリ
ウム、ケイ素及びそれらの酸化物、酸化物前駆体、炭化
物、ホウ化物、窒化物であることを特徴とする上記
(1)に記載の粒子径大なる球状無機物粒子の製造方
法。 (3)前記造粒粒子の粒度範囲は1μm以上500μm
以下であることを特徴とする上記(1)〜(2)のいず
れかの項に記載の粒子径大なる球状無機物粒子の製造方
法。 (4)前記原料微粒子の造粒は、噴霧乾燥機で行うこと
を特徴とする上記(1)〜(3)のいずれかの項に記載
の粒子径大なる球状無機物粒子の製造方法。 (5)前記造粒粒子の加熱溶融は、火炎、プラズマ、も
しくはアーク中に分散させて行うことを特徴とする上記
(1)〜(4)のいずれかの項に記載の粒子径大なる球
状無機物粒子の製造方法。 (6)一種もしくは二種以上の無機物微粒子を噴霧乾燥
機により所定の粒度に造粒した後火炎もしくはプラズマ
またはアーク中に分散させることによって該粒子を加熱
溶融することを特徴とする上記(1)〜(5)のいずれ
かの項に記載の粒子径大なる球状無機物粒子の製造方
法。
The gist of the present invention is as follows. (1) A method for producing spherical inorganic particles having a large particle diameter, wherein one or more inorganic powders are granulated to a predetermined particle size and then heated and melted. (2) The inorganic material as a raw material is chromium, titanium, aluminum, nickel, zirconium, tungsten, yttrium, silicon and their oxides, oxide precursors, carbides, borides, and nitrides. The method for producing spherical inorganic particles having a large particle diameter according to 1). (3) The particle size range of the granulated particles is 1 μm or more and 500 μm.
The method for producing spherical inorganic particles having a large particle diameter according to any one of the above items (1) and (2), wherein: (4) The method for producing spherical inorganic particles having a large particle diameter according to any one of the above (1) to (3), wherein the granulation of the raw material fine particles is performed by a spray dryer. (5) The spherical particles having a large particle diameter according to any one of the above (1) to (4), wherein the heat-melting of the granulated particles is performed by dispersing the granulated particles in a flame, plasma, or an arc. A method for producing inorganic particles. (6) The above (1), wherein one or more inorganic fine particles are granulated to a predetermined particle size by a spray drier, and then dispersed in a flame, plasma or arc to heat and melt the particles. The method for producing spherical inorganic particles having a large particle diameter according to any one of Items (1) to (5).

【0008】[0008]

【発明の実施の形態】本発明において原料とする無機物
粒子は、通常工業的に入手し得る粉末を用いることが可
能である。また、原料となる微粒子は必ずしも最終製品
と同じ化合物の形態でなくても良く、火炎あるいはプラ
ズマ中で反応して最終製品に変わりうる前駆体であって
も使用することが可能である。第一工程である原料粉末
の造粒には、造粒粒子の粒度調整が容易であることか
ら、噴霧乾燥機を使用することが望ましい。しかしなが
ら、原料粉末を希望の粒度に造粒できるものであれば、
特に噴霧乾燥機に限定されるものではない。また、二種
以上の原料を使用する場合には、あらかじめ原料粉末を
混合してから所望の大きさに造粒することが望ましい。
造粒範囲は、後記する理由により1μm以上500μm
以下、好ましくは5μm以上200μm以下と限定する
ことが望ましい。また、原料粉末の粒径は造粒後の希望
粒径の1/5以下、望ましくは1/10以下のものを使
用すると、造粒粒子の強度が強く後工程で使用しやすい
ものとなる。もし、原料粉末が希望する造粒粒度に比較
して大きすぎる場合、あらかじめ粉砕してから用いても
差支えない。
BEST MODE FOR CARRYING OUT THE INVENTION As the inorganic particles used as a raw material in the present invention, it is possible to use industrially available powders. Further, the fine particles as the raw material do not necessarily have to be in the form of the same compound as the final product, and it is possible to use a precursor which can be converted into the final product by reacting in a flame or plasma. In the granulation of the raw material powder in the first step, it is desirable to use a spray dryer because the particle size of the granulated particles can be easily adjusted. However, if the raw material powder can be granulated to the desired particle size,
It is not particularly limited to a spray dryer. When two or more types of raw materials are used, it is desirable to mix the raw material powders in advance and then granulate to a desired size.
The granulation range is from 1 μm to 500 μm for the reasons described below.
Hereinafter, it is preferable to limit the thickness to 5 μm or more and 200 μm or less. When the particle size of the raw material powder is 1/5 or less, preferably 1/10 or less of the desired particle size after granulation, the granulated particles have high strength and can be easily used in a subsequent step. If the raw material powder is too large compared to the desired granulated particle size, it may be used after being pulverized in advance.

【0009】造粒した粒子の強度が足りない場合、粒子
取り扱い時に粒子同士の接触や、粒子と壁面との接触等
により粒度が崩れ、造粒した粒子よりも小さくなるある
いは完全に一次粒子に戻り、所望の粒度の粒子が得られ
ないことがある。このような場合には、造粒を行う際に
火炎あるいはプラズマ中で分解またはガス化する物質、
例えばポリビニルアルコール(以下PVAと称する)な
どをバインダーとして使用することも可能である。また
溶融処理を行うと、造粒時に生成した空隙が無くなるた
め溶融後の粒子の粒径は縮小する。このため、造粒時の
粒径は、空隙率を考慮して所望の粒度よりも大きめにし
ておく必要がある。
[0009] When the strength of the granulated particles is insufficient, the particle size collapses due to the contact between the particles during the handling of the particles or the contact between the particles and the wall surface, and the particles become smaller than the granulated particles or completely return to the primary particles. In some cases, particles having a desired particle size cannot be obtained. In such a case, a substance that decomposes or gasifies in a flame or plasma when performing granulation,
For example, polyvinyl alcohol (hereinafter referred to as PVA) can be used as a binder. Further, when the melting treatment is performed, voids generated during granulation are eliminated, so that the particle diameter of the particles after melting is reduced. For this reason, the particle size at the time of granulation needs to be larger than a desired particle size in consideration of the porosity.

【0010】次に、造粒した原料一次粒子を溶融する第
二工程について説明する。噴霧乾燥機等で所定の大きさ
に造粒した粒子は、テーブルフィーダー、あるいは電磁
フィーダー等の粉体供給機により定量的に切り出した
後、酸素、窒素、またはアルゴン等のキャリヤーガスに
より輸送し、火炎もしくはプラズマ中に分散させる。も
し、造粒した粒子の粒度が大きすぎる場合、熱量不足か
ら火炎、もしくはプラズマ中での溶融をうまく行うこと
ができないことがある。また、造粒した粒子の粒度が1
μmより小さい場合は、火炎もしくはプラズマ中へ輸送
するキャリヤーガス中で分散せずに凝集した状態で溶融
することから、やはり所望の大きさの粒子を得ることが
できなくなる。また造粒粒度範囲が500μmより大と
なると後記の如く、圧壊強度が低下するので、造粒粒子
の粒度範囲は、1μm以上500μm以内に限定した。
好ましくは5μm以上200μm以下とした方がよい。
さらに、キャリヤーガスに対して供給粒子が多すぎると
粒子密度が高くなりすぎ、溶融中に粒子同士が衝突・一
体化し、球状ではない粗大粒子が発生する。このため、
キャリヤーガスに対する供給粒子量は体積比で1/10
以下、好ましくは1/15以下とした方がよい。
Next, the second step of melting the granulated raw material primary particles will be described. Particles granulated to a predetermined size by a spray dryer or the like are quantitatively cut out by a powder feeder such as a table feeder or an electromagnetic feeder, and then transported by a carrier gas such as oxygen, nitrogen, or argon, Disperse in flame or plasma. If the size of the granulated particles is too large, melting in a flame or plasma may not be performed properly due to insufficient heat. In addition, the particle size of the granulated particles is 1
When the particle size is smaller than μm, the particles are not dispersed in the carrier gas transported into the flame or plasma but are melted in an aggregated state, so that particles having a desired size cannot be obtained. Further, when the granulated particle size range is larger than 500 μm, the crushing strength is reduced as described later. Therefore, the particle size range of the granulated particles is limited to 1 μm or more and 500 μm or less.
Preferably, the thickness is 5 μm or more and 200 μm or less.
Furthermore, if the supply particles are too large with respect to the carrier gas, the particle density becomes too high, and the particles collide with each other during melting, and coarse particles which are not spherical are generated. For this reason,
The amount of particles supplied to the carrier gas is 1/10 by volume.
Below, it is better to make it 1/15 or less.

