JP2617140B2 - Ultrafine WC powder and method for producing the same - Google Patents

Ultrafine WC powder and method for producing the same

Info

Publication number
JP2617140B2
JP2617140B2 JP2003346A JP334690A JP2617140B2 JP 2617140 B2 JP2617140 B2 JP 2617140B2 JP 2003346 A JP2003346 A JP 2003346A JP 334690 A JP334690 A JP 334690A JP 2617140 B2 JP2617140 B2 JP 2617140B2
Authority
JP
Japan
Prior art keywords
powder
carbon
fine
ultrafine
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003346A
Other languages
Japanese (ja)
Other versions
JPH03208811A (en
Inventor
良治 山本
信昭 浅田
正敏 永嶋
正男 丸山
茂芳 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003346A priority Critical patent/JP2617140B2/en
Publication of JPH03208811A publication Critical patent/JPH03208811A/en
Application granted granted Critical
Publication of JP2617140B2 publication Critical patent/JP2617140B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は,超微粒超硬質合金の原料として用いられる
高純度で高い炭素結合度の超微粒炭化タングステン(W
C)粉及びそれを大量に製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an ultrafine tungsten carbide (W) having a high purity and a high carbon bonding degree, which is used as a raw material for an ultrafine superhard alloy.
C) Powder and a method for mass-producing it.

[従来の技術] 従来、超微粒超硬質合金用の超微粒WC粉は、0.3〜0.5
μmの微細なW粉と炭素粉とをボールミル等の混合装置
で混合した後、水素ガス雰囲気又は真空中で1300〜1770
Kの高温に加熱して製造されている。
[Prior art] Conventionally, ultrafine WC powders for ultrafine superhard alloys are 0.3 to 0.5.
μm fine W powder and carbon powder are mixed by a mixing device such as a ball mill, and then mixed in a hydrogen gas atmosphere or vacuum in a range of 1300 to 1770.
It is manufactured by heating to a high temperature of K.

しかし,超硬合金の特性に悪い影響を及ぼす鉄の含有
量が多く,その粒度は0.5μmが限界である。また,WO3
又は揮発性のタングステン化合物をCO又は炭化水素など
の雰囲気中から加炭する固相−気相反応による微粒タン
グステンの製法がある。しかし,これらによる反応生成
物はWやW2Cを多量に含有し,超硬合金の原材料に適さ
ない。また,大量生産する方法としても不適当である。
炭素と化学量論的に反応した0.5μm以下の粒子径を有
する超微粒WCの工業的製法は開発されていないのが現状
である。
However, the content of iron, which adversely affects the properties of cemented carbide, is large, and its grain size is limited to 0.5 μm. WO 3
Alternatively, there is a method of producing fine tungsten by a solid-gas phase reaction in which a volatile tungsten compound is carburized from an atmosphere such as CO or a hydrocarbon. However, the reaction products of these contain a large amount of W and W 2 C and are not suitable as raw materials for cemented carbide. It is also unsuitable for mass production.
At present, no industrial method for producing ultrafine WC having a particle diameter of 0.5 μm or less, which has stoichiometrically reacted with carbon, has not been developed.

[発明が解決しようとする課題] 上記微粒W粉を炭化したWC粉は、0.5μmが限界であ
り、炭素粉との混合性、反応性が悪く、Fe等の不純物も
多く、また、不均一な粒子である等の欠点がある。
[Problems to be Solved by the Invention] The WC powder obtained by carbonizing the fine W powder has a limit of 0.5 μm, has poor mixing property and reactivity with carbon powder, has many impurities such as Fe, and is uneven. There are drawbacks such as the use of fine particles.

また、W粉末の還元は、微粒子ほど生産性が悪く、コ
スト高でW粉末は酸化されやすく工程中に発火すること
がある。さらに,超硬合金において,優れた力学的特性
を示すタングステン炭化物はWC相であり,WCの安定な炭
素量は49.5〜50.5mol%と非常に狭い。したがって,W,W2
C及び遊離炭素の存在は極端に超硬合金の特性を損な
う。
In the reduction of W powder, the finer the particles, the lower the productivity, and the cost is high, so that the W powder is easily oxidized and may ignite during the process. Furthermore, in cemented carbides, the tungsten carbide exhibiting excellent mechanical properties is the WC phase, and the stable carbon content of WC is very narrow, 49.5 to 50.5 mol%. Therefore, W, W2
The presence of C and free carbon extremely impairs the properties of cemented carbide.

そこで,本発明の技術的課題は,微粉砕されたWO3
末より生成するWC粉末の粒度調整方法と,製造工程を簡
略化するとともに高純度で高い炭素結合量を有する超微
粒WC粉と,それを大量に製造する方法とを提供すること
にある。
Therefore, the technical problem of the present invention is to provide a method for adjusting the particle size of WC powder produced from finely pulverized WO 3 powder, an ultrafine WC powder having a high purity and a high carbon bond amount while simplifying the production process, It is to provide a method for mass-producing it.

