JPH10136392A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPH10136392A
JPH10136392A JP8288857A JP28885796A JPH10136392A JP H10136392 A JPH10136392 A JP H10136392A JP 8288857 A JP8288857 A JP 8288857A JP 28885796 A JP28885796 A JP 28885796A JP H10136392 A JPH10136392 A JP H10136392A
Authority
JP
Japan
Prior art keywords
charge transfer
row
photoelectric conversion
column
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8288857A
Other languages
Japanese (ja)
Other versions
JP3704406B2 (en
Inventor
Tetsuo Yamada
哲生 山田
Kazuyuki Masukane
和行 益金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Fujifilm Holdings Corp
Fujifilm Microdevices Co Ltd
Original Assignee
Toshiba Corp
Fujifilm Microdevices Co Ltd
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Fujifilm Microdevices Co Ltd, Fuji Photo Film Co Ltd filed Critical Toshiba Corp
Priority to JP28885796A priority Critical patent/JP3704406B2/en
Priority to US08/960,058 priority patent/US6690421B1/en
Publication of JPH10136392A publication Critical patent/JPH10136392A/en
Application granted granted Critical
Publication of JP3704406B2 publication Critical patent/JP3704406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide uniform element characteristics in respective photodetector rows by reading a signal charge from one photoelectric conversion element by one transfer stage and making the direction of reading the signal charge from the photoelectric conversion element be the same in the same row of the photoelectric conversion elements. SOLUTION: The pitch Wh in the row direction of photodetectors 1 and the pitch Wv in the column direction between adjacent units at the time of turning two photodetector sets adjacent in the column direction to one unit are set to be equal to each other. Also, for the photodetectors arrayed in odd- numbered rows of first, third and fifth rows, the signal charge is read to first column direction charge transfer devices 16a-16b arranged on the left side of the respective photodetector columns and the signal charge is read to second column direction charge transfer devices 17a-17b arrayed in second and forth even-numbered rows. That is, when one row is taken into consideration, the entire photodetectors of the row are in the completely same structure inside one row and the signal charge is read in the same direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体撮像素子に関
し、特に全画素信号同時読み出し型の高解像度化に適し
た固体撮像装置の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state imaging device, and more particularly, to a structure of a solid-state imaging device suitable for simultaneously reading out all pixel signals and achieving high resolution.

【0002】[0002]

【従来の技術】電荷転送型固体撮像装置いわゆるCCD
固体撮像装置は、NTSC方式等に準拠したテレビジョ
ンやビデオテープレコーダ用のカメラに搭載する事を目
的に開発されてきた。この方式では、1フレームの表示
画像をインターレース走査し、2フィールドの信号に分
ける。従って、1回の信号読み出しでは第1のフィール
ドに対応する受光素子または第2のフィールドに対応す
る受光素子から信号電荷を読み出せばよい。換言すれ
ば、2個の受光素子に対して1転送段を有する構成が一
般的である。
2. Description of the Related Art Charge transfer type solid-state imaging device, so-called CCD
A solid-state imaging device has been developed for the purpose of being mounted on a camera for a television or a video tape recorder conforming to the NTSC system or the like. In this method, a display image of one frame is interlaced and divided into signals of two fields. Therefore, in one signal reading, the signal charge may be read from the light receiving element corresponding to the first field or the light receiving element corresponding to the second field. In other words, a configuration having one transfer stage for two light receiving elements is general.

【0003】これに対して、電子スチルカメラや新しい
テレビジョン方式のカメラではノンインターレース方式
の撮像を必要とする。この場合、1受光素子に対して1
転送段(一般に4電極)が必要になる。これを実現する
方法として、図5に示す構成の固体撮像装置が提案され
ている。
On the other hand, an electronic still camera or a new television camera requires non-interlaced imaging. In this case, 1 for one light receiving element
A transfer stage (generally four electrodes) is required. As a method for realizing this, a solid-state imaging device having a configuration shown in FIG. 5 has been proposed.

【0004】図5にノンインターレース方式対応の全画
素信号同時読み出し型固体撮像装置の一例のその一部の
拡大平面図を示す。図5において、1はフォトダイオー
ドのような光電変換素子(以下、受光素子とも称する)
であり、2aで示すのはその矢印方向(列方向)に配列
した複数の受光素子1からなる第1の受光素子列であ
り、2bで示すものはその矢印方向(列方向)に配列し
た複数の受光素子1からなる第2の受光素子列である。
第1と第2の受光素子列2a、2bは図の左右方向(行
方向)に交互に配置される。3はその矢印方向(行方
向)に配列した複数の受光素子1からなる第1の受光素
子行であり、4はその矢印方向(行方向)に配列した複
数の受光素子1からなる第2の受光素子行であり、第1
と第2の受光素子行3、4は列方向に隣接して交互に配
置される。
FIG. 5 is an enlarged plan view of a part of an example of a solid-state image pickup device for simultaneous reading of all pixel signals corresponding to the non-interlace method. In FIG. 5, reference numeral 1 denotes a photoelectric conversion element such as a photodiode (hereinafter, also referred to as a light receiving element).
2a is a first light receiving element row composed of a plurality of light receiving elements 1 arranged in the arrow direction (row direction), and 2b is a plurality of light receiving element rows arranged in the arrow direction (row direction). Is a second light receiving element row including the light receiving elements 1 of FIG.
The first and second light receiving element columns 2a, 2b are alternately arranged in the left-right direction (row direction) in the figure. Reference numeral 3 denotes a first light receiving element row including a plurality of light receiving elements 1 arranged in the arrow direction (row direction), and reference numeral 4 denotes a second light receiving element 1 including a plurality of light receiving elements 1 arranged in the arrow direction (row direction). The first row of light receiving elements;
And the second light receiving element rows 3, 4 are alternately arranged adjacent to each other in the column direction.