【0011】加熱源である火炎もしくはプラズマの種類
は、火炎を用いる場合にはアセチレンガス、水素ガス、
プロパンガスあるいはブタンガス等から、プラズマを用
いる場合にはアークプラズマ、RFプラズマ(高周波プ
ラズマ)等から原料無機物を融点以上に加熱できるもの
を適宜選択する。もし原料として金属あるいは酸化物に
変わる前駆体を使用する場合であれば、酸化反応を起す
ことが可能な温度まで上昇させることができるものを選
択する。また原料無機物が窒化物の場合には、酸化する
のを防ぐため、溶融は還元雰囲気下でプラズマにより行
う。本発明において、火炎もしくはプラズマ内で溶融の
ために必要な時間は、通常0.02秒程度と非常に短い
ものであり、連続運転が可能であることから生産性を高
めることができる。また反応は火炎もしくはプラズマ内
で行われるため、他物質との接触がなく、炉材の侵食等
による汚染物質の混入を引き起こすことがないので、化
学純度を低下する恐れがない。
When a flame is used as the heating source, the type of flame or plasma may be acetylene gas, hydrogen gas,
In the case of using plasma from propane gas or butane gas, a material capable of heating the raw material inorganic substance to a melting point or higher from arc plasma, RF plasma (high frequency plasma) or the like is appropriately selected. If a precursor to be used instead of a metal or oxide is used as a raw material, a material that can be heated to a temperature at which an oxidation reaction can be performed is selected. When the raw material inorganic substance is a nitride, melting is performed by plasma in a reducing atmosphere in order to prevent oxidation. In the present invention, the time required for melting in a flame or plasma is very short, usually about 0.02 seconds, and continuous operation is possible, so that productivity can be increased. Further, since the reaction is carried out in a flame or plasma, there is no contact with other substances, and there is no possibility of contamination due to erosion of the furnace material or the like.

【0012】火炎もしくはプラズマにより溶融処理を行
った粒子は、火炎あるいはプラズマ内の融点以上の温度
ゾーンから排出されるとただちに雰囲気温度まで冷却、
固化される。溶融処理後の粒子は重量沈降室、サイクロ
ンあるいはバッグフィルター等により回収する。もし、
要求する粒度分布範囲がかなり狭いのであれば、溶融処
理後の粒子回収ラインにセパレーターを設け、空気分級
して所望の粒度の粒子を分取する。本発明により得られ
る粒子は、真球に近い球形であるため、同粒度の粒度で
ある非球形粒子と比較して、流動性、分散性がかなり改
善されている。本発明によれば、従来法と比較して比較
的簡単な操作でかつ粉砕工程を必要とせずに、球形の大
きな無機物粒子を工業的にしかもコスト安く製造するこ
とが可能となった。本発明により得られる製品には、粉
砕工程は全く必要がなく、分級工程は特別の要求がある
とき以外には行う必要がない。そのため、原料に対する
歩留が従来法よりも飛躍的に向上した。また、製造工程
から自明のとおり、化学的純度もほとんど低下すること
がない。更に、製品粒度の調整は造粒粒子の大きさを変
更することにより容易に行うことが可能であることか
ら、従来法に比較して、粒子の粒度のコントロールが容
易なものとなった。
The particles subjected to the melting treatment by the flame or the plasma are cooled to the ambient temperature as soon as they are discharged from the temperature zone above the melting point in the flame or the plasma.
Is solidified. The particles after the melting treatment are collected by a sedimentation chamber, cyclone or bag filter. if,
If the required particle size distribution range is considerably narrow, a separator is provided in the particle collection line after the melt treatment, and air classification is performed to collect particles having a desired particle size. Since the particles obtained by the present invention have a spherical shape close to a true sphere, fluidity and dispersibility are considerably improved as compared with non-spherical particles having the same particle size. According to the present invention, it has become possible to produce large spherical inorganic particles industrially and at a low cost with a relatively simple operation as compared with the conventional method and without requiring a pulverizing step. The products obtained according to the present invention do not require any pulverizing step, and the classification step does not need to be performed except when special requirements exist. For this reason, the yield for the raw material has been dramatically improved as compared with the conventional method. Further, as is obvious from the manufacturing process, the chemical purity hardly decreases. Further, since the adjustment of the product particle size can be easily performed by changing the size of the granulated particles, control of the particle size of the particles is easier than in the conventional method.

【0013】[0013]

【実施例】次に実施例および比較例をあげて本発明を更
に詳細説明する。なお、本実施例、比較例における粒径
の測定はレーザー散乱光法を用いた。
Next, the present invention will be described in more detail with reference to Examples and Comparative Examples. In addition, the measurement of the particle size in this example and the comparative example used the laser scattering light method.

【実施例1】18−8ステンレス鋼(平均粒子径0.5
8μm)を水で30重量%のスラリーとし、原粉に対し
1%のPVAをバインダーとして加えたものを、噴霧乾
燥機により平均粒径35μmの造粒粒子とした。次にこ
れを酸素−アセチレンバーナー火炎中に分散供給して、
球状のステンレス鋼粒子を得た。得られた球状粒子の化
学分析を行い原料と比較したところ、表1に示したとお
り、噴霧乾燥による造粒、および火炎溶融処理をとおし
て、不純物の混入による汚染はほとんど見られなかっ
た。これにより、本発明では、不純物の混入は起りにく
く、製品の化学純度を下げないことが確認された。
Example 1 18-8 stainless steel (average particle size 0.5
8 μm) was made into a slurry of 30% by weight with water, and 1% of PVA was added as a binder to the raw powder to obtain granulated particles having an average particle diameter of 35 μm using a spray dryer. Next, this is dispersed and supplied into an oxygen-acetylene burner flame,
Spherical stainless steel particles were obtained. The obtained spherical particles were subjected to chemical analysis and compared with the raw materials. As shown in Table 1, almost no contamination due to contamination by impurities was found through the granulation by spray drying and the flame melting treatment. Thereby, in the present invention, it was confirmed that the contamination of impurities hardly occurred and the chemical purity of the product was not reduced.

【比較例1】上記と同じ18−8ステンレス鋼を高周波
炉により加熱処理し、得られた溶湯を空気中に噴霧して
球状のステンレス鋼を得た。得られた球状粒子の化学分
析を行ったところ、表1に示したとおり、炉材によると
見られるSiおよびAl等の不純物の混入による汚染が
確認された。これにより、溶融金属の噴霧による球状化
法では、球状化する物質の溶融を高温で長時間かけて行
うことから、炉材等による汚染が起こりやすいことが確
認された。
Comparative Example 1 The same 18-8 stainless steel as above was heat-treated in a high-frequency furnace, and the obtained molten metal was sprayed into air to obtain a spherical stainless steel. When the obtained spherical particles were subjected to chemical analysis, as shown in Table 1, contamination due to contamination of impurities such as Si and Al, which was considered to be caused by the furnace material, was confirmed. Accordingly, it was confirmed that in the spheroidizing method by spraying the molten metal, the material to be spheroidized is melted over a long period of time at a high temperature, so that contamination by furnace materials and the like is likely to occur.

【実施例1と比較例1との比較】本発明による実施例1
と従来法による比較例1との比較対象を示すと表1のと
おりである。
Comparison between Example 1 and Comparative Example 1 Example 1 according to the present invention
Table 1 shows comparison targets between the present invention and Comparative Example 1 according to the conventional method.

【表1】 [Table 1]

【0014】[0014]

【実施例2】酸化クロム(平均粒子径0.52μm)1
0kgを水で40重量%スラリーとし、原粉に対し1%
のPVAをバインダーとして加えたものを、噴霧乾燥機
により粒子径が40μmになるように造粒した。ここで
得られた造粒品の回収量は9.99kgで、原料に対す
るPVAをあわせた造粒品の回収率は99.9%であっ
た。次いで、造粒粒子を酸素−アセチレンバーナー火炎
中に分散供給し、球状酸化クロムを得た。得られた球状
品の回収量は9.82kgであり、原料酸化クロムに対
する最終製品の回収率は、98.2%であった。原料、
造粒品および最終製品の平均粒子径、回収量および歩留
等を表2に示す。これにより本発明による方法では、9
8%以上と高い歩留で効率よく球状品を得ることが可能
であることが確認された。
Example 2 Chromium oxide (average particle size 0.52 μm) 1
0 kg is made into 40% by weight slurry with water, 1% based on the raw powder
Of PVA as a binder was granulated by a spray drier so that the particle diameter became 40 μm. The recovered amount of the granulated product obtained here was 9.99 kg, and the recovery rate of the granulated product obtained by adding PVA to the raw material was 99.9%. Next, the granulated particles were dispersed and supplied in an oxygen-acetylene burner flame to obtain spherical chromium oxide. The recovery amount of the obtained spherical product was 9.82 kg, and the recovery ratio of the final product with respect to the raw material chromium oxide was 98.2%. material,
Table 2 shows the average particle size, the recovered amount, the yield, and the like of the granulated product and the final product. Thus, in the method according to the invention, 9
It was confirmed that a spherical product could be efficiently obtained with a high yield of 8% or more.

