JPH10125885A - Semiconductor energy detector - Google Patents

Semiconductor energy detector

Info

Publication number
JPH10125885A
JPH10125885A JP8276261A JP27626196A JPH10125885A JP H10125885 A JPH10125885 A JP H10125885A JP 8276261 A JP8276261 A JP 8276261A JP 27626196 A JP27626196 A JP 27626196A JP H10125885 A JPH10125885 A JP H10125885A
Authority
JP
Japan
Prior art keywords
light
wavelength
semiconductor
detector
energy detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8276261A
Other languages
Japanese (ja)
Other versions
JP3588204B2 (en
Inventor
Hiroshi Akahori
寛 赤堀
Masaharu Muramatsu
雅治 村松
Akinaga Yamamoto
晃永 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP27626196A priority Critical patent/JP3588204B2/en
Publication of JPH10125885A publication Critical patent/JPH10125885A/en
Application granted granted Critical
Publication of JP3588204B2 publication Critical patent/JP3588204B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor energy detector which corrects wavelength-dependent output characteristics by a simple forming method of high yield, and has a high sensitivity is over the whole wavelength region. SOLUTION: In a rear incidence type CCD, a full frame transfer type CCD 5 is formed on one surface of a P-type silicon substrate 1, and the other surface is made a light receiving surface. A reinforcing plate 22 in which an incidence window 21 for transmitting a light is formed is fixed to the front of the light receiving surface. The aperture part of the incidence window 21 has an almost trapezoidal form wherein the side for detecting a light in the ultraviolet region is wide, and the side for detecting a light in the near infra-red region is narrow. Thereby the amount of light reaching the light receiving part is adjusted, and spectral sensitivity characteristics of a detector are corrected. The reinforcing plate 22 has the effect for reinforcing the substrate 1, and unified in a body with the detector so that position adjustment of the incidence window 21 is unnecessary and handling is facilitated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、1次元方向に波長
分布のある光の波長による強度分布を測定する半導体エ
ネルギー検出器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor energy detector for measuring an intensity distribution according to a wavelength of light having a wavelength distribution in a one-dimensional direction.

【0002】[0002]

【従来の技術】1次元方向に波長分布のある光の波長に
よる強度分布を測定する検出器として、半導体エネルギ
ー検出器が知られている。
2. Description of the Related Art A semiconductor energy detector is known as a detector for measuring an intensity distribution according to a wavelength of light having a wavelength distribution in a one-dimensional direction.

【0003】特に、複数の光電変換素子を波長の分解方
向に沿って並べることで、波長走査のための機構を必要
とせず、紫外域から近赤外域までの測定目的波長域の光
を同時に取り込むことが可能となる。
In particular, by arranging a plurality of photoelectric conversion elements along the direction of wavelength resolution, a mechanism for scanning the wavelength is not required, and light in the target wavelength range from the ultraviolet range to the near infrared range is simultaneously captured. It becomes possible.

【0004】しかしながら、分光分析等で用いられる光
源は、紫外域より近赤外域の光の出力が強い傾向があ
る。さらに、入射エネルギーが全て電荷に変換され、出
力される理想的な場合でも、画素の出力は入射光の波長
に比例するため、同じ入射エネルギーでも波長の短い紫
外域のほうが波長の長い近赤外域より出力は小さくなる
特徴がある。また、基板表面での反射や基板内での吸収
も紫外域の光のほうが近赤外域の光より多い。したがっ
て、紫外域の光に対する画素出力は、近赤外域の光に対
する画素出力より小さくなる傾向がある。
However, light sources used in spectroscopic analysis and the like tend to output light in the near infrared region more strongly than in the ultraviolet region. Furthermore, even in the ideal case where all incident energy is converted to electric charge and output, the output of the pixel is proportional to the wavelength of the incident light. There is a feature that the output becomes smaller. Further, the light in the ultraviolet region has more reflection on the substrate surface and absorption in the substrate than light in the near-infrared region. Therefore, the pixel output for light in the ultraviolet region tends to be smaller than the pixel output for light in the near-infrared region.