[課題を解決するための手段] 本発明によれば,微細なWO3と超微粒炭素粉とを反応
して得るFeの含有量が0.006%以下の高純度超微粒WC粉
であって,前記高純度微粒WC粉は,0.5μm以下の均一な
粒径を有するとともに遊離炭素量が0.1%以下で結合炭
素量が6.00%以上の高い炭素結合度を有することを特徴
とする超微粒WC粉が得られる。
According to the present invention [SUMMARY OF], a high-purity ultra-fine WC powder content less 0.006% Fe which a fine WO 3 obtained by reacting an ultrafine carbon powder, the High-purity fine WC powder is characterized by having a uniform particle size of 0.5 μm or less, a free carbon content of 0.1% or less, and a high carbon bonding degree of 6.00% or more of bonded carbon content. can get.

また,本発明によれば,5μm以下の粒径を有するWO3
粉に15.5〜16.5%の1.0μm以下の粒径を有する炭素粉
を混合し,N2ガス中で1370〜1770Kの範囲内の温度で加熱
し,続いてH2ガス中で1570〜1970Kの温度範囲内で加熱
し,粉砕して前記WO3粉から0.5μm以下の均一な粒径を
有し,遊離炭素量が0.1%以下で結合炭素量が6.00%以
上の高い炭素結合度を有する超微粒WC粉を製造すること
を特徴とする超微粒WC粉の製造方法が得られる。
Further, according to the present invention, WO 3 having a particle size of 5 μm or less
The powder is mixed with 15.5 to 16.5% of carbon powder having a particle size of 1.0 μm or less, heated in N 2 gas at a temperature in the range of 1370 to 1770 K, and subsequently heated to 1570 to 1970 K in H 2 gas. Ultra fine particles having a uniform particle size of 0.5 μm or less from the WO 3 powder and a high degree of carbon bonding with a free carbon content of 0.1% or less and a bonding carbon content of 6.00% or more from the WO 3 powder by heating and pulverizing within the range A method for producing ultrafine WC powder, characterized by producing WC powder, is obtained.

本発明においては,還元工程を省略し,WO3粉と炭素粉
との混合粉を第1の回転炭化炉のN2ガス気流中で、1370
〜1770Kで昇温させながら加熱し、次いで第2の回転炭
化炉でH2ガス気流中で1570〜1970Kで加熱する工程を20
分以内で迅速に行い、WO3粉から直接、粒子径0.5μm以
下の超微粒WC粉を得るものである。
In the present invention, the reduction step is omitted, and the mixed powder of the WO 3 powder and the carbon powder is mixed with the N 2 gas stream of the first rotary carbonization furnace in 1370.
Heating at 1570 to 1970 K in a H 2 gas stream in a second rotary carbonization furnace by heating at 1570 K to 1770 K;
The process is carried out quickly within minutes and directly obtains ultrafine WC powder having a particle diameter of 0.5 μm or less from WO 3 powder.

タングステン鉱石の精練は一般的に苛性ソーダによっ
て,Na2WO4水溶液とし,塩化カルシウムを反応させてCaW
O4の沈殿とし,次に塩酸を反応させてH2WO4とする。H2W
O4を加熱して、微細なWO3が得られる。しかし,この方
法によるとFe,Mn,Ca,Ti,Mo,Al等の不純物を多く含むと
いう欠点がある。最も簡単に純度の高い酸化タングステ
ンを得る方法は,H2WO4とNH4OHとを反応させ,(NH)2WO
4水溶液からパラタングステン酸アンモニウム[5(N
H4・12WO4・5H2O]の約50μmの粗い結晶を晶出さ
せる方法である(C.J.Smithells:Tungsten Chapman &
Hall LTd.1936)。パラタングステン酸アンモニウムを
焙焼して得られるWO3粉末は,硬純度であるが,20μmほ
どの粗い粒子である。
Tungsten ore is usually refined with caustic soda to form an aqueous solution of Na 2 WO 4 and reacted with calcium chloride to produce CaW.
O 4 precipitates and then reacts with hydrochloric acid to form H 2 WO 4 . H 2 W
O 4 by heating, fine WO 3 is obtained. However, this method has a drawback that it contains a lot of impurities such as Fe, Mn, Ca, Ti, Mo, and Al. The easiest way to obtain high purity tungsten oxide is to react H 2 WO 4 with NH 4 OH to obtain (NH) 2 WO
4 Ammonium paratungstate [5 (N
H 4) is a 2 · 12WO 4 · 5H 2 O ] about how to 50μm coarse crystals crystallize out of (CJSmithells: Tungsten Chapman &
Hall LTd. 1936). WO 3 powder obtained by roasting ammonium paratungstate is hard-purity but coarse particles of about 20 μm.

この方法は,粗いWO3を衝撃粉砕機によって,第7表
の如く種々の粒度のWO3に調整することによって,WからW
Cへの反応速度を調整し,異常な粒子の成長のない0.5μ
m以下の微細で均一な硬純度超微粒WC粉が得られる。
This method involves adjusting the coarse WO 3 to a different particle size WO 3 as shown in Table 7 by means of an impact crusher, so that the W
Adjust the reaction rate to C, 0.5μ without abnormal particle growth
m and a fine and uniform hard-purity ultrafine WC powder can be obtained.