【比較例2】酸化クロム(平均粒子径250μm)10
kgをボールミルにより粉砕し、更に篩い分けを行っ
て、平均粒子径が40μmの粉砕品を得た。得られた粉
砕後篩い分け品の回収量は2.62kgで、回収率は2
6.2%であった。次いで、粉砕粒子を溶射バーナー火
炎中に供給し、溶融して球状酸化クロムを得た。得られ
た球状品の回収量は2.59kgであり、原料酸化クロ
ムに対する最終製品の回収率は、25.9%であった。
原料、粉砕品および最終製品の平均粒子径、回収量およ
び歩留等を表2に示す。これにより、従来の粉砕粒子の
溶射バーナーによる球状化法では、粉砕および所望の粒
径を持つ粒子を得るための篩い分けによって、得られる
球状品の歩留がかなり低下することが確認された。
Comparative Example 2 Chromium oxide (average particle size 250 μm) 10
kg was crushed by a ball mill and sieved to obtain a crushed product having an average particle diameter of 40 μm. The recovered amount of the obtained sieved product after pulverization was 2.62 kg, and the recovery rate was 2
6.2%. Next, the pulverized particles were fed into a thermal spray burner flame and melted to obtain spherical chromium oxide. The recovery amount of the obtained spherical product was 2.59 kg, and the recovery ratio of the final product relative to the raw material chromium oxide was 25.9%.
Table 2 shows the average particle size, the recovered amount, the yield, and the like of the raw material, the crushed product, and the final product. As a result, it was confirmed that in the conventional spheroidizing method of the pulverized particles by the spraying burner, the yield of the obtained spherical product was considerably reduced by pulverization and sieving to obtain particles having a desired particle size.

【0015】[0015]

【実施例2と比較例2との比較】本発明による実施例2
と従来法による比較例2との比較は表2に示すとおりで
ある。
Comparison between Example 2 and Comparative Example 2 Example 2 according to the present invention
Table 2 shows a comparison between Comparative Example 2 and Comparative Example 2 according to the conventional method.

【表2】 [Table 2]

【0016】[0016]

【実施例3】酸化クロム(平均粒子径0.52μm)1
0kgを水で重量40重量%スラリーとし、原粉に対し
1%のPVAをバインダーとして加えたものを、噴霧乾
燥機により造粒粒子径が40μmになるように造粒し
た。次いで造粒粒子を酸素−アセチレンバーナー火炎中
に分散供給し、球状酸化クロム粒子を得た。最初に用い
た原料の量に対して、最終製品を約98%回収した。こ
の際の球状酸化クロムの平均粒子径(D50)は35.5
μm、D10およびD90はそれぞれ32.0μmおよび3
9.8μmであった。これにより本発明による方法で
は、得られる粒子の粒度分布が非常にシャープであり、
目的とした粒度範囲内に収められることが確認された。
Example 3 Chromium oxide (average particle diameter 0.52 μm) 1
A slurry obtained by adding 0 kg to a 40% by weight slurry with water and adding 1% of PVA as a binder to the raw powder was granulated by a spray drier so as to have a granulated particle diameter of 40 μm. Next, the granulated particles were dispersed and supplied in an oxygen-acetylene burner flame to obtain spherical chromium oxide particles. Approximately 98% of the final product was recovered, based on the amount of raw materials used initially. In this case, the average particle diameter (D 50 ) of the spherical chromium oxide was 35.5.
[mu] m, D 10 and D 90, respectively 32.0μm and 3
It was 9.8 μm. Thereby, in the method according to the invention, the particle size distribution of the obtained particles is very sharp,
It was confirmed that the particle size was within the intended particle size range.

【0017】[0017]

【比較例3】酸化クロム(平均粒子径250μm)10
kgを、得られる粉砕粒子の粒度が35μm前後になる
ようにボールミルにより粉砕した。得られた粒子は篩い
分けを行わず、次いで粉砕粒子を溶射バーナーに供給
し、溶融して球状酸化クロムを得た。この際最初に用い
た原料の量に対して、最終製品を約98%回収したが球
状酸化クロムの平均粒子径(D50)は36.2μm、D
10及びD90はそれぞれ4.8μm及び192μmであっ
た。
Comparative Example 3 Chromium oxide (average particle diameter 250 μm) 10
The kg was crushed by a ball mill so that the particle size of the obtained crushed particles was about 35 μm. The obtained particles were not subjected to sieving, and then the pulverized particles were supplied to a thermal spray burner and melted to obtain spherical chromium oxide. At this time, about 98% of the final product was recovered with respect to the amount of the raw materials used initially, but the average particle diameter (D 50 ) of the spherical chromium oxide was 36.2 μm,
10 and D 90 were 4.8 μm and 192 μm, respectively.

【0018】[0018]

【実施例3と比較例3との比較】本発明による製造方法
と従来法による製造方法において、得られる最終製品の
歩留をほぼ同じ割合としたとき、従来法では得られる球
状品の粒度分布の幅が広く、目的の粒度のものを得るた
めにはかなりの部分を篩い分けにより落す必要がある
が、本発明による方法では得られる球状品の粒度分布が
シャープであるので、歩留良く目的の粒度の球状品を製
造できることが確認された。
Comparison between Example 3 and Comparative Example 3 In the production method according to the present invention and the production method according to the conventional method, the particle size distribution of the spherical product obtained by the conventional method when the yield of the final product obtained is almost the same. In order to obtain the target particle size, it is necessary to remove a considerable portion by sieving.However, the method according to the present invention has a sharp particle size distribution of the obtained spherical product, so that a good yield can be obtained. It was confirmed that a spherical product having a particle size of can be produced.

【0019】[0019]

【実施例4】本発明で規定する粒度範囲を満たす場合に
ついて圧壊強度を確認した。酸化ジルコニウム(平均粒
子径0.81μm)を噴霧乾燥機により造粒粒子径が5
00μm、火炎による処理後の粒度が480μmになる
ように造粒した。次いで造粒粒子を酸素−アセチレンバ
ーナー火炎中に分散供給し、球状の酸化ジルコニウム粒
子を得た。得られた球状酸化ジルコニウム粉末は篩い分
けを行い、粒径が500μm以上の粒子を取り除いた。
この球状化ジルコニウムの圧壊強度を確認した。結果を
表3に示す。
Example 4 The crushing strength was confirmed when the particle size range defined in the present invention was satisfied. Zirconium oxide (average particle size 0.81 μm) was granulated with a granulator particle size of 5 by a spray dryer.
The particles were granulated so that the particle size after treatment with a flame was 480 μm. Next, the granulated particles were dispersed and supplied into an oxygen-acetylene burner flame to obtain spherical zirconium oxide particles. The obtained spherical zirconium oxide powder was sieved to remove particles having a particle size of 500 μm or more.
The crushing strength of the spheroidized zirconium was confirmed. Table 3 shows the results.

【比較例4】同一ジルコニウム試料を用い、最終製品の
粒度が本発明の限定外の比較例について、圧壊強度を調
査した。上の例と同じ酸化ジルコニウムを噴霧乾燥機に
より造粒粒子径が620μm、火炎による処理後の粒子
径が600μm前後になるように造粒した。次いで造粒
粒子を酸素−アセチレンバーナー火炎中に分散供給し、
球状の酸化ジルコニウム粉末は篩い分けを行い、粒径が
500μmよりも小さい粒子を取り除いた。
Comparative Example 4 Using the same zirconium sample, the crushing strength of a comparative example in which the particle size of the final product was outside the scope of the present invention was examined. The same zirconium oxide as in the above example was granulated by a spray dryer so that the granulated particle diameter was about 620 μm and the particle diameter after treatment with a flame was about 600 μm. Next, the granulated particles are dispersed and supplied in an oxygen-acetylene burner flame,
The spherical zirconium oxide powder was sieved to remove particles having a particle size smaller than 500 μm.

【0020】[0020]

【実施例4と比較例4との比較】同一酸化ジルコニウム
試料を用いて行った、実施例4と比較例4との圧壊強度
確認試験の結果の粒径の差異のみによる比較は表3のと
おりである。
Comparison between Example 4 and Comparative Example 4 Table 3 shows a comparison of the results of the crushing strength confirmation test between Example 4 and Comparative Example 4 using only the same zirconium oxide sample, based only on the difference in particle size. It is.