【0005】さらに図5において、5と6は、第1およ
び第2の受光素子列2a、2bの受光素子1の信号電荷
を読み出してかつ列方向に転送する第1と第2の列方向
電荷転送装置であり、第1と第2の列方向電荷転送装置
5、6は一つの受光素子列の両側に配置される。
Further, in FIG. 5, reference numerals 5 and 6 denote first and second column-direction charges for reading signal charges of the light-receiving elements 1 of the first and second light-receiving element rows 2a and 2b and transferring the signal charges in the column direction. The first and second column-wise charge transfer devices 5 and 6 are arranged on both sides of one light receiving element column.

【0006】さらに図5において、7は第1と第2の列
方向電荷転送装置5、6で転送された信号電荷のいずれ
か一方を選択的に行方向電荷転送装置8に転送する制御
装置であり、9は行方向電荷転送装置8からの信号電荷
の電荷量に応じた電圧を生成して外部に出力する出力回
路である。以上の受光素子1、列方向電荷転送装置5、
6、制御装置7、行方向電荷転送装置8ならびに出力回
路9は、いずれも共通の半導体基板(図示せず)の上に
形成される。
Further, in FIG. 5, reference numeral 7 denotes a control device for selectively transferring one of the signal charges transferred by the first and second column-direction charge transfer devices 5 and 6 to the row-direction charge transfer device 8. Reference numeral 9 denotes an output circuit that generates a voltage corresponding to the amount of signal charge from the row direction charge transfer device 8 and outputs the voltage to the outside. The light receiving element 1, the column direction charge transfer device 5,
6, the control device 7, the row direction charge transfer device 8 and the output circuit 9 are all formed on a common semiconductor substrate (not shown).

【0007】説明のように、図5の固体撮像装置では、
各受光素子列2a,2bの両側に第1と第2の二つの列
方向電荷転送装置5、6を配置することで、1受光素子
1に対して1転送段10を割り当てることができる。
As described, in the solid-state imaging device of FIG.
By arranging the first and second two column-direction charge transfer devices 5 and 6 on both sides of each of the light receiving element rows 2a and 2b, one transfer stage 10 can be assigned to one light receiving element 1.

【0008】[0008]

【発明が解決しようとする課題】電子スチルカメラや新
しいパーソナルコンピュータへの画像入力カメラ(PC
カメラ)では、受光素子の配列ピッチが行方向と列方向
とで同一であることが望ましい。何故なら、受光素子の
配列ピッチが行と列とで同一となることにより正方格子
を形成するので、表示装置側の画素ピッチとの整合性な
らびに信号処理の容易さの観点から有利であるからであ
る。
SUMMARY OF THE INVENTION Image input cameras (PCs) for electronic still cameras and new personal computers
Camera), it is desirable that the arrangement pitch of the light receiving elements is the same in the row direction and the column direction. This is because the arrangement pitch of the light receiving elements is the same in rows and columns to form a square lattice, which is advantageous from the viewpoint of consistency with the pixel pitch on the display device side and ease of signal processing. is there.

【0009】ところが、第1と第2の受光素子列2aと
2bとの間には2個の列方向電荷転送装置5、6が存在
するために、行方向については列方向に比べ間隔が長く
なり、また行方向の間隔を短縮することも難しい。この
ような状況で行と列の配列ピッチを同一にするために
は、列方向の配列ピッチを行方向のそれに合わせるため
に拡大することになり、これは固体撮像装置の高集積化
を妨げる。
However, since two column-direction charge transfer devices 5 and 6 exist between the first and second light-receiving element columns 2a and 2b, the interval in the row direction is longer than that in the column direction. In addition, it is difficult to shorten the interval in the row direction. In order to make the arrangement pitch of rows and columns the same in such a situation, the arrangement pitch in the column direction must be enlarged to match that in the row direction, which hinders high integration of the solid-state imaging device.