【0005】出力の小さい紫外域の光を高S/N比で検
出するには、光量を増やしたり、照射時間を長くするこ
とが考えられる。しかし、光量を増やしすぎたり、照射
時間を長くしすぎると、近赤外域の画素出力が飽和して
しまうため、光量の増大や照射時間の延長には限界があ
る。したがって、従来、紫外域の光を高S/N比で検出
することは難しかった。
In order to detect light in the ultraviolet region with a small output at a high S / N ratio, it is conceivable to increase the amount of light or lengthen the irradiation time. However, if the light amount is increased too much or the irradiation time is set too long, the pixel output in the near-infrared region is saturated, and there is a limit to the increase in the light amount and the extension of the irradiation time. Therefore, conventionally, it has been difficult to detect ultraviolet light at a high S / N ratio.

【0006】半導体エネルギー検出器におけるこのよう
な出力の波長依存性を補正するため、表面入射型の半導
体エネルギー検出器では、特開昭57−103020号
や特開昭61−88114号の発明が知られていた。前
者は、検出器の直前に検出器の分光感度特性線図と略相
似形に形成した光量調整用遮蔽体を設置し、近赤外域の
波長の光が入射する画素への入射光量を相対的に減少さ
せ、各画素の出力を同じレベルにそろえていた。また、
後者は、検出器の受光面上に直接遮光膜を蒸着すること
により、同様の効果を得ていた。
In order to correct such wavelength dependence of output in a semiconductor energy detector, the inventions of Japanese Patent Application Laid-Open Nos. 57-103020 and 61-88114 are known as surface-incident type semiconductor energy detectors. Had been. In the former, a light amount adjusting shield formed in a shape substantially similar to the spectral sensitivity characteristic diagram of the detector is installed immediately before the detector, and the amount of light incident on pixels to which light having a wavelength in the near infrared region is incident is relatively measured. To make the output of each pixel the same level. Also,
In the latter, the same effect was obtained by depositing a light-shielding film directly on the light-receiving surface of the detector.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記の
光量調整用遮蔽体は、遮蔽体の位置合わせが困難である
という問題があった。また、上記の遮光膜は、表面入射
型の半導体エネルギー検出器の作成では通常用いられな
いエッチング・プロセスを作成工程に追加する必要があ
るため、導入が困難であるという問題があった。
However, the above-mentioned light quantity adjusting shield has a problem that it is difficult to position the shield. In addition, the above-mentioned light-shielding film has a problem that it is difficult to introduce the light-shielding film because it is necessary to add an etching process which is not usually used in the production of a front-illuminated type semiconductor energy detector to the production process.

【0008】ところで、特開平6−29506号に示さ
れるような裏面入射型の半導体エネルギー検出器は、表
面入射型の半導体エネルギー検出器に比べて、特に紫外
域の光に対して高い感度を有する特徴がある。しかし、
この裏面入射型の半導体エネルギー検出器については、
表面入射型半導体エネルギー検出器にみられるような波
長依存の出力特性を補正する対策は採られていなかっ
た。
Incidentally, a back-illuminated type semiconductor energy detector as disclosed in Japanese Patent Application Laid-Open No. 6-29506 has a higher sensitivity to ultraviolet light in particular than a front-illuminated type semiconductor energy detector. There are features. But,
For this back-illuminated semiconductor energy detector,
No measures have been taken to correct the wavelength-dependent output characteristics found in front-illuminated semiconductor energy detectors.

【0009】そこで、本発明は、構成が簡単で歩留まり
良く製作することが可能であり、波長依存の出力特性が
補正されて、全波長域において高感度の検出が可能な半
導体エネルギー検出器を提供することを目的とする。
Accordingly, the present invention provides a semiconductor energy detector which has a simple configuration, can be manufactured with a high yield, has a wavelength-dependent output characteristic corrected, and can perform highly sensitive detection in all wavelength ranges. The purpose is to do.