【表3】 この球状酸化ジルコニウムの圧壊強度を確認した。結果
を表3に示す。これらの結果を見ると、粒子径を500
μm以下とした粒子は高強度の粒子になっているが、粒
子径を600μm程度としたものでは、500μm以下
としたものに比べてやや強度に劣ることが確認された。
このような理由から、本発明により得られる球状粒子の
粒子径は500μm以下に限定した。
[Table 3] The crushing strength of this spherical zirconium oxide was confirmed. Table 3 shows the results. Looking at these results, the particle size was 500
Although particles having a particle size of not more than μm are high-strength particles, it was confirmed that the particles having a particle size of about 600 μm were slightly inferior in strength to those having a particle size of not more than 500 μm.
For these reasons, the particle size of the spherical particles obtained by the present invention is limited to 500 μm or less.

【0021】[0021]

【実施例5】Embodiment 5

【実施例5−1】酸化クロム(平均粒子径0.52μ
m)を水で40重量%のスラリーとし、原粉に対し1%
のPVAをバインダーとして加えたものを、噴霧乾燥機
でディスク回転数15,000r.p.m.、入口温度
250℃、出口温度120℃、原液処理量45kg/h
で処理し、平均粒径約40μmの造粒粒子とした。次
に、燃焼比を酸素3.5kg/h、アセチレン1.5k
g/hに調整した酸素−アセチレンバーナー火炎中に、
前記造粒粒子をキャリヤーガスである酸素1.5kg/
hと共に約2kg/hの速度で4.00kg分散供給し
た。火炎による溶融処理後の粒子を、重力沈降室及びサ
イクロンで回収し、球状の酸化クロム粒子を得た。原料
に対する最終製品の回収率は、98.5%であり、高収
率であった。また、得られた酸化クロムは、球状の単粒
子で、流動性は非常に良好であった。原料酸化クロムの
嵩比重および使用量、造粒品並びに最終製品の平均粒
径、嵩比重等、最終品の回収量、流動性を表4−1に示
す。また、完全に一次粒子化していることを確認するた
め、得られた球状酸化クロムを5重量%スラリーとし、
これに600Wの超音波ホモジナイザーを10分照射し
て電子顕微鏡で観察を行った。その結果、球形が壊れた
粒子は見当らず、完全に一次粒子化していることが確認
された。
Example 5-1 Chromium oxide (average particle size 0.52 μm)
m) into a 40% by weight slurry with water, and 1%
Of PVA was added as a binder, and the number of rotations of the disk was 15,000 r. p. m. , Inlet temperature 250 ° C, outlet temperature 120 ° C, stock solution throughput 45kg / h
To obtain granulated particles having an average particle size of about 40 μm. Next, the combustion ratio was set to 3.5 kg / h for oxygen and 1.5 k for acetylene.
g / h oxygen-acetylene burner flame,
The granulated particles were treated with a carrier gas, oxygen 1.5 kg /
and 4.00 kg dispersed at a rate of about 2 kg / h. The particles after the melting treatment by the flame were collected in a gravity settling chamber and a cyclone to obtain spherical chromium oxide particles. The recovery of the final product with respect to the raw material was 98.5%, and the yield was high. Further, the obtained chromium oxide was spherical single particles, and the fluidity was very good. Table 4-1 shows the bulk specific gravity and amount of the raw material chromium oxide, the average particle size of the granulated product and the final product, the bulk specific gravity, and the like, the recovered amount of the final product, and the fluidity. In addition, in order to confirm that the particles were completely converted into primary particles, the obtained spherical chromium oxide was converted into a 5% by weight slurry,
This was irradiated with a 600 W ultrasonic homogenizer for 10 minutes and observed with an electron microscope. As a result, no particles with broken spheres were found, and it was confirmed that the particles were completely converted into primary particles.

【0022】[0022]

【表4−1】 [Table 4-1]

【0023】[0023]

【実施例5−2】燃焼比を酸素25kg/h、プロパン
10kg/hに調整した酸素−プロパンバーナー火炎中
に、実施例1で使用したものと同じ平均粒径約40μm
の酸化クロム造粒粒子を、キャリヤーガスである酸素1
0kg/hと共に約40kg/hの速度で80.0kg
分散供給した。火炎による溶融処理後の粒子を、重力沈
降室及びサイクロンで回収し、球状の酸化クロム粒子を
得た。このときの原料に対する球状酸化クロムの回収率
は、98.8%であった。原料酸化クロムの嵩比重等、
最終製品の回収量、流動性等を表4−1に示す。ここで
得られた酸化クロムの形状はほぼ真球で、かつ粒度も揃
ったものとなっている。図1に得られた酸化クロムの電
子顕微鏡写真を示す。さらに、最終製品の収率が98.
8%と高い値となっており、効率よく球状品を得られる
ことが確認された。
Example 5-2 The same average particle size as that used in Example 1 was used in an oxygen-propane burner flame whose combustion ratio was adjusted to 25 kg / h for oxygen and 10 kg / h for propane.
Chromium oxide granulated particles of oxygen 1 as carrier gas
80.0 kg at a speed of about 40 kg / h together with 0 kg / h
Distributed supply. The particles after the melting treatment by the flame were collected in a gravity settling chamber and a cyclone to obtain spherical chromium oxide particles. At this time, the recovery rate of the spherical chromium oxide from the raw materials was 98.8%. Raw material chromium oxide bulk specific gravity, etc.
Table 4-1 shows the recovery amount, fluidity, etc. of the final product. The shape of the chromium oxide obtained here is almost a true sphere and has a uniform particle size. FIG. 1 shows an electron micrograph of the obtained chromium oxide. Further, the yield of the final product is 98.
The value was as high as 8%, and it was confirmed that a spherical product could be obtained efficiently.

【0024】[0024]

【実施例5−3】酸化チタン(平均粒子径0.92μ
m)を水で40重量%のスラリーとし、原粉に対し1%
のPVAをバインダーとして加えたものを、噴霧乾燥機
でディスク回転数20,000r.p.m.、入口温度
250℃、出口温度120℃、原液処理量45kg/h
で処理し、平均粒径約30μmの造粒粒子とした。次
に、燃焼比を酸素25kg/h、プロパン10kg/h
に調整した酸素−プロパンバーナー火炎中に、前記造粒
粒子をキャリヤーガスである酸素10kg/hと共に約
40kg/hの速度で80.0kg分散供給した。火炎
による溶融処理後の粒子を、重力沈降室及びサイクロン
で回収し、球状の酸化チタン粒子を得た。原料に対する
最終製品の回収率は、98.3%と、高収率であった。
また、得られた酸化チタンは、球状の単粒子で、流動性
は非常に良好であった。原料酸化チタンの嵩比重および
使用量、造粒品並びに最終製品の平均粒径、嵩比重等、
最終品の回収量、流動性を表4−2に示す。
Example 5-3 Titanium oxide (average particle size 0.92 μm)
m) into a 40% by weight slurry with water, and 1%
Of PVA was added as a binder, and the number of rotations of the disk was 20,000 r. p. m. , Inlet temperature 250 ° C, outlet temperature 120 ° C, stock solution throughput 45kg / h
To obtain granulated particles having an average particle size of about 30 μm. Next, the combustion ratio was set to 25 kg / h for oxygen and 10 kg / h for propane.
80.0 kg of the granulated particles were dispersedly supplied at a rate of about 40 kg / h together with 10 kg / h of oxygen as a carrier gas into the oxygen-propane burner flame adjusted to a temperature of 10 kg / h. The particles after the melting treatment by the flame were collected in a gravity sedimentation chamber and a cyclone to obtain spherical titanium oxide particles. The recovery of the final product with respect to the raw material was 98.3%, which was a high yield.
Moreover, the obtained titanium oxide was spherical single particles, and the fluidity was very good. The bulk specific gravity and amount of the raw material titanium oxide, the average particle size of the granulated product and the final product, the bulk specific gravity, etc.
Table 4-2 shows the recovered amount and fluidity of the final product.