【0010】さらに、図5の構造では、各行における受
光素子1からの信号電荷の読み出し方向が、第1の列方
向電荷転送装置5と第2の列方向電荷転送装置6とで逆
方向となることが明らかである。このため、この固体撮
像装置の製造工程において、受光素子列2a,2bと列
方向転送装置5、6列の相対的位置にズレが生じた場
合、同時読み出しの特性が隣接する受光素子間で異なっ
てしまう。例えば、列方向電荷転送装置5、6に対して
受光素子1が図面の右方向にずれた場合、第1の受光素
子行3を構成する受光素子1と第1の列方向電荷転送装
置5の相対位置が近づき、逆に第2の受光素子行4を構
成する受光素子1と第2の列方向電荷転送装置6の相対
位置が遠ざかる。これにより第1の受光素子行3で発生
する信号電荷は読み出し易く、第2の受光素子行4で発
生する信号電荷は読み出し難くなる。さらに、受光素子
に入射した光の一部が列方向電荷転送装置に漏洩するこ
とで発生するスミアと称される偽信号の量が第1と第2
の列方向転送装置5と6間で異なるために縦縞状の致命
的な固定パターンが雑音として現れる。
Further, in the structure shown in FIG. 5, the direction in which the signal charges are read from the light receiving elements 1 in each row is opposite between the first column direction charge transfer device 5 and the second column direction charge transfer device 6. It is clear that. For this reason, in the manufacturing process of this solid-state imaging device, if the relative positions of the light receiving element columns 2a and 2b and the column direction transfer devices 5 and 6 are shifted, the characteristics of simultaneous reading differ between the adjacent light receiving elements. Would. For example, when the light receiving element 1 is displaced to the right in the drawing with respect to the column direction charge transfer devices 5 and 6, the light receiving element 1 forming the first light receiving element row 3 and the first column direction charge transfer device 5 The relative position approaches, and conversely, the relative position of the light receiving element 1 forming the second light receiving element row 4 and the second column direction charge transfer device 6 increases. Thus, the signal charges generated in the first light receiving element row 3 are easily read, and the signal charges generated in the second light receiving element row 4 are difficult to read. Further, the amount of the false signal called smear generated when a part of the light incident on the light receiving element leaks to the column direction charge transfer device is increased by the first and second signals.
, A vertical fixed stripe-like fatal fixed pattern appears as noise.

【0011】本発明の目的は、従来の製造方法で作成可
能であり、かつ各受光素子行において均一な素子特性を
実現し、解像度を改善した新規な構造の固体撮像装置を
提供することにある。
An object of the present invention is to provide a solid-state imaging device having a novel structure which can be manufactured by a conventional manufacturing method, realizes uniform element characteristics in each light receiving element row, and has improved resolution. .

【0012】[0012]

【課題を解決するための手段】本発明の固体撮像装置
は、半導体基板と、該半導体基板上に行方向と列方向と
に互いに所定の配列間隔で形成された複数の光電変換素
子と、列方向に沿って配置されている前記光電変換素子
の各列の両側に配置され、該光電変換素子から出力され
る信号電荷を転送する第1と第2の列方向電荷転送装置
と、信号電荷を行方向に転送する行方向電荷転送装置
と、前記第1と第2の列方向電荷転送装置からの信号電
荷を前記行方向電荷転送装置に転送し、前記行方向電荷
転送装置上での電荷位置が全ての前記列方向電荷転送装
置に対して等間隔に並ぶように行方向位置を調整するチ
ャネル位置変換部と、前記行方向電荷転送装置からの信
号電荷を電圧信号として出力する出力回路とを有し、各
一つの光電変換素子に対して前記第1、第2の列方向電
荷転送装置の一方の一つの転送段が対応して設けられ、
該一つの転送段が該一つの光電変換素子から信号電荷を
読み出し、前記光電変換素子の同一行において該光電変
換素子から該信号電荷を読み出す方向が同一であるよう
に構成してなる。
According to the present invention, there is provided a solid-state imaging device comprising: a semiconductor substrate; a plurality of photoelectric conversion elements formed on the semiconductor substrate at predetermined intervals in a row direction and a column direction; First and second column-direction charge transfer devices arranged on both sides of each column of the photoelectric conversion elements arranged along a direction for transferring signal charges output from the photoelectric conversion elements; A row-direction charge transfer device for transferring in a row direction, and transferring signal charges from the first and second column-direction charge transfer devices to the row-direction charge transfer device, and a charge position on the row-direction charge transfer device. A channel position conversion unit that adjusts a row direction position so that all the column direction charge transfer devices are arranged at equal intervals, and an output circuit that outputs a signal charge from the row direction charge transfer device as a voltage signal. And each one photoelectric conversion element And the first, the one single transfer stage of the second column charge transfer device is provided in correspondence,
The one transfer stage reads signal charges from the one photoelectric conversion element, and the direction in which the signal charges are read from the photoelectric conversion elements in the same row of the photoelectric conversion elements is the same.

【0013】[0013]