[作 用] タングステン酸化物の還元過程の粒成長は、WO2(O
H)の化学輸送に起因することが報告されている。
[Operation] Grain growth in the reduction process of tungsten oxide is determined by WO 2 (O
H) Reported to be due to 2 chemical transport.

本発明のWO3をCにより直接炭化する方法において、N
2ガス気流中での昇温により粒成長を助長するH2Oの生成
がないので、均一なWO微粒子が得られる。
In the method of the present invention for directly carbonizing WO 3 by C,
Since there is no generation of H 2 O that promotes grain growth by raising the temperature in a two- gas stream, uniform WO fine particles can be obtained.

[実施例] 本発明の実施例について、図面を参照しながら説明す
る。
Example An example of the present invention will be described with reference to the drawings.

第1図は本発明の実施例に係る超微粒WC粉の製造装置
の全体的構成を示す図である。
FIG. 1 is a diagram showing an overall configuration of an apparatus for producing ultrafine WC powder according to an embodiment of the present invention.

この図において、製造装置は、ヘンシュルミキサー10
と、造粒機20と、乾燥炉30と、2段式回転炭化炉40とを
有する。
In this figure, the manufacturing device is a Henschel mixer 10
, A granulator 20, a drying furnace 30, and a two-stage rotary carbonizing furnace 40.

ヘンシュルミキサー10はWO3原料11及びC原料12とを
混合する。
The Henschel mixer 10 mixes the WO 3 raw material 11 and the C raw material 12.

造粒機20はフィーダー21aを有する第1のトラフ21と
これに接続された第2のトラフ22を有する2段構造であ
る。
The granulator 20 has a two-stage structure having a first trough 21 having a feeder 21a and a second trough 22 connected thereto.

乾燥炉30は、造粒機20からのペレットを載置してこの
炉体30内を搬送するコンベアベルトを有する。
The drying furnace 30 has a conveyor belt on which the pellets from the granulator 20 are placed and transported inside the furnace body 30.

2段式回転炭化炉40は原料投入用のホッパー43を有す
る第1の回転炭化炉41及び第2の回転炭化炉42とを傾斜
させ、第1の回転炭化炉41の取出口43と第2の回転炭化
炉42の投入口45とを連結した構造を有する。
The two-stage rotary carbonizing furnace 40 tilts a first rotary carbonizing furnace 41 and a second rotary carbonizing furnace 42 having a hopper 43 for charging raw materials, and removes an outlet 43 of the first rotary carbonizing furnace 41 and a second And a charging port 45 of the rotary carbonizing furnace 42.

この各回転炭化炉41及び42の夫々は、炉体の中心部に
発熱体を有し、この周りに還元される粉末を投入する回
転円筒及び固定円筒を有する通常の回転炭化炉である。
Each of the rotary carbonizing furnaces 41 and 42 is a normal rotary carbonizing furnace having a heating element at the center of the furnace body, and a rotary cylinder and a fixed cylinder around which a powder to be reduced is charged.

WO3原料11及びC原料12はヘンシュルミキサー10に投
入されて混合される。次に2段構造のトラフ21,トラフ2
2を有する造粒機20に投入されて、ペレット状になり、
乾燥炉30にて乾燥される。
The WO 3 raw material 11 and the C raw material 12 are charged into the Henschel mixer 10 and mixed. Next, two-stage trough 21 and trough 2
It is put into a granulator 20 having 2 and becomes a pellet,
The drying is performed in the drying furnace 30.

乾燥されたペレットは、第1回転炭化炉41及び第2の
回転炭化炉42を有する2段式回転炭化炉40に投入され
る。投入されたペレットは、窒素雰囲気を有する第1回
転炭化炉41で加熱され、続いて水素雰囲気を有する第2
の回転炭化炉42で加熱され、炭化され、塊状のWC粉46と
なる。この塊状のWC粉は、図示しない衝撃粉砕機で解砕
されて、粉砕されて、分級される。
The dried pellets are put into a two-stage rotary carbonization furnace 40 having a first rotary carbonization furnace 41 and a second rotary carbonization furnace 42. The charged pellets are heated in a first rotary carbonization furnace 41 having a nitrogen atmosphere, and subsequently heated in a second rotation carbonization furnace 41 having a hydrogen atmosphere.
The WC powder 46 is heated and carbonized in the rotary carbonizing furnace 42 to form a massive WC powder 46. This massive WC powder is crushed by an impact crusher (not shown), crushed, and classified.

第2図は第1の回転炭化炉41の各位置における温度分
布及び反応生成物のX線回折の強度を示す図である。
FIG. 2 is a diagram showing the temperature distribution at each position of the first rotary carbonization furnace 41 and the intensity of X-ray diffraction of the reaction product.