【0025】[0025]

【表4−2】 [Table 4-2]

【0026】[0026]

【実施例5−4】三炭化七クロム(平均粒子径3.2μ
m)を水で40重量%のスラリーとし、原粉に対し1%
のPVAをバインダーとして加えたものを、噴霧乾燥機
でディスク回転数12,000r.p.m.、入口温度
250℃、出口温度120℃、原液処理量45kg/h
で処理し、平均粒径約70μmの造粒粒子を得た。得ら
れた造粒粒子の嵩比重は1.80g/cm3であった。
次に、燃焼比を酸素25kg/h、プロパン10kg/
hに調整した酸素−プロパンバーナー火炎中に、前記造
粒粒子をキャリヤーガスである酸素10kg/hと共に
約40kg/hの速度で80.0kg分散供給した。火
炎による溶融処理後の粒子を、重力沈降室及びサイクロ
ンで回収し、球状の三炭化七クロム粒子を得た。原料に
対する最終製品の回収率は、95.5%と、高収率であ
った。また、得られた三炭化七クロムは、球状の単粒子
で、流動性は非常に良好であった。原料三炭化七クロム
の嵩比重および使用量、造粒品並びに最終製品の平均粒
径、嵩比重等、最終品の回収量、流動性を表4−2に示
す。
Example 5-4 Hexachromium tricarbide (average particle size 3.2 μm)
m) into a 40% by weight slurry with water, and 1%
Of PVA was added as a binder, and the number of revolutions of the disk was 12,000 r. p. m. , Inlet temperature 250 ° C, outlet temperature 120 ° C, stock solution throughput 45kg / h
To obtain granulated particles having an average particle size of about 70 μm. The bulk specific gravity of the obtained granulated particles was 1.80 g / cm 3 .
Next, the combustion ratio was set to 25 kg / h for oxygen, 10 kg /
In an oxygen-propane burner flame adjusted to h, 80.0 kg of the granulated particles were dispersedly supplied at a speed of about 40 kg / h together with 10 kg / h of oxygen as a carrier gas. The particles after the melting treatment by the flame were collected in a gravity settling chamber and a cyclone to obtain spherical chromium heptacarbide particles. The recovery of the final product with respect to the raw material was 95.5%, which was a high yield. Moreover, the obtained chromium heptacarbide was a single spherical particle, and the fluidity was very good. Table 4-2 shows the bulk specific gravity and use amount of the raw material heptachromium tricarbide, the average particle size of the granulated product and the final product, the bulk specific gravity, and the like, the recovered amount of the final product, and the fluidity.

【0027】[0027]

【実施例5−5】ニホウ化チタン(平均粒子径4.5μ
m)を水で40重量%のスラリーとし、原粉に対し1%
のPVAをバインダーとして加えたものを、噴霧乾燥機
でディスク回転数10,000r.p.m.、入口温度
250℃、出口温度120℃、原液処理量45kg/h
で処理し、平均粒径約100μmの造粒粒子とした。得
られた造粒粒子の嵩比重は2.02g/cm3であっ
た。次に、燃焼比を酸素25kg/h、プロパン10k
g/hに調整した酸素−プロパンバーナー火炎中に、前
記造粒粒子をキャリヤーガスである酸素10kg/hと
共に約40kg/hの速度で80.0kg分散供給し
た。火炎による溶融処理後の粒子を、重力沈降室及びサ
イクロンで回収し、球状の酸化チタン粒子を得た。原料
に対する最終製品の回収率は、97.83%と、高収率
であった。また、得られたニホウ化チタンは、球状の単
粒子で、流動性は非常に良好であった。原料ニホウ化チ
タンの嵩比重および使用量、造粒品並びに最終製品の平
均粒径、嵩比重等、最終品の回収量、流動性を表5に示
す。
Example 5-5 Titanium diboride (average particle size 4.5 μm)
m) into a 40% by weight slurry with water, and 1%
Of PVA was added as a binder, and the disk rotation speed was 10,000 r. p. m. , Inlet temperature 250 ° C, outlet temperature 120 ° C, stock solution throughput 45kg / h
To obtain granulated particles having an average particle size of about 100 μm. The bulk specific gravity of the obtained granulated particles was 2.02 g / cm 3 . Next, the combustion ratio was set to 25 kg / h for oxygen and 10 k for propane.
In an oxygen-propane burner flame adjusted to g / h, 80.0 kg of the granulated particles were dispersedly supplied at a speed of about 40 kg / h together with 10 kg / h of oxygen as a carrier gas. The particles after the melting treatment by the flame were collected in a gravity sedimentation chamber and a cyclone to obtain spherical titanium oxide particles. The recovery of the final product with respect to the raw material was 97.83%, a high yield. Further, the obtained titanium diboride was spherical single particles, and the fluidity was very good. Table 5 shows the bulk specific gravity and use amount of the raw material titanium diboride, the average particle size of the granulated product and the final product, the bulk specific gravity, and the like, the recovered amount of the final product, and the fluidity.

【0028】[0028]

【表5】 [Table 5]

【0029】[0029]

【実施例5−6】金属クロム粉末(平均粒子径30μ
m)を水で40重量%のスラリーとしたものを、噴霧乾
燥機でディスク回転数6,000r.p.m.、入口温
度250℃、出口温度120℃、原液処理量45kg/
hで処理し、平均粒径約100μmの造粒粒子とした。
得られた造粒粒子の嵩比重は2.02g/cm3であっ
た。次に、燃焼比を酸素25kg/h、プロパン10k
g/hに調整した酸素−プロパンバーナー火炎中に、前
記造粒粒子をキャリヤーガスである酸素10kg/hと
共に約40kg/hの速度で80.0kg分散供給し
た。火炎による溶融処理後の粒子を、重力沈降室及びサ
イクロンで回収し、球状の酸化クロム粒子を得た。原料
に対する最終製品の回収率は、97.4%と、高収率で
あった。また、得られた酸化クロムは、球状の単粒子
で、流動性は非常に良好であった。原料金属クロムの嵩
比重および使用量、造粒品並びに最終製品の平均粒径、
嵩比重等、最終品の回収量、流動性を表5に示す。
Example 5-6 Metal chromium powder (average particle size 30 μm)
m) was converted into a slurry of 40% by weight with water, and the disk was rotated at 6,000 rpm with a spray dryer. p. m. , Inlet temperature 250 ° C, outlet temperature 120 ° C, stock solution throughput 45kg /
h to obtain granulated particles having an average particle size of about 100 μm.
The bulk specific gravity of the obtained granulated particles was 2.02 g / cm 3 . Next, the combustion ratio was set to 25 kg / h for oxygen and 10 k for propane.
In an oxygen-propane burner flame adjusted to g / h, 80.0 kg of the granulated particles were dispersedly supplied at a speed of about 40 kg / h together with 10 kg / h of oxygen as a carrier gas. The particles after the melting treatment by the flame were collected in a gravity settling chamber and a cyclone to obtain spherical chromium oxide particles. The recovery of the final product with respect to the raw material was 97.4%, which was a high yield. Further, the obtained chromium oxide was spherical single particles, and the fluidity was very good. Raw material chromium bulk specific gravity and amount used, average particle size of granulated product and final product,
Table 5 shows the recovery amount and fluidity of the final product such as bulk specific gravity.

【0030】[0030]

【実施例5−7】1mol/dm3硫酸アルミニウム溶
液と1mol/dm3硫酸ニッケル溶液を重量比3:1
の割合で混合し、水で40重量%のスラリーとし、原粉
に対し1%のPVAをバインダーとして加えたものを、
噴霧乾燥機でディスク回転数12,000r.p.
m.、入口温度250℃、出口温度120℃、原液処理
量45kg/hで処理し、平均粒径約70μmの造粒粒
子とした。得られた造粒粒子の嵩比重は1.01g/c
3であった。次に、燃焼比を酸素25kg/h、プロ
パン10kg/hに調整した酸素−プロパンバーナー火
炎中に、前記造粒粒子をキャリヤーガスである酸素10
kg/hと共に約40kg/hの速度で80.0kg分
散供給した。火炎による溶融処理後の粒子を、重力沈降
室及びサイクロンで回収し、球状の酸化アルミニウム−
酸化ニッケル複合粒子を得た。原料に対する最終製品の
回収率は、29.8%であった。また、得られた酸化ア
ルミニウム−酸化ニッケル複合粒子は、球状の単粒子
で、流動性は非常に良好であった。原料硫酸アルミニウ
ム、硫酸ニッケルの使用量、造粒品、最終製品の平均粒
径、嵩比重等、最終品の回収量、流動性を表6−1に示
す。
Example 5-7 A 1 mol / dm 3 aluminum sulfate solution and a 1 mol / dm 3 nickel sulfate solution were mixed at a weight ratio of 3: 1.
, A 40% by weight slurry with water, and 1% of PVA added to the raw powder as a binder,
Disc rotation speed of 12,000 r. p.
m. An inlet temperature of 250 ° C., an outlet temperature of 120 ° C., and a stock solution treatment amount of 45 kg / h were processed into granulated particles having an average particle size of about 70 μm. The bulk specific gravity of the obtained granulated particles is 1.01 g / c.
m 3 . Next, the granulated particles were subjected to oxygen 10 as a carrier gas in an oxygen-propane burner flame whose combustion ratio was adjusted to 25 kg / h for oxygen and 10 kg / h for propane.
80.0 kg was dispersedly supplied at a speed of about 40 kg / h together with the kg / h. The particles after the melting treatment by the flame are collected in a gravity sedimentation chamber and a cyclone, and the spherical aluminum oxide
Nickel oxide composite particles were obtained. The recovery of the final product relative to the raw material was 29.8%. Moreover, the obtained aluminum oxide-nickel oxide composite particles were spherical single particles, and the flowability was very good. Table 6-1 shows the amounts of the raw materials aluminum sulfate and nickel sulfate used, the average particle size of the granulated product, the final product, the bulk specific gravity, and the like, the recovered amount of the final product, and the fluidity.