【発明の実施の形態】図1に本発明の固体撮像装置の一
実施例の部分拡大平面図を示す。図1において、11a
〜11dは第1の受光素子行、12a〜12dは第2行
の受光素子行、13a〜13dは第3行の受光素子行、
14a〜14dは第4行の受光素子行、そして15a〜
15dは第5行の受光素子行である。さらに、受光素子
列の左側に第1の列方向電荷転送装置16a、16b,
16c及び16dが配列し、同右側に列方向電荷転送装
置17a、17b,17c及び17dが配列する。18
は、全列方向電荷転送装置の出力端が行方向に同一間隔
で並ぶように行方向位置を変換するためのチャネル位置
変換部であり、19は、列方向電荷転送装置間及び受光
素子間及び列方向電荷転送装置と受光素子との間をそれ
ぞれ電気的に分離する素子分離層であり、20は、列方
向電荷転送装置からチャネル位置変換部18を経て転送
された信号電荷を1行分毎に受け取り、出力回路21に
転送する行方向電荷転送装置であり、出力回路21は転
送された信号電荷量に対応する電圧信号を出力する。
FIG. 1 is a partially enlarged plan view of an embodiment of a solid-state imaging device according to the present invention. In FIG. 1, 11a
11d are first light receiving element rows, 12a to 12d are second light receiving element rows, 13a to 13d are third light receiving element rows,
14a to 14d are the fourth light receiving element rows, and 15a to 14d.
15d is a fifth light receiving element row. Further, first column direction charge transfer devices 16a, 16b,
16c and 16d are arranged, and column direction charge transfer devices 17a, 17b, 17c and 17d are arranged on the right side. 18
Is a channel position conversion unit for converting the row direction position such that the output ends of all the column direction charge transfer devices are arranged at the same interval in the row direction, and 19 is between the column direction charge transfer devices and between the light receiving elements and Reference numeral 20 denotes an element isolation layer for electrically isolating the column-direction charge transfer device and the light receiving element from each other. Reference numeral 20 denotes a signal charge transferred from the column-direction charge transfer device via the channel position converter 18 for each row. And transfers it to the output circuit 21. The output circuit 21 outputs a voltage signal corresponding to the transferred signal charge amount.

【0014】チャネル位置変換部18は、それぞれが行
方向に同一間隔に並び、各列の電荷が行方向に同一間隔
に並ぶように調整し、各列の電荷を行方向電荷転送装置
20に供給する。列方向電荷転送装置16、17は、そ
れぞれ行方向に同一間隔に並んでいない。チャンネル位
置変換部18は、列方向電荷装置16、17から電荷を
受け、各列の電荷がそれぞれ行方向に同一間隔になるよ
うに調整し、行方向電荷転送装置20上の所定の位置に
各列の電荷を供給する。
The channel position conversion section 18 adjusts the charges in each column so as to be arranged at the same interval in the row direction, and arranges the charges in each column at the same interval in the row direction. I do. The column direction charge transfer devices 16 and 17 are not arranged at equal intervals in the row direction. The channel position conversion unit 18 receives the charges from the column direction charge devices 16 and 17, adjusts the charges in each column so as to be at the same interval in the row direction, and places each of the charges at a predetermined position on the row direction charge transfer device 20. Supply column charge.

【0015】本実施例においては、受光素子1の行方向
の配列間隔(ピッチ)Whと、列方向に隣接する2個の
受光素子組を1単位としたときの隣接単位間の列方向の
配列間隔(ピッチ)Wvとは互いに等しく設定されてい
る。また、第1と第3と第5の奇数行に配列する受光素
子は各受光素子列の左側に配置する第1の列方向電荷転
送装置16a〜16dへと信号電荷が読み出され、第2
と第4の偶数行に配列する受光素子は各受光素子列の右
側に配置する第2の列方向電荷転送装置17a〜17d
へと信号電荷が読み出される。すなわち、1行分に着目
すれば、1行内ではその行の全受光素子はすべて完全に
同一構造となり、同じ方向に信号電荷が読み出されるこ
とになる。このような構造では、製造過程で、製造バラ
ツキにより受光素子と列方向電荷転送装置、遮光開口等
との相対的位置ずれが生じたとしても1行内においては
それらの相対的関係は変わらず、各1行分内においては
電気的及び光学的特性は常に均一である。
In this embodiment, the arrangement interval (pitch) Wh of the light receiving elements 1 in the row direction and the arrangement in the column direction between adjacent units when two light receiving element sets adjacent in the column direction are defined as one unit. The interval (pitch) Wv is set equal to each other. The signal charges of the light receiving elements arranged in the first, third, and fifth odd-numbered rows are read out to the first column direction charge transfer devices 16a to 16d arranged on the left side of each light receiving element column, and the second charge is read out.
And light receiving elements arranged in the fourth even-numbered row are second column direction charge transfer devices 17a to 17d arranged on the right side of each light receiving element column.
The signal charge is read out. That is, if attention is paid to one row, all the light receiving elements in the row have completely the same structure in one row, and signal charges are read in the same direction. In such a structure, even if a relative displacement between the light receiving element and the column direction charge transfer device, the light-shielding opening, etc. occurs due to manufacturing variations in the manufacturing process, the relative relationship between them does not change within one row. Within one row, the electrical and optical properties are always uniform.