【0010】[0010]

【課題を解決するための手段】本発明は、半導体薄板の
一方の面に光電変換部とこの電荷を読み出す電荷読み出
し部が形成され、この半導体薄板の他方の面からエネル
ギー線が入射する半導体エネルギー検出器において、半
導体薄板のエネルギー線が入射する面に半導体の一部を
除去した凹部が形成されており、その前面に、エネルギ
ー線を透過する窓を有する補強板が設けられており、こ
の窓の形状は電荷読み出し部の配列方向と直交方向の幅
が、電荷読み出し部の配列方向に沿って異なることを特
徴とする。
According to the present invention, there is provided a semiconductor thin plate having a photoelectric conversion portion and a charge reading portion for reading out the electric charges formed on one surface of the semiconductor thin plate, and a semiconductor energy having an energy ray incident from the other surface of the semiconductor thin plate. In the detector, a concave portion in which a part of the semiconductor is removed is formed on the surface of the semiconductor thin plate where the energy ray is incident, and a reinforcing plate having a window through which the energy ray is transmitted is provided on the front surface thereof. Is characterized in that the width in the direction orthogonal to the arrangement direction of the charge readout portions differs along the arrangement direction of the charge readout portions.

【0011】本発明によれば、入射窓の形状を変えるこ
とで、半導体エネルギー検出器の有効な受光面面積が調
整され、画素出力の分布特性が最適化される。また、補
強板により、薄い半導体エネルギー検出器が補強され
る。さらに、入射窓を有する補強板と検出器が一体化し
ているため、入射窓の位置調整が不要である。
According to the present invention, by changing the shape of the entrance window, the effective light receiving surface area of the semiconductor energy detector is adjusted, and the distribution characteristic of the pixel output is optimized. The reinforcing plate also reinforces the thin semiconductor energy detector. Further, since the reinforcing plate having the entrance window and the detector are integrated, there is no need to adjust the position of the entrance window.

【0012】電荷読み出し部は複数の電荷結合素子(C
CD)により構成されていてもよい。これにより、雑音
が少ない高S/N比での測定が可能となる。
The charge reading section includes a plurality of charge coupled devices (C
CD). This enables measurement at a high S / N ratio with little noise.

【0013】上記のエネルギー線は、1次元方向で一方
から他方に向かって波長が長くなる波長分布を持つエネ
ルギー線であり、エネルギー線の波長の短い側に入射窓
の幅の大きい側を対応させるのが好ましい。
The above-mentioned energy ray is an energy ray having a wavelength distribution in which the wavelength becomes longer from one side to the other side in a one-dimensional direction, and the shorter side of the energy ray corresponds to the side having a larger width of the incident window. Is preferred.

【0014】これにより、検出器の感度が低い短波長領
域である紫外域の光を測定する画素の有効受光面積が大
きくなり、感度の高い長波長領域である近赤外域の光を
測定する画素の有効受光面積が小さくなる。この結果、
半導体エネルギー検出器の画素出力の分光感度特性が平
坦化する。
This increases the effective light receiving area of the pixel for measuring light in the ultraviolet region, which is a short wavelength region where the sensitivity of the detector is low, and increases the pixel for measuring light in the near infrared region which is a long wavelength region with high sensitivity. Has a smaller effective light receiving area. As a result,
The spectral sensitivity characteristic of the pixel output of the semiconductor energy detector is flattened.

【0015】[0015]

【発明の実施の形態】以下、この発明の実施形態を図面
に基づいて説明する。図1、2は本発明の一実施形態を
示した図である。図1(a)が受光面側から見た正面図、
図1(b)はそのA−A線断面図、図2は電荷読み出し部
であるフルフレーム転送方式のCCDの構成図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 are diagrams showing an embodiment of the present invention. FIG. 1A is a front view seen from the light receiving surface side,
FIG. 1B is a cross-sectional view taken along the line AA, and FIG. 2 is a configuration diagram of a full frame transfer type CCD which