【0031】[0031]

【表6−1】 [Table 6-1]

【0032】[0032]

【実施例5−8】酸化クロム(平均粒子径0.25μ
m)と酸化ジルコニウム(平均粒子径0.81μm)を
重量比4:1の割合で混合し、水で40重量%のスラリ
ーとし、原粉に対し1%のPVAをバインダーとして加
えたものを、噴霧乾燥機でディスク回転数10,000
r.p.m.、入口温度250℃、出口温度120℃、
原液処理量45kg/hで処理し、平均粒径約100μ
mの造粒粒子を得た。得られた造粒粒子の嵩比重は1.
82g/cm3であった。次に、燃焼比を酸素25kg
/h、プロパン10kg/hに調整した酸素−プロパン
バーナー火炎中に、前記造粒粒子をキャリヤーガスであ
る酸素10kg/hと共に約40kg/hの速度で8
0.0kg分散供給した。火炎による溶融処理後の粒子
を、重力沈降室及びサイクロンで回収し、球状の酸化ク
ロム−酸化ジルコニウム複合粒子を得た。原料に対する
最終製品の回収率は、96.5%と高い収率であった。
また、得られた酸化クロム−酸化ジルコニウム複合粒子
は、球状の単粒子で、流動性は非常に良好であった。原
料酸化クロム、酸化ジルコニウムの嵩比重および使用
量、造粒品、最終製品の平均粒径、嵩比重等、最終品の
回収量、流動性を表6−1に示す。
Example 5-8 Chromium oxide (average particle size 0.25 μm)
m) and zirconium oxide (average particle diameter 0.81 μm) were mixed at a weight ratio of 4: 1 to form a 40% by weight slurry with water, and 1% of PVA was added to the raw powder as a binder. 10,000 rpm disk rotation with spray dryer
r. p. m. , Inlet temperature 250 ° C, outlet temperature 120 ° C,
The stock solution was processed at a processing rate of 45 kg / h, and the average particle size was about 100μ.
m of granulated particles were obtained. The bulk specific gravity of the obtained granulated particles is 1.
It was 82 g / cm 3 . Next, the combustion ratio was changed to 25 kg of oxygen.
/ G and 10 kg / h of propane in a flame of oxygen-propane burner adjusted to 10 kg / h at a speed of about 40 kg / h together with 10 kg / h of oxygen as a carrier gas.
0.0 kg dispersed and supplied. The particles after the melting treatment by the flame were collected in a gravity sedimentation chamber and a cyclone to obtain spherical chromium oxide-zirconium oxide composite particles. The recovery of the final product with respect to the raw material was as high as 96.5%.
Further, the obtained chromium oxide-zirconium oxide composite particles were spherical single particles, and the flowability was very good. Table 6-1 shows the bulk specific gravity and use amount of the raw material chromium oxide and zirconium oxide, the average particle size of the granulated product and the final product, the bulk specific gravity, and the like, the recovered amount of the final product, and the fluidity.

【0033】[0033]

【実施例5−9】酸化ケイ素(平均粒子径3.2μm)
と酸化タングステン(平均粒子径5.6μm)を重量比
4:1の割合で混合し、水で40重量%のスラリーと
し、原粉に対し1%のPVAをバインダーとして加えた
ものを、噴霧乾燥機でディスク回転数7,000r.
p.m.、入口温度250℃、出口温度120℃、原液
処理量45kg/hで処理し、平均粒径約200μmの
造粒粒子を得た。得られた造粒粒子の嵩比重は2.02
g/cm3であった。次に、燃焼比を酸素25kg/
h、プロパン10kg/hに調整した酸素−プロパンバ
ーナー火炎中に、前記造粒粒子をキャリヤーガスである
酸素10kg/hと共に約40kg/hの速度で80.
0kg分散供給した。火炎による溶融処理後の粒子を、
重力沈降室及びサイクロンで回収し、球状の酸化ケイ素
−酸化タングステン複合粒子を得た。原料に対する最終
製品の回収率は、96.0%と高い収率であった。ま
た、得られた酸化ケイ素−酸化タングステン複合粒子
は、球状の単粒子で、流動性は非常に良好であった。原
料酸化ケイ素、酸化タングステンの嵩比重および使用
量、造粒品、最終製品の平均粒径、嵩比重等、最終品の
回収量、流動性を表6−2に示す。
Example 5-9 Silicon oxide (average particle size 3.2 μm)
And tungsten oxide (average particle size: 5.6 μm) were mixed at a weight ratio of 4: 1 to form a slurry of 40% by weight with water, and 1% of PVA was added to the raw powder as a binder, followed by spray drying. Disk rotation speed 7,000r.
p. m. An inlet temperature of 250 ° C., an outlet temperature of 120 ° C., and a stock solution treatment amount of 45 kg / h were used to obtain granulated particles having an average particle size of about 200 μm. The bulk specific gravity of the obtained granulated particles is 2.02
g / cm 3 . Next, the combustion ratio was changed to 25 kg / oxygen.
h. In an oxygen-propane burner flame adjusted to 10 kg / h of propane, the granulated particles were mixed with 10 kg / h of oxygen as a carrier gas at a speed of about 40 kg / h.
0 kg was dispersed and supplied. Particles after melting treatment by flame,
The particles were collected in a gravity sedimentation chamber and a cyclone to obtain spherical silicon oxide-tungsten oxide composite particles. The recovery of the final product with respect to the raw material was as high as 96.0%. Further, the obtained silicon oxide-tungsten oxide composite particles were spherical single particles, and the flowability was very good. Table 6-2 shows the bulk specific gravity and usage of the raw material silicon oxide and tungsten oxide, the average particle size of the granulated product and the final product, the bulk specific gravity, and the like, the recovered amount of the final product, and the fluidity.

【0034】[0034]

【表6−2】 [Table 6-2]

【0035】[0035]

【実施例5−1〜5−9の比較】実施例5−1〜5−4
の比較は表4−1、表4−2に示すとおりであり、実施
例5−5〜5−6の比較は表5に示すとおりであり、ま
た実施例5−7〜5−9の比較は表6−1、表6−2に
示すとおりである。
Comparison of Examples 5-1 to 5-9 Examples 5-1 to 5-4
Are as shown in Tables 4-1 and 4-2, comparisons of Examples 5-5 to 5-6 are as shown in Table 5, and comparisons of Examples 5-7 to 5-9. Is as shown in Table 6-1 and Table 6-2.

【0036】[0036]

【比較例5−1】市販の酸化クロム(平均粒子径0.5
2μm)を500kg、600kVAエルー炉で溶融、
固化させ塊状酸化クロムを得た。これをジョークラッシ
ャーで粗粉砕した後、ボールミルで粉砕し粉状酸化クロ
ムとし、さらに振動篩で25〜45μmに分級し、平均
粒子径33μmの酸化クロムを得た。次に、この酸化ク
ロムを燃焼比を酸化25kg/h、プロパン10kg/
hに調整した酸素−プロパンバーナー火炎中に、キャリ
ヤーガスである酸素10kg/hと共に約40kg/h
の速度で80.0kg分散供給した。火炎による溶融処
理後、粒子を重力沈降室及びサイクロンで回収し、球状
の酸化クロム粒子を得た。原料酸化クロムの使用量、分
級品の平均粒径、回収量、および最終製品の平均粒径、
嵩比重、最終製品の回収量、流動性等を表7に示す。ま
た、得られた酸化クロムの電子顕微鏡写真を図2に示
す。この方法で得られた酸化クロム粒子は、やや結晶の
角がなくなって丸みを帯びているように見えるものの、
真球にほど遠い形状となっており、本発明により得られ
る球状酸化クロム粒子に比較して、明らかに劣ることが
わかった。また、この方法では、原料に対する最終製品
の回収率が25.6%であり、安価な球状品製造方法の
目的には不適であることがわかった。更に、参考として
市販されている平均粒子径37μmの粗大酸化クロムの
電子顕微鏡写真を図3として示す。
Comparative Example 5-1 Commercially available chromium oxide (average particle size 0.5
2 μm) is melted in a 500 kg, 600 kVA aer furnace,
It was solidified to obtain massive chromium oxide. This was roughly pulverized by a jaw crusher, pulverized by a ball mill to obtain powdery chromium oxide, and further classified by a vibration sieve to 25 to 45 μm to obtain chromium oxide having an average particle diameter of 33 μm. Next, this chromium oxide was burned at a combustion ratio of 25 kg / h and propane 10 kg / h.
h in an oxygen-propane burner flame adjusted to about 40 kg / h together with 10 kg / h of oxygen as a carrier gas.
At a speed of 80.0 kg. After the melting treatment by the flame, the particles were collected in a gravity sedimentation chamber and a cyclone to obtain spherical chromium oxide particles. The amount of raw chromium oxide used, the average particle size of the classified product, the amount recovered, and the average particle size of the final product,
Table 7 shows the bulk specific gravity, the recovered amount of the final product, the fluidity, and the like. FIG. 2 shows an electron micrograph of the obtained chromium oxide. Although the chromium oxide particles obtained by this method appear to be somewhat rounded with no crystal corners,
The shape was far from a true sphere, and it was found that the shape was clearly inferior to the spherical chromium oxide particles obtained by the present invention. In addition, this method showed that the recovery rate of the final product with respect to the raw material was 25.6%, which proved to be unsuitable for the purpose of an inexpensive method for producing spherical products. Further, an electron micrograph of a commercially available coarse chromium oxide having an average particle diameter of 37 μm is shown in FIG. 3 for reference.