【0016】次に、図2には上記した図1の第1の実施
例の固体撮像装置の上に3色のカラーフィルタを形成し
た実施例を示してある。図2の実施例においては、受光
素子の受光部上にG,B,Rと記した色フィルタが形成
されている。ここで、Gは緑(グリーン)、Bは青(ブ
ルー)そしてRは赤(レッド)を示す。この実施例で
は、Gフィルタのある受光素子からの信号電荷(G信
号)は第1の列方向電荷転送装置16a〜16dによ
り、BフィルタとRフィルタのある受光素子からの信号
電荷(B信号とR信号)は第2の列方向電荷転送装置1
7a〜17dによりそれぞれ転送される。ここでは、G
信号、R信号およびB信号がそれぞれ色毎に同一方向に
信号電荷が読み出され、色毎に同一構造を有する。従っ
て、各カラー信号の特性は全撮像領域にわたり均一にな
る。
FIG. 2 shows an embodiment in which three color filters are formed on the solid-state imaging device of the first embodiment shown in FIG. In the embodiment of FIG. 2, color filters marked G, B, and R are formed on the light receiving portion of the light receiving element. Here, G indicates green (green), B indicates blue (blue), and R indicates red (red). In this embodiment, the signal charge (G signal) from the light receiving element having the G filter is converted into the signal charge (B signal and the B signal) from the light receiving element having the B filter and the R filter by the first column direction charge transfer devices 16a to 16d. R signal) is supplied to the second columnar charge transfer device 1
7a to 17d. Here, G
The signal charges of the signal, R signal and B signal are read out in the same direction for each color, and have the same structure for each color. Therefore, the characteristics of each color signal are uniform over the entire imaging area.

【0017】図3(A)に、図2の本発明の実施例によ
るカラーフィルタの配置構成を示し、図3(B)に図5
の従来の技術の固体撮像装置のカラーフィルタの配置構
成を示す。両者を比較して説明する。太線で囲まれた領
域が1つの撮像サンプリング単位で、Whは行方向配列
ピッチであり、Wvは列方向配列ピッチを示す。信号処
理上は両ピッチWh,Wvは互いに等しくすることが好
ましい。
FIG. 3A shows the arrangement of the color filters according to the embodiment of the present invention shown in FIG. 2, and FIG.
1 shows the arrangement of color filters in a conventional solid-state imaging device. A description will be given by comparing the two. An area surrounded by a bold line is one imaging sampling unit, Wh is a row-direction arrangement pitch, and Wv is a column-direction arrangement pitch. In terms of signal processing, it is preferable that both pitches Wh and Wv be equal to each other.

【0018】一般に、画像の解像度を決定する輝度信号
はG信号を主とし、R信号とB信号を従としてそれらを
加重加算して生成される。本発明の実施例では、図3
(A)で明らかなように、正方格子(Wh=Wv)をな
すサンプリング領域(Wh×Wv)のすべてにおいて必
ずG信号が配置され、GとRあるいはGとBとが交互に
対を成している。さらに、正方格子には、列方向に2画
素が配置される。従って、撮像サンプリング単位の数と
同数の解像度を得ることが容易にできる。
In general, a luminance signal that determines the resolution of an image is generated by weighting and adding a G signal as a main component and an R signal and a B signal as subordinates. In the embodiment of the present invention, FIG.
As apparent from (A), the G signal is always arranged in all the sampling areas (Wh × Wv) forming the square lattice (Wh = Wv), and G and R or G and B alternately form a pair. ing. Further, two pixels are arranged on the square lattice in the column direction. Therefore, it is easy to obtain the same number of resolutions as the number of imaging sampling units.

【0019】一方、図3(B)で示す従来の技術におい
ては、G領域の数はサンプリング単位数の半分しかな
く、従って解像度も本願実施例に比べ半分となる。図3
(B)の従来技術の構成では信号の補間処理等で見かけ
上の解像度を高めることはできるが、本発明のような本
質的な解像度の改善とはならない。
On the other hand, in the prior art shown in FIG. 3B, the number of G areas is only half of the number of sampling units, and therefore the resolution is half that of the embodiment of the present invention. FIG.
In the configuration of the prior art (B), the apparent resolution can be increased by signal interpolation processing or the like, but this does not substantially improve the resolution as in the present invention.

【0020】本発明の実施例では、一つの正方形サンプ
リング単位を構成する受光素子間においては、列方向電
荷転送装置との相対的位置のズレによる特性の変動が起
こりうる。しかし、図3(A)に示す如く、一方がかな
らずGで他方がRまたはBで互いに異なるカラーフィル
タ配列である場合、この変動は問題にならない。何故な
ら、撮像装置から出力された後、両者は各々分離して増
幅等の信号処理が行われるので、この信号処理工程で容
易に変動の補正を行うことが出来るためである。
In the embodiment of the present invention, the characteristics may be varied between the light receiving elements constituting one square sampling unit due to a shift in the relative position with respect to the column direction charge transfer device. However, as shown in FIG. 3 (A), if one of the color filter arrays is different from G and the other is R or B, this variation is not a problem. This is because, after being output from the imaging device, the signals are separated and subjected to signal processing such as amplification, so that the fluctuation can be easily corrected in this signal processing step.

【0021】図4に本発明の固体撮像装置の別の実施例
の部分拡大平面図を示す。図4において、41a〜41
dは第1の受光素子行、42a〜42dは第2行の受光
素子行、43a〜43dは第3行の受光素子行、44a
〜44dは第4行の受光素子行、そして45a〜45d
は第5行の受光素子行である。さらに、受光素子列の左
側に第1の列方向電荷転送装置46a、46b,46c
及び46dが配列し、同右側に列方向電荷転送装置47
a、47b,47c及び47dが配列する。
FIG. 4 is a partially enlarged plan view of another embodiment of the solid-state imaging device according to the present invention. In FIG. 4, 41a to 41a
d is the first light receiving element row, 42a to 42d are second light receiving element rows, 43a to 43d are third light receiving element rows, 44a
44d are the fourth light receiving element rows, and 45a to 45d
Is the fifth light receiving element row. Further, first column direction charge transfer devices 46a, 46b, 46c are provided on the left side of the light receiving element row.
And 46d are arranged, and the column-direction charge transfer device 47 is
a, 47b, 47c and 47d are arranged.