この図のように、N2雰囲気を有する第1の回転炭化炉
41は、入口から出口に向かって次第に高くなるような温
度勾配を有する。炉内において、WからW2C,WCの反応過
程は非常に速く、Wに注目すると1300KでWの生成が始
まり、1400Kで消失しており、Wで存在する時間は、非
常に短い。
As shown in this figure, a first rotary carbonization furnace having an N 2 atmosphere
41 has a temperature gradient that becomes progressively higher from the inlet to the outlet. In the furnace, the reaction process of W 2 C and WC from W is very fast, and when attention is paid to W, generation of W starts at 1300 K and disappears at 1400 K, and the time existing in W is very short.

ちなみに、N2炉41の通過時間は、6分前後である。Incidentally, the transit time of N 2 furnace 41 is a longitudinal 6 minutes.

第3図は従来の方法によるWと炭素粉の混合粉をの20
分加熱して炭化したときの反応温度と、結合炭素量の関
係を示す図である。
FIG. 3 is a graph showing the conventional method of mixing a powder of W and carbon
It is a figure which shows the relationship between the reaction temperature at the time of carbonization by partial heating, and the amount of bonded carbon.

この図のように、従来の方法においては、第2図の実
施例に比較して炭化する速度は遅い。
As shown in this figure, in the conventional method, the carbonization speed is lower than in the embodiment of FIG.

第4図はWとWC粉をH2ガス雰囲気中で20分加熱したと
きの結果を示す図である。この図において、W粉は1100
K以上の温度では、急激に粒成長する。
FIG. 4 is a view showing a result when W and WC powder are heated in an H 2 gas atmosphere for 20 minutes. In this figure, W powder is 1100
At temperatures above K, the grains grow rapidly.

一方、WCは1300Kまでは、粒径は0.6μmと変わらな
い。
On the other hand, the particle size of WC up to 1300K remains unchanged at 0.6 μm.

尚、タングステン酸化物の還元過程の粒成長は、WO2
(OH)の化学輸送に起因することが報告されており、
本実施例の方法は、粒成長を助長するH2Oの生成がない
ので、均一で微粒子が得られる。
Incidentally, the grain growth in the reduction process of tungsten oxide is determined by WO 2
(OH) 2 has been reported to be due to chemical transport,
In the method of the present embodiment, uniform fine particles can be obtained because there is no generation of H 2 O that promotes grain growth.

第5図は1.0μm,18μmのWO3と0.04μm,10μmの炭素
粉の混合粉をN2気流中で20分間加熱したときの反応度を
示す図である。
FIG. 5 is a diagram showing the reactivity when a mixed powder of 1.0 μm, 18 μm WO 3 and 0.04 μm, 10 μm carbon powder was heated in a N 2 stream for 20 minutes.

WO3粉を直接炭化する方法において、WC粉の粒度を左
右する要因はWO3粒度のみならず、炭素粉の粗さも大き
く影響する。
In the method of directly carbonizing WO 3 powder, the factor that affects the particle size of the WC powder largely depends not only on the WO 3 particle size but also on the roughness of the carbon powder.

第5図の結果では、WO3粒度よりも、炭素粉の方が反
応の進行に大きく影響している。
In the results shown in FIG. 5, the carbon powder has a greater effect on the progress of the reaction than the WO 3 particle size.

WO3粉の粒径が細かくても、炭素粒が粗い場合には、
得られるWC粉の粒径は細かくならないことを示してい
る。
Even if the particle size of WO 3 powder is fine, if the carbon particles are coarse,
This shows that the particle size of the obtained WC powder does not become fine.

即ち、WO3を還元し、W粉とした後、カーボンを混合
してWC粉とする従来の方法では、反応が遅く0.5μm以
下の微粒WCが得られないのに対し、本実施例では、細か
いWO3粉と細かい炭素粉を均一に混合して、直接0.5μm
以下のW,及びW2Cを含まず結合炭素量の高い微粒WC粉が
得られる。
That is, while the conventional method of reducing WO 3 into W powder and then mixing carbon into WC powder does not produce a fine WC of 0.5 μm or less due to a slow reaction, in the present embodiment, Evenly mix fine WO 3 powder and fine carbon powder, and directly 0.5μm
The following fine WC powder which does not contain W and W 2 C and has a high amount of bonded carbon is obtained.

次に、第1図の製造装置を用いてWC粉を製造した時の
具体例を実施例1〜5に示し、比較のために従来の方法
によってWC粉を製造した場合について(比較例)も示
す。
Next, specific examples when WC powder is manufactured using the manufacturing apparatus of FIG. 1 are shown in Examples 1 to 5, and for comparison, a case where WC powder is manufactured by a conventional method (Comparative Example) is also shown. Show.