【0037】[0037]

【表7】 [Table 7]

【0038】[0038]

【比較例5−2】40重量%の硝酸ジルコニウム水溶液
1000gに、界面活性剤1gを添加し、撹拌しながら
クロロベンゼン800mlを約20分間で滴下し、W/
Oエマルジョンを得た。次にこのW/Oエマルジョンを
ゆっくり撹拌しながらアンモニアガスを15リットル/
分で30分吹き込んだ。吹き込み終了後、クロロベンゼ
ンを2000ml追加し、加熱蒸留することによりエマ
ルジョン中の水分を分離した。析出した粒子をろ別した
後、150℃で8時間乾燥し、次いで900℃で2時間
焼成して粒状酸化ジルコニウムを得た。この方法による
原料に対する最終製品の回収率は、35.0%であり、
経済的な製造方法とは言えないことがわかった。原料硝
酸ジルコニウムの使用量、最終製品の平均粒径、嵩比
重、最終製品の回収量、流動性等を表7に示す。
Comparative Example 5-2 1 g of a surfactant was added to 1000 g of a 40% by weight aqueous solution of zirconium nitrate, and 800 ml of chlorobenzene was added dropwise with stirring for about 20 minutes.
An O emulsion was obtained. Then, while slowly stirring this W / O emulsion, 15 liters /
I blew for 30 minutes. After the completion of the blowing, 2,000 ml of chlorobenzene was added, and the water in the emulsion was separated by heat distillation. The precipitated particles were separated by filtration, dried at 150 ° C. for 8 hours, and then calcined at 900 ° C. for 2 hours to obtain granular zirconium oxide. The end product recovery for the raw materials by this method is 35.0%,
It turns out that it is not an economical manufacturing method. Table 7 shows the used amount of the raw material zirconium nitrate, the average particle size of the final product, the bulk specific gravity, the recovered amount of the final product, the fluidity, and the like.

【0039】[0039]

【比較例5−3】50kgのアルミニウムメタルを電磁
誘導加熱し溶湯とした後、水冷銅製のノズルから溶湯を
滴下すると同時に水平方向から圧縮空気を吹き付けるこ
とにより、霧状化および酸化を行い、酸化アルミニウム
を得た。この方法による原料に対する最終製品の回収率
は、72.3%であり、比較例5−1および比較例5−
2よりは収率が高いものの、やはり経済的な製造方法と
いう目的を達成したものとは言い難い。原料アルミニウ
ムの使用量、最終製品の平均粒径、嵩比重、最終製品の
回収量、流動性等を表7に示す。
[Comparative Example 5-3] After 50 kg of aluminum metal was heated by electromagnetic induction to form a molten metal, the molten metal was dropped from a water-cooled copper nozzle, and simultaneously compressed air was blown from the horizontal direction to atomize and oxidize the metal. Aluminum was obtained. The recovery rate of the final product from the raw materials by this method was 72.3%, and Comparative Examples 5-1 and 5-
Although the yield is higher than 2, it is still difficult to say that the objective of an economical production method has been achieved. Table 7 shows the usage amount of the raw material aluminum, the average particle size of the final product, the bulk specific gravity, the recovery amount of the final product, the fluidity, and the like.

【0040】[0040]

【比較例5−4】平均粒子径0.92μm、嵩比重0.
60g/cm3の酸化クロムを水で40重量%のスラリ
ーとし、原粉に対し1%のPVAをバインダーとして加
えたものを、噴霧乾燥機でディスク回転数3,000
r.p.m.、入口温度250℃、出口温度120℃、
原液処理量45kg/hで処理し、平均粒径約800μ
mの造粒粒子を得た。得られた造粒粒子の嵩比重は2.
10g/cm3であった。次に、燃焼比を酸素25kg
/h、プロパン10kg/hに調整した酸素−プロパン
バーナー火炎中に、前の造粒粒子をキャリヤーガスであ
る酸素10kg/hと共に約40kg/hの速度で8
0.0kg分散供給した。火炎による溶融処理後の粒子
を、重力沈降室及びサイクロンで回収した。溶融処理に
より回収粒子が完全に一次粒子化しているか確認するた
め、水で5重量%のスラリーとし、600Wの超音波ホ
モジナイザーを10分照射した後、電子顕微鏡で観察を
行った。その結果ほとんどの粒子で球形が壊れ、完全に
一次粒子化していないことが判明した。
Comparative Example 5-4 An average particle diameter of 0.92 μm and a bulk specific gravity of 0.
A slurry containing 60 g / cm 3 of chromium oxide in water and 40% by weight of water and 1% of PVA as a binder was added to the raw powder, and the number of rotations of the disk was 3,000 with a spray dryer.
r. p. m. , Inlet temperature 250 ° C, outlet temperature 120 ° C,
The stock solution was processed at a processing rate of 45 kg / h, and the average particle size was about 800μ.
m of granulated particles were obtained. The bulk specific gravity of the obtained granulated particles is 2.
It was 10 g / cm 3 . Next, the combustion ratio was changed to 25 kg of oxygen.
/ H, in an oxygen-propane burner flame adjusted to 10 kg / h of propane, the previous granulated particles were mixed with 10 kg / h of oxygen as carrier gas at a rate of about 40 kg / h.
0.0 kg dispersed and supplied. The particles after the melting treatment by the flame were collected in a gravity settling chamber and a cyclone. In order to confirm whether the recovered particles were completely converted into primary particles by the melting treatment, a slurry of 5% by weight with water was irradiated with a 600 W ultrasonic homogenizer for 10 minutes, and then observed with an electron microscope. As a result, it was found that most of the particles had broken spheres and were not completely converted into primary particles.

【0041】[0041]

【発明の効果】本発明は、一種もしくは二種以上の無機
物の微粉末を所定の粒度に造粒した後、加熱溶融するこ
とを特徴とする粒子径大なる球状無機物粒子の製造方法
である。本発明の原料となる無機物は、Cr、Ti、A
l、Ni、Zn、W、YもしくはSiおよびその酸化
物、酸化物前駆体、炭化物、ホウ化物および窒化物のい
ずれかの一種または二種以上であり、造粒粒子径は1〜
500μmであり、具体的な造粒手段は噴霧乾燥機によ
ることが好ましく、また具体的加熱手段は、火災、プラ
ズマ、アーク中への分散が好ましい。本発明による効果
は次の如くである。 (イ)本発明においては、火災もしくはプラズマ内で溶
融のために必要な時間は、前記の如く0.02秒程度と
非常に短いものであり、しかも連続運転が可能であるこ
とから生産性が極めて高い。 (ロ)反応は火災もしくはプラズマ内で行われるので、
他物質との接触がなく、従来の如く炉材の侵食等による
汚染物質の混入を引き起こすことがないので化学純度を
高めることが可能である。 (ハ)製造される無機物粒子は高強度、高純度であり、
粒度1〜500μm程度のほぼ粒径均一な球状である。 (ニ)従来の製造方法の如き粉砕、分級工程を必要とせ
ず、短時間の反応により対原料比できわめて高収率を得
ることができ、従って従来法より著しくコストの低減が
可能となった。 (ホ)得られる無機物粒子の粒径は、造粒粒子の大きさ
により制御できるので、用途目的に応じた任意の粒径粒
子を製造することが可能となった。
According to the present invention, there is provided a method for producing spherical inorganic particles having a large particle diameter, wherein one or two or more inorganic fine powders are granulated to a predetermined particle size and then heated and melted. The inorganic material used as the raw material of the present invention is Cr, Ti, A
1, Ni, Zn, W, Y or Si and one or more of oxides, oxide precursors, carbides, borides and nitrides thereof, and has a granulated particle diameter of 1 to 2.
The specific granulation means is preferably a spray dryer, and the specific heating means is preferably fire, plasma, or dispersion in an arc. The effects of the present invention are as follows. (A) In the present invention, the time required for melting in a fire or plasma is as short as about 0.02 seconds as described above, and productivity is high because continuous operation is possible. Extremely high. (B) Since the reaction takes place in a fire or plasma,
Since there is no contact with other substances and contamination of contaminants due to erosion of the furnace material or the like does not occur as in the related art, it is possible to increase the chemical purity. (C) The produced inorganic particles have high strength and high purity,
It has a spherical shape with a substantially uniform particle size of about 1 to 500 μm. (D) It is possible to obtain a very high yield in terms of a raw material ratio by a short-time reaction without the necessity of the pulverization and classification steps as in the conventional production method, and therefore it is possible to significantly reduce the cost compared to the conventional method. . (E) Since the particle size of the obtained inorganic particles can be controlled by the size of the granulated particles, it has become possible to produce particles having an arbitrary particle size according to the purpose of use.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例5−2において、本発明により得られた
酸化クロムの電子顕微鏡写真である。
FIG. 1 is an electron micrograph of chromium oxide obtained according to the present invention in Example 5-2.