【0022】図4から明らかなように、列方向電荷転送
装置46a、47b,46c及び47dは図の下方に信
号電荷を転送し、列方向電荷転送装置47a、46b,
47c及び46dは逆に図の上方に信号電荷を転送す
る。下方に転送された信号電荷は下方のチャネル位置変
換部48a〜48dを介して下方の行方向電荷転送装置
50に転送され、上方に転送された信号電荷は上方のチ
ャネル位置変換部49a〜49dを介して上方の行方向
電荷転送装置51に転送される。しかる後、下方の出力
回路52と上方の出力回路53とから信号を上下に分け
て出力する。
As is apparent from FIG. 4, the column-direction charge transfer devices 46a, 47b, 46c, and 47d transfer signal charges at the bottom of the figure, and the column-direction charge transfer devices 47a, 46b,
Conversely, 47c and 46d transfer signal charges upward in the figure. The signal charges transferred downward are transferred to the lower row direction charge transfer device 50 via the lower channel position converters 48a to 48d, and the signal charges transferred upward are transferred to the upper channel position converters 49a to 49d. Is transferred to the upper row-direction charge transfer device 51 via the upper electrode. Thereafter, the signal is divided into upper and lower signals from the lower output circuit 52 and the upper output circuit 53 and output.

【0023】この実施例では、各行方向電荷転送装置が
転送を受け持つ信号数が半減して、行方向電荷転送装置
の転送段数を半分にできる。転送段数が半分になること
により、その集積度が半分に緩和できるだけでなく、電
荷転送回数も半分になり、1回の転送毎に生じる転送損
失の累計を大幅に改善することができる。なお、本実施
例では素子分離層19を挟んで隣接する列方向電荷転送
装置を1組として上方向あるいは下方向への転送を担わ
せしめている。この理由は、隣接列方向電荷転送装置の
転送電極を分離層19をまたいで一体に形成することが
加工技術上容易で、構造的にも複雑さを伴わないことに
ある。
In this embodiment, the number of signals to be transferred by each row-direction charge transfer device is halved, and the number of transfer stages of the row-direction charge transfer device can be halved. By reducing the number of transfer stages to half, not only the integration degree can be reduced to half, but also the number of times of charge transfer can be reduced to half, and the cumulative transfer loss generated for each transfer can be greatly improved. In the present embodiment, the column-direction charge transfer devices adjacent to each other with the element isolation layer 19 interposed therebetween are set as one set to perform the transfer in the upward or downward direction. The reason is that it is easy in terms of processing technology to integrally form the transfer electrodes of the adjacent column-direction charge transfer devices across the separation layer 19, and the structure is not complicated.

【0024】以上では、本発明の実施例に関し、全受光
素子の信号を同時に読み出す、所謂全画素同時読み出し
型の固体撮像装置の場合を例に説明した。しかし、本発
明の適用範囲は、これに限定されるものではない。本発
明は、たとえばNTSC方式に準じたインターレース型
固体撮像装置として利用することもできる。その場合に
は、信号電荷が存在しない列方向電荷転送装置あるいは
転送段が必然的に生じる。この部分には光漏洩によるス
ミアや熱的に発生する暗電流等の雑音信号だけが存在す
る。これらを信号電荷と共に読み出し、信号出力からこ
の雑音信号を引き去ることで、雑音あるいは偽信号を大
幅に減少した出力を得ることができる。
In the above, the embodiment of the present invention has been described by taking as an example the case of a so-called all-pixel simultaneous readout type solid-state imaging device in which signals of all light receiving elements are simultaneously read. However, the scope of the present invention is not limited to this. The present invention can be used, for example, as an interlaced solid-state imaging device conforming to the NTSC system. In such a case, a column-direction charge transfer device or transfer stage in which no signal charge exists necessarily occurs. In this portion, only noise signals such as smear due to light leakage and thermally generated dark current are present. By reading these together with the signal charges and subtracting the noise signal from the signal output, it is possible to obtain an output with greatly reduced noise or spurious signals.