実施例1. 2.6μmのWO3粉100kgと0.04μmの炭素粉19.1kgをヘ
ンシュルミキサーで45分間混合して造粒機で直径2mmの
ペレットに造粒し、造粒のために加えた溶剤を乾燥炉で
乾燥後、N2雰囲気回転炭化炉で1550K,H2雰囲気回転炭化
炉で1770Kで処理した。生成した0.6μm程度の粒子を含
有する塊状の炭化物を衝撃粉砕機で粉砕し、150メッシ
ュふるいでふるいわけ、第1表のように、微細で均粒な
WC粉を製造した。
Example 1. solvent carbon powder 19.1kg of WO 3 powder 100kg and 0.04μm of 2.6μm was mixed for 45 minutes in a Henschel mixer and pelletized with a diameter of 2mm in the granulator was added for granulation Was dried in a drying furnace, and then treated at 1550 K in a N 2 atmosphere rotating carbonizing furnace and at 1770 K in a H 2 atmosphere rotating carbonizing furnace. The resulting massive carbide containing particles of about 0.6 μm is pulverized with an impact pulverizer and sieved with a 150-mesh sieve.
WC powder was manufactured.

このWC粉を第5図の顕微鏡写真に示す。この図に示す
ように、実施例1に係る超微粒WC粉は十分に細かい粒径
で結合炭素量が高く,X線回折によるW2Cは痕跡量であっ
た。
This WC powder is shown in the micrograph of FIG. As shown in this figure, the ultrafine WC powder according to Example 1 had a sufficiently fine particle size and a high amount of bound carbon, and the amount of W 2 C by X-ray diffraction was trace.

実施例2. 16μmのWO3粉100kgと、0.5μmの炭素粉19.1kgをヘ
ンシェルミキサで45分間混合し、造粒機で直径2mmペレ
ットに造粒し、加えた溶剤を乾燥炉で乾燥した。N2雰囲
気回転炉を1550K,H2雰囲気回転炉を1770Kで処理した。
炭化物を衝撃粉砕機で粉砕し、150メッシュの篩でふる
いわけ、第2表の如くのWC粉を得た。2.6μmWO3に比べ
て粗いWCとなった。
And WO 3 powder 100kg of Example 2. 16 [mu] m, the carbon powder 19.1kg of 0.5μm was mixed for 45 minutes in a Henschel mixer, granulated with a granulator to 2mm diameter pellet was dried and the mixture was solvent in a drying oven. The N 2 atmosphere rotary furnace 1550K, were treated with H 2 atmosphere rotary furnace at 1770K.
The carbide was pulverized with an impact pulverizer and sieved with a 150-mesh sieve to obtain a WC powder as shown in Table 2. It became a rough WC compared to 2.6μmWO 3.

実施例3. 1.0μmのWO3粉約50kgと10μmの炭素粉9.6kgをヘン
シェルミキサーで45分間混合し、造粒機で直径2mmペレ
ットに造粒し、加えた溶剤を乾燥炉で乾燥した。
Example 3 About 50 kg of 1.0 μm WO 3 powder and 9.6 kg of 10 μm carbon powder were mixed by a Henschel mixer for 45 minutes, granulated into 2 mm diameter pellets with a granulator, and the added solvent was dried in a drying furnace.

N2雰囲気回転炉を1550K,H2雰囲気回転炉で1770Kで処
理した。炭化物を衝撃粉砕機で粉砕し,150メッシュの篩
でふるい分け、第3表のようなWC粉を得た。WO3が細か
いにも係わらず、粒子は均粒であるが粗目のものとなっ
た。
The N 2 atmosphere rotary furnace 1550K, and treated with 1770K with H 2 atmosphere rotary furnace. The carbide was pulverized with an impact pulverizer and sieved with a 150-mesh sieve to obtain a WC powder as shown in Table 3. WO 3 is in spite of the fine, but the particles are average grain became a thing of coarse.

実施例4. 1.0μmのWO3粉50kgと0.04μmの炭素粉9.6kgをヘン
シュルミキサーで45分間混合して造粒機で直径2mmのペ
レットに造粒し、造粒のために加えた溶剤を乾燥炉で乾
燥後、N2雰囲気回転炭化炉で1520K,H2雰囲気回転炭化炉
で1670Kで炭化した。生成した炭化物を衝撃粉砕機で解
砕して、粉砕して、150メッシュふるいでふるいわけ
た。
Example 4. granulated WO 3 powder 50kg and 0.04μm carbon powder 9.6kg a Henschel mixer mixing 45 minutes to 2mm diameter granulator pellets of 1.0 .mu.m, it was added for granulation solvent After drying in a drying furnace, the mixture was carbonized at 1520 K in a N 2 atmosphere rotary carbonization furnace and at 1670 K in a H 2 atmosphere rotation carbonization furnace. The resulting carbide was crushed with an impact crusher, crushed, and sieved with a 150 mesh sieve.

この超微粒WC粉の特性を第4表に示した。 Table 4 shows the properties of the ultrafine WC powder.

また、このWC粉を第7図の顕微鏡写真に示す。この図
に示すように,実施例4に係るWC粉は結合炭素量が高
く,X線回折によるW2Cは痕跡量で特性の良好な非常に細
かな均粒の超微粒であった。
The WC powder is shown in the micrograph of FIG. As shown in this figure, the WC powder according to Example 4 had a high amount of bonded carbon, and the amount of W 2 C determined by X-ray diffraction was very fine, uniform and very fine with good characteristics.

実施例5. 0.7μmのWO3粉50kgと0.04μmの炭素粉9.6kgとをヘ
ンシェルミキサーで45分混合して,造粒機で直径2mmの
ペレットに造粒し,造粒のために加えた溶剤と乾燥炉で
乾燥後,N2雰囲気回転炉で1520K,H2雰囲気回転炉で1670K
で炭化した。生成炭化物を衝撃粉砕機で粉砕し,1500メ
ッシュの篩で振るい分けた。この結合炭素量が高く,X線
回折によるW2Cが痕跡量である超微粒WC粉の特性を第5
表に示した。
Example 5 were mixed 45 minutes and carbon powder 9.6kg of 0.7μm of WO 3 powder 50kg and 0.04μm in a Henschel mixer and pelletized with a diameter of 2mm in the granulator was added for granulation after drying the solvent and drying oven, in an N2 atmosphere rotary kiln 1520K, in an H 2 atmosphere rotary furnace 1670K
Carbonized. The resulting carbide was pulverized with an impact pulverizer and sieved with a 1500 mesh sieve. The characteristics of ultra-fine WC powder with a high amount of bound carbon and trace amounts of W 2 C by X-ray diffraction
It is shown in the table.

比較例. 0.42μmのW粉100kgと0.04μmの炭素粉6.8kgをボー
ルミルで40時間混合し、H2ガス気流中1630Kで20分間加
熱し、炭化物とした。
Comparative example. 100 kg of 0.42 μm W powder and 6.8 kg of 0.04 μm carbon powder were mixed in a ball mill for 40 hours, and heated at 1630 K for 20 minutes in a H 2 gas stream to obtain a carbide.

衝撃粉砕機で粉砕し、150メッシュのふるいでふるい
わけた。この超微粒WC粉末の特性を第5表に示す。ま
た、この超微粒WC粉末を第8図の顕微鏡写真に示す。
It was crushed with an impact crusher and sieved with a 150 mesh sieve. Table 5 shows the characteristics of the ultrafine WC powder. The ultrafine WC powder is shown in the micrograph of FIG.

第8図の写真からも明らかなように、WO3を直線炭化
したWCより粗く、粗粒混合粒子で鉄分を多く含有する。
As is clear from the photograph of FIG. 8, WO 3 is coarser than WC obtained by linearly carbonizing WO 3 and contains a large amount of iron in coarse mixed particles.

[発明の効果] 以上説明したように、本発明によれば、W粉が生成す
る還元工程を省略することで、従来の炭化法に比較し
て、迅速に且つ粒成長を伴わないで製造でき、従って非
常に安価に製造することができる。
[Effects of the Invention] As described above, according to the present invention, by omitting the reduction step in which W powder is generated, the production can be performed more rapidly and without grain growth as compared with the conventional carbonization method. Therefore, it can be manufactured very inexpensively.

本発明によれば、発火しやすく、不純物の多い微細な
W粉の炭化工程を省略でき、安全で、かつ純度の高い製
品が得られ、安定した生産が可能になった。
ADVANTAGE OF THE INVENTION According to this invention, it is easy to ignite, the carbonization process of fine W powder with many impurities can be omitted, a safe and high-purity product was obtained, and stable production became possible.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例に係る超微粒WC粉製造装置の全
体構成を示す図、第2図は第1図の第1の回転炭化炉41
の各位置における温度分布及び反応生成物のX線回折の
強度を示す図、第3図は従来の方法によるWと炭素粉と
の混合粉を20分加熱して炭化したときの反応温度と、結
合炭素量の関係を示す図、第4図はWとWC粉をH2ガス雰
囲気中で20分加熱したときの結果を示す図、第5図はWO
3粉とC粉との混合粉をN2気流中で20分間加熱したとき
の反応度を示す図、第6図は本発明の実施例1に係る超
微粒WC粉の粒子構造を示す顕微鏡写真、第7図は本発明
の実施例4に係る超微粒WC粉の粒子構造を示す顕微鏡写
真、第8図は比較例に係る超微粒WC粉の粒子構造を示す
顕微鏡写真である。 図中、10はヘンシェルミキサー、11はWO3原料、12はC
原料、20は造粒機、30は乾燥炉、40は2段式回転炭化
炉、41は第1の回転炭化炉、42は第2の回転炭化炉、46
は塊状のWC粉である。
FIG. 1 is a view showing an entire configuration of an ultrafine WC powder production apparatus according to an embodiment of the present invention, and FIG. 2 is a first rotary carbonizing furnace 41 shown in FIG.
FIG. 3 is a diagram showing the temperature distribution at each position and the intensity of the X-ray diffraction of the reaction product, and FIG. 3 shows the reaction temperature when a mixed powder of W and carbon powder is heated for 20 minutes and carbonized by a conventional method; FIG. 4 shows the relationship between the amounts of bound carbon, FIG. 4 shows the results when W and WC powder were heated in an H 2 gas atmosphere for 20 minutes, and FIG. 5 shows WO
FIG. 6 shows the reactivity when a mixed powder of 3 powder and C powder is heated in an N 2 stream for 20 minutes. FIG. 6 is a micrograph showing the particle structure of the ultrafine WC powder according to Example 1 of the present invention. FIG. 7 is a micrograph showing the particle structure of the ultrafine WC powder according to Example 4 of the present invention, and FIG. 8 is a micrograph showing the particle structure of the ultrafine WC powder according to the comparative example. In the figure, 10 is Henschel mixer, 11 is WO 3 raw material, 12 is C
Raw materials, 20 is a granulator, 30 is a drying furnace, 40 is a two-stage rotary carbonizing furnace, 41 is a first rotary carbonizing furnace, 42 is a second rotary carbonizing furnace, 46
Is lumpy WC powder.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅田 信昭 富山県富山市岩瀬古志町2番地 東京タ ングステン株式会社富山工場内 (72)発明者 永嶋 正敏 富山県富山市岩瀬古志町2番地 東京タ ングステン株式会社富山工場内 (72)発明者 丸山 正男 兵庫県伊丹市昆陽北1丁目1番1号 住 友電気工業株式会社伊丹製作所内 (72)発明者 森 茂芳 兵庫県伊丹市昆陽北1丁目1番1号 住 友電気工業株式会社伊丹製作所内 (56)参考文献 特開 昭48−34800(JP,A) 特開 平1−115810(JP,A) 特開 昭63−260808(JP,A) 特開 昭60−171215(JP,A) 特開 昭49−42600(JP,A) 特開 昭54−66400(JP,A) ──────────────────────────────────────────────────続 き Continued on the front page (72) Nobuaki Asada, Inventor No. 2 Iwase Koshi-cho, Toyama City, Toyama Prefecture Tongsten Corporation Toyama Plant (72) Inventor Masatoshi Nagashima 2, Iwase Koshi-cho, Toyama City, Toyama Pref. Inside the Toyama Plant (72) Inventor Masao Maruyama 1-1-1, Koyokita, Itami-shi, Hyogo Pref. Within the Itami Works, Sumitomo Electric Industries, Ltd. (72) Inventor Shigeyoshi Mori 1-1-1, Konokita, Itami-shi, Hyogo No. 1 Sumitomo Electric Industries, Ltd. Itami Works (56) References JP-A-48-34800 (JP, A) JP-A-1-115810 (JP, A) JP-A-63-260808 (JP, A) JP-A-60-171215 (JP, A) JP-A-49-42600 (JP, A) JP-A-54-66400 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】微細なWO3と超微粒炭素粉とを反応して得
るFeの含有量が0.006%以下の高純度超微粒WC粉であっ
て,前記高純度微粒WC粉は,0.5μm以下の均一な粒径を
有するとともに遊離炭素量が0.1%以下で結合炭素量が
6.00%以上の高い炭素結合度を有することを特徴とする
超微粒WC粉。
1. A high-purity ultra-fine WC powder content below 0.006% or fine WO 3 and obtained by reacting ultrafine carbon powder Fe, the high-purity fine WC powder, 0.5 [mu] m or less With a uniform particle size of less than 0.1% free carbon and less
Ultra-fine WC powder having a high degree of carbon bonding of 6.00% or more.
【請求項2】5μm以下の粒径を有するWO3粉に15.5〜1
6.5%の1.0μm以下の粒径を有する炭素粉を混合し,N2
ガス中で1370〜1770Kの範囲内の温度で加熱し,続いてH
2ガス中で1570〜1970Kの温度範囲内で加熱し,粉砕して
前記WO3粉から0.5μm以下の均一な粒径を有し,遊離炭
素量が0.1%以下で結合炭素量が6.00%以上の高い炭素
結合度を有する超微粒WC粉を製造することを特徴とする
超微粒WC粉の製造方法。
2. The method according to claim 1, wherein the WO 3 powder having a particle size of 5 μm or less
Mixing carbon powder having a particle size 6.5% 1.0 .mu.m, N 2
Heating in gas at a temperature in the range of 1370-1770K, followed by H
Heated in a temperature range of 1570 to 1970K in two gases, pulverized to have a uniform particle size of 0.5 μm or less from the WO 3 powder, free carbon content of 0.1% or less, and bound carbon content of 6.00% or more A method for producing ultrafine WC powder, characterized by producing ultrafine WC powder having a high degree of carbon bonding.
JP2003346A 1990-01-12 1990-01-12 Ultrafine WC powder and method for producing the same Expired - Lifetime JP2617140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003346A JP2617140B2 (en) 1990-01-12 1990-01-12 Ultrafine WC powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003346A JP2617140B2 (en) 1990-01-12 1990-01-12 Ultrafine WC powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03208811A JPH03208811A (en) 1991-09-12
JP2617140B2 true JP2617140B2 (en) 1997-06-04

Family

ID=11554798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003346A Expired - Lifetime JP2617140B2 (en) 1990-01-12 1990-01-12 Ultrafine WC powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP2617140B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005335997A (en) * 2004-05-26 2005-12-08 Allied Material Corp Tungsten carbide powder having nano particle size and its manufacturing method
CN102784921A (en) * 2012-08-21 2012-11-21 江西稀有稀土金属钨业集团有限公司 Preparing method and system of mixture of hard alloy and spraying particle
JP2018165233A (en) * 2017-03-28 2018-10-25 日本新金属株式会社 Method for producing fine tungsten carbide powder

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5567662A (en) * 1994-02-15 1996-10-22 The Dow Chemical Company Method of making metallic carbide powders
JP2990655B2 (en) * 1996-05-21 1999-12-13 東京タングステン株式会社 Composite carbide powder and method for producing the same
KR100359643B1 (en) * 2000-09-21 2002-11-04 박영효 A manufacturing process of ultra-granule tungsten carbide dust by soppy system mixing
JP4593173B2 (en) * 2004-05-26 2010-12-08 株式会社アライドマテリアル Composite carbide powder having nano particle size and method for producing the same
JP2007269534A (en) * 2006-03-31 2007-10-18 Allied Material Corp Wc powder and its production method
CN101506096B (en) * 2006-09-15 2012-06-13 株式会社东芝 Carbonated tungsten powder, method for production of the same, and superhard material and tool using the same
JP5198121B2 (en) * 2008-03-31 2013-05-15 株式会社アライドマテリアル Tungsten carbide powder, method for producing tungsten carbide powder
CN104694866A (en) * 2012-08-21 2015-06-10 江西稀有稀土金属钨业集团有限公司 Method and system for preparing hard alloy sprayed particle mixture
DE102016011096B3 (en) 2016-09-15 2018-02-15 H. C. Starck Tungsten GmbH Novel tungsten carbide powder and its production
WO2019098183A1 (en) 2017-11-14 2019-05-23 株式会社アライドマテリアル Powder containing tungsten carbide
CN112079359A (en) * 2020-07-31 2020-12-15 株洲硬质合金集团有限公司 Preparation method of high-uniformity nano WC powder

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129520B2 (en) * 1971-09-09 1976-08-26
JPS5424400B2 (en) * 1972-08-29 1979-08-21
JPS5466400A (en) * 1977-11-05 1979-05-28 Nippon Shinkinzoku Kk Manufacture of fine tungsten carbide powder
JPS60171215A (en) * 1984-02-13 1985-09-04 Res Dev Corp Of Japan Manufacture of highly dispersible hyperfine particles of tungsten carbide
GB8708604D0 (en) * 1987-04-10 1987-05-13 Grieveson P Making carbides of high-melting metals
JPH01115810A (en) * 1987-10-29 1989-05-09 Mitsubishi Metal Corp Production of ultrafine powder of high-purity tungsten carbide of cubic system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005335997A (en) * 2004-05-26 2005-12-08 Allied Material Corp Tungsten carbide powder having nano particle size and its manufacturing method
JP4647244B2 (en) * 2004-05-26 2011-03-09 株式会社アライドマテリアル Tungsten carbide powder and method for producing the same
CN102784921A (en) * 2012-08-21 2012-11-21 江西稀有稀土金属钨业集团有限公司 Preparing method and system of mixture of hard alloy and spraying particle
JP2018165233A (en) * 2017-03-28 2018-10-25 日本新金属株式会社 Method for producing fine tungsten carbide powder

Also Published As

Publication number Publication date
JPH03208811A (en) 1991-09-12

Similar Documents

Publication Publication Date Title
JP2617140B2 (en) Ultrafine WC powder and method for producing the same
US7585486B2 (en) Production of high-purity niobium monoxide and capacitor production therefrom
JP2934648B2 (en) Method for producing boron carbide
JPH10182150A (en) Ito stock powder and sintered compact and their production
JPS61502040A (en) Catalyst for halosilane and its manufacturing method
JP2002533289A (en) Agglomeration of silicon powder
CN104053799A (en) Iron and molybdenum containing pellets
JP3413625B2 (en) Method for producing titanium carbonitride powder
CN108349820B (en) Zirconium boride and preparation method thereof
JPS58213617A (en) Production of titanium carbonitride powder
JP2958851B2 (en) Method for producing fine chromium carbide
JPS6362449B2 (en)
JPH021762B2 (en)
JP2911207B2 (en) Method for producing fine boron carbide powder
CN85103904A (en) halogenated silane catalyst and preparation method thereof
JP3776250B2 (en) Method for producing tantalum nitride
JPH05339653A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JP3006843B2 (en) Method for producing metal complex containing silicon carbide powder
KR20100033696A (en) Fabrication method of fine boron carbide powders by self-propagating high-temperature synthesis
JPH09272925A (en) Production of sintered ore excellent in property at high temperature and cold strength
US3153572A (en) Process for the production of niobium pentachloride
JPS6221723B2 (en)
JPS60155509A (en) Preparation of fine powder of high-purity silicon nitride of isometric system
JPS621564B2 (en)
JPH0885829A (en) Production of sintered ore

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 13

EXPY Cancellation because of completion of term