【図2】比較例5−1において、火炎溶融のみを行った
酸化クロムの電子顕微鏡写真である。
FIG. 2 is an electron micrograph of chromium oxide obtained by performing only flame fusion in Comparative Example 5-1.

【図3】比較例5−1において示した、市販の粗大酸化
クロム粒子の電子顕微鏡写真である。
FIG. 3 is an electron micrograph of commercially available coarse chromium oxide particles shown in Comparative Example 5-1.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年2月13日[Submission date] February 13, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】全図[Correction target item name] All figures

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

【図2】 FIG. 2

【図3】 FIG. 3

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一種もしくは二種以上の無機物粉末を所
定の粒度に造粒した後、加熱溶融することを特徴とする
粒子径大なる球状無機物粒子の製造方法。
1. A method for producing spherical inorganic particles having a large particle diameter, wherein one or more inorganic powders are granulated to a predetermined particle size and then heated and melted.
【請求項2】 原料となる無機物がクロム、チタン、ア
ルミニウム、ニッケル、ジルコニウム、タングステン、
イットリウム、ケイ素及びそれらの酸化物、酸化物前駆
体、炭化物、ホウ化物、窒化物であることを特徴とする
請求項1に記載の粒子径大なる球状無機物粒子の製造方
法。
2. The method according to claim 1, wherein the inorganic material is chromium, titanium, aluminum, nickel, zirconium, tungsten,
The method for producing spherical inorganic particles having a large particle diameter according to claim 1, wherein the particles are yttrium, silicon and their oxides, oxide precursors, carbides, borides, and nitrides.
【請求項3】 前記造粒粒子の粒度範囲は1μm以上5
00μm以下であることを特徴とする請求項1〜2のい
ずれかの項に記載の粒子径大なる球状無機物粒子の製造
方法。
3. The granulated particles have a particle size range of 1 μm to 5 μm.
The method for producing spherical inorganic particles having a large particle diameter according to any one of claims 1 to 2, wherein the particle diameter is not more than 00 µm.
【請求項4】 前記原料微粒子の造粒は、噴霧乾燥機で
行うことを特徴とする請求項1〜3のいずれかの項に記
載の粒子径大なる球状無機物粒子の製造方法。
4. The method for producing spherical inorganic particles having a large particle diameter according to claim 1, wherein the granulation of the raw material fine particles is performed by a spray dryer.
【請求項5】 前記造粒粒子の加熱溶融は、火炎、プラ
ズマ、もしくはアーク中に分散させて行うことを特徴と
する請求項1〜4のいずれかの項に記載の粒子径大なる
球状無機物粒子の製造方法。
5. The spherical inorganic material having a large particle diameter according to claim 1, wherein the heat-melting of the granulated particles is performed by dispersing the granulated particles in a flame, plasma, or an arc. Method for producing particles.
【請求項6】 一種もしくは二種以上の無機物微粒子を
噴霧乾燥機により所定の粒度に造粒した後火炎もしくは
プラズマまたはアーク中に分散させることによって該粒
子を加熱溶融することを特徴とする請求項1〜5のいず
れかの項に記載の粒子径大なる球状無機物粒子の製造方
法。
6. The method according to claim 1, wherein one or more inorganic fine particles are granulated to a predetermined particle size by a spray drier and then dispersed in a flame, plasma or arc to heat and melt the particles. The method for producing spherical inorganic particles having a large particle diameter according to any one of Items 1 to 5.
JP8215226A 1996-07-26 1996-07-26 Production of spherical inorganic particle having large particle diameter Pending JPH10137574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8215226A JPH10137574A (en) 1996-07-26 1996-07-26 Production of spherical inorganic particle having large particle diameter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8215226A JPH10137574A (en) 1996-07-26 1996-07-26 Production of spherical inorganic particle having large particle diameter

Publications (1)

Publication Number Publication Date
JPH10137574A true JPH10137574A (en) 1998-05-26

Family

ID=16668805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8215226A Pending JPH10137574A (en) 1996-07-26 1996-07-26 Production of spherical inorganic particle having large particle diameter

Country Status (1)

Country Link
JP (1) JPH10137574A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040680A (en) * 2001-07-27 2003-02-13 Tdk Corp Method and apparatus for manufacturing spherical oxide powder
JP2007112707A (en) * 2005-10-21 2007-05-10 Sulzer Metco Us Inc Method for manufacturing metal oxide powder having high purity and readily flowable property
WO2022065387A1 (en) * 2020-09-25 2022-03-31 株式会社アドマテックス Method for manufacturing spherical particle material
CN114713833A (en) * 2022-03-10 2022-07-08 崇义章源钨业股份有限公司 Spherical tungsten-based composite powder based on in-situ reduction and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040680A (en) * 2001-07-27 2003-02-13 Tdk Corp Method and apparatus for manufacturing spherical oxide powder
JP4596111B2 (en) * 2001-07-27 2010-12-08 Tdk株式会社 Method for producing spherical oxide powder and apparatus for producing spherical powder
JP2007112707A (en) * 2005-10-21 2007-05-10 Sulzer Metco Us Inc Method for manufacturing metal oxide powder having high purity and readily flowable property
US8518358B2 (en) 2005-10-21 2013-08-27 Sulzer Metco (Us), Inc. High purity and free flowing metal oxides powder
WO2022065387A1 (en) * 2020-09-25 2022-03-31 株式会社アドマテックス Method for manufacturing spherical particle material
CN114713833A (en) * 2022-03-10 2022-07-08 崇义章源钨业股份有限公司 Spherical tungsten-based composite powder based on in-situ reduction and preparation method thereof
CN114713833B (en) * 2022-03-10 2024-03-22 崇义章源钨业股份有限公司 Spherical tungsten-based composite powder based on in-situ reduction and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2980987B2 (en) Method and apparatus for producing nanostructured materials
JP2874925B2 (en) Apparatus and method for producing uniform, fine boron-containing ceramic powder
US4687511A (en) Metal matrix composite powders and process for producing same
US4778515A (en) Process for producing iron group based and chromium based fine spherical particles
US4783214A (en) Low oxygen content fine shperical particles and process for producing same by fluid energy milling and high temperature processing
JPH10182150A (en) Ito stock powder and sintered compact and their production
JP4231990B2 (en) Rare earth oxide spray particles and method for producing the same, thermal spray member and corrosion resistant member
US4836850A (en) Iron group based and chromium based fine spherical particles
JP3523216B2 (en) Rare earth-containing compound particles for thermal spraying, thermal spraying member sprayed with the same
JPS62100412A (en) Production of alumina-zirconia compound powder body
JP2002363725A (en) Particle for thermal spraying and thermal spraying material using the same
US6416862B1 (en) Ultrafine particulate zinc oxide and production process thereof
JP2617140B2 (en) Ultrafine WC powder and method for producing the same
KR101751329B1 (en) Method for Manufacturing Ceramic Spherical Bead
JPH10137574A (en) Production of spherical inorganic particle having large particle diameter
US4502885A (en) Method for making metal powder
RU2707455C1 (en) Tungsten-based pseudoalloy powder and method of its production
JPH0316925A (en) Preparation of high purity molten quartz
US4783215A (en) Low oxygen content iron group based and chromium based fine spherical particles and process for producing same by fluid energy milling and temperature processing
JP4596111B2 (en) Method for producing spherical oxide powder and apparatus for producing spherical powder
TW202225095A (en) Method for manufacturing spherical particle material
JP2002332558A (en) Spherical particle for thermal spraying, its manufacturing method, and spray coated member
WO1998009753A1 (en) Integrated thermal process and apparatus for the continuous synthesis of nanoscale powders
FI84342B (en) Process for producing a readily flowing oxide powder having a spherical particle shape
JPH06158101A (en) Hard substance-dispersed alloy powder and it production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061107