【0025】以上実施例に沿って本発明を説明したが、
本発明はこれらに制限されるものではない。例えば、種
々の変更、改良、組み合わせ等が可能なことは当業者に
は自明であろう。
The present invention has been described in connection with the preferred embodiments.
The present invention is not limited to these. For example, it will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

【0026】[0026]

【発明の効果】従来の2層重ね合わせ電極製造技術を使
用し、特別な動作無効領域を形成することなく、全画素
同時読み出し固体撮像装置を実現でき、1受光素子行に
わたり均一な素子特性を得ることができる。さらに、受
光素子間に形成される2個の列方向電荷転送装置がもた
らすサンプリング正方格子の構造により、受光素子の配
列ピッチを拡大することなく解像度を向上することがで
きる。
According to the present invention, a solid-state imaging device capable of simultaneously reading out all pixels can be realized without forming a special operation invalid area by using the conventional two-layer superposed electrode manufacturing technology, and uniform element characteristics can be obtained over one light receiving element row. Obtainable. Further, the sampling square lattice structure provided by the two column-direction charge transfer devices formed between the light receiving elements can improve the resolution without increasing the arrangement pitch of the light receiving elements.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の固体撮像装置の一実施例の部分拡大平
面図である。
FIG. 1 is a partially enlarged plan view of an embodiment of a solid-state imaging device according to the present invention.

【図2】図1の固体撮像素子の上にカラーフィルタを形
成した配置図である。
FIG. 2 is a layout view in which a color filter is formed on the solid-state imaging device of FIG. 1;

【図3】本発明の実施例のカラーフィルタ配置と従来の
実施例のカラーフィルタ配置とを比較するための図であ
る。
FIG. 3 is a diagram for comparing a color filter arrangement according to an embodiment of the present invention with a color filter arrangement according to a conventional embodiment.

【図4】本発明の固体撮像装置の別の実施例の部分拡大
平面図である。
FIG. 4 is a partially enlarged plan view of another embodiment of the solid-state imaging device of the present invention.

【図5】従来の技術による固体撮像装置の部分拡大平面
図である。
FIG. 5 is a partially enlarged plan view of a conventional solid-state imaging device.

【符号の説明】[Explanation of symbols]

11a〜11d、12a〜12d、13a〜13d、1
4a〜14d、15a〜15d・・・・・受光素子行 16a、16b、16c、16d、17a、17b,1
7c、17d・・・・・・・・列方向電荷転送装置 18・・・・・・チャネル位置変換部 19・・・・・・素子分離層 20・・・・・・行方向電荷転送装置 21・・・・・・出力回路
11a to 11d, 12a to 12d, 13a to 13d, 1
4a to 14d, 15a to 15d ... light receiving element rows 16a, 16b, 16c, 16d, 17a, 17b, 1
7c, 17d ······························································································································· 21 ..... Output circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 益金 和行 宮城県黒川郡大和町松坂平1丁目6番地 富士フイルムマイクロデバイス株式会社内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Kazuyuki Masuki 1-6-6 Matsuzakadaira, Yamato-cho, Kurokawa-gun, Miyagi Prefecture Inside Fujifilm Micro Device Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板と、 該半導体基板上に行方向と列方向とに互いに所定の配列
間隔で形成された複数の光電変換素子と、 列方向に沿って配置されている前記光電変換素子の各列
の両側に配置され、該光電変換素子から出力される信号
電荷を転送する第1と第2の列方向電荷転送装置と、 信号電荷を行方向に転送する行方向電荷転送装置と、 前記第1と第2の列方向電荷転送装置からの信号電荷を
前記行方向電荷転送装置に転送し、前記行方向電荷転送
装置上での電荷位置が全ての前記列方向電荷転送装置に
対して等間隔に並ぶように行方向位置を調整するチャネ
ル位置変換部と、 前記行方向電荷転送装置からの信号電荷を電圧信号とし
て出力する出力回路とを有し、 各一つの光電変換素子に対して前記第1、第2の列方向
電荷転送装置の一方の一つの転送段が対応して設けら
れ、該一つの転送段が該一つの光電変換素子から信号電
荷を読み出し、前記光電変換素子の同一行において該光
電変換素子から該信号電荷を読み出す方向が同一である
ことを特徴とする固体撮像装置。
A semiconductor substrate; a plurality of photoelectric conversion elements formed on the semiconductor substrate at predetermined intervals in a row direction and a column direction; and the photoelectric conversion elements arranged along a column direction. A first and a second column-direction charge transfer device arranged on both sides of each column for transferring signal charges output from the photoelectric conversion element; a row-direction charge transfer device for transferring signal charges in the row direction; Transferring signal charges from the first and second column-direction charge transfer devices to the row-direction charge transfer device, wherein the charge position on the row-direction charge transfer device is relative to all of the column-direction charge transfer devices; A channel position conversion unit that adjusts the row direction position so as to be arranged at equal intervals, and an output circuit that outputs a signal charge from the row direction charge transfer device as a voltage signal, and for each one photoelectric conversion element The first and second column-direction charge transfer One transfer stage of the device is provided correspondingly, the one transfer stage reads out signal charges from the one photoelectric conversion element, and reads out the signal charges from the photoelectric conversion element in the same row of the photoelectric conversion elements. A solid-state imaging device wherein reading directions are the same.
【請求項2】 列方向に互いに隣接する二つの光電変換
素子からなる組を1単位とし、該1単位の光電変換素子
が行方向と列方向とに複数単位配列され、各単位の行方
向の配列間隔と列方向の配列間隔が実質的に等しいこと
を特徴とする請求項1記載の固体撮像装置。
2. A set of two photoelectric conversion elements adjacent to each other in a column direction is defined as one unit, and a plurality of the one unit of photoelectric conversion elements are arranged in a row direction and a column direction. 2. The solid-state imaging device according to claim 1, wherein the arrangement interval is substantially equal to the arrangement interval in the column direction.
【請求項3】 前記1単位を構成する二つの光電変換素
子の内、一方の上に緑色フィルタが形成され、他方の上
に緑色以外のフィルタが形成されたことを特徴とする請
求項2に記載の固体撮像装置。
3. The device according to claim 2, wherein a green filter is formed on one of the two photoelectric conversion elements constituting one unit, and a non-green filter is formed on the other. The solid-state imaging device according to claim 1.
【請求項4】 一列の光電変換素子列の両側の前記第1
と第2の列方向電荷転送装置の信号電荷の転送方向が互
いに逆方向であることを特徴とする請求項1から3のい
ずれかに記載の固体撮像装置。
4. The first photoelectric conversion device according to claim 1, wherein the first photoelectric conversion element arrays are arranged on both sides of a single photoelectric conversion element array.
4. The solid-state imaging device according to claim 1, wherein a signal charge transfer direction of the second column direction charge transfer device is opposite to a signal charge transfer direction of the second column direction charge transfer device.
【請求項5】 一列の光電変換素子列の両側の前記第1
と第2の列方向電荷転送装置の信号電荷の転送方向が互
いに同じ方向であることを特徴とする請求項1〜3のい
ずれかに記載の固体撮像装置。
5. The first photoelectric conversion element array according to claim 1, wherein the first photoelectric conversion element rows are arranged on both sides of one photoelectric conversion element row.
The solid-state imaging device according to any one of claims 1 to 3, wherein a signal charge transfer direction of the second column direction charge transfer device is the same as a signal charge transfer direction of the second column direction charge transfer device.
JP28885796A 1996-10-30 1996-10-30 Solid-state imaging device Expired - Fee Related JP3704406B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP28885796A JP3704406B2 (en) 1996-10-30 1996-10-30 Solid-state imaging device
US08/960,058 US6690421B1 (en) 1996-10-30 1997-10-29 Structure of solid state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28885796A JP3704406B2 (en) 1996-10-30 1996-10-30 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH10136392A true JPH10136392A (en) 1998-05-22
JP3704406B2 JP3704406B2 (en) 2005-10-12

Family

ID=17735656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28885796A Expired - Fee Related JP3704406B2 (en) 1996-10-30 1996-10-30 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP3704406B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1091411A2 (en) * 1999-10-07 2001-04-11 Fuji Photo Film Co., Ltd. A solid-state image pickup device
US6670595B1 (en) * 1999-08-02 2003-12-30 Olympus Optical Co., Ltd. Photosensor and photosensor system
JP2004228157A (en) * 2003-01-20 2004-08-12 Sony Corp Solid-state imaging device
JP2010010724A (en) * 2009-10-14 2010-01-14 Sony Corp Solid-state imaging device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6670595B1 (en) * 1999-08-02 2003-12-30 Olympus Optical Co., Ltd. Photosensor and photosensor system
EP1091411A2 (en) * 1999-10-07 2001-04-11 Fuji Photo Film Co., Ltd. A solid-state image pickup device
EP1091411A3 (en) * 1999-10-07 2004-01-28 Fuji Photo Film Co., Ltd. A solid-state image pickup device
JP2004228157A (en) * 2003-01-20 2004-08-12 Sony Corp Solid-state imaging device
JP2010010724A (en) * 2009-10-14 2010-01-14 Sony Corp Solid-state imaging device

Also Published As

Publication number Publication date
JP3704406B2 (en) 2005-10-12

Similar Documents

Publication Publication Date Title
JP3830590B2 (en) Solid-state imaging device
US8836834B2 (en) Arangement of circuits in pixels, each circuit shared by a plurality of pixels, in image sensing appratus
US7440019B2 (en) Solid-state image pick-up device
JP4881987B2 (en) Solid-state imaging device and imaging device
US9131178B2 (en) Solid-state imaging apparatus for selectively outputting signals from pixels therein
US6784928B1 (en) Solid state image pickup device and signal reading method thereof
US6885399B1 (en) Solid state imaging device configured to add separated signal charges
US6690421B1 (en) Structure of solid state image pickup device
JPH11205532A (en) Solid-state image pickup device
US6822682B1 (en) Solid state image pickup device and its read method
JP4183635B2 (en) Solid-state imaging device
JP3704406B2 (en) Solid-state imaging device
JPH10136264A (en) Solid-state image pickup device
KR20050068830A (en) Solid state image sensing device providing sub-sampling mode improving dynamic range and driving method thereof
JPH07235655A (en) Solid state image sensor
JP4148606B2 (en) Solid-state imaging device and reading method thereof
JP4146687B2 (en) CCD type solid-state imaging device and camera system using the same
WO2011007562A1 (en) Image reader
JP4098444B2 (en) Control method of solid-state image sensor
JP2003060185A (en) Solid-state image pickup device and control method therefor
JP2005286933A (en) Solid state imaging device
JP2004032675A (en) Solid-state imaging device
JPH0515309B2 (en)
JPH10214957A (en) Solid-state image pickup device
JP2002247452A (en) Solid-state imaging device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080729

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080729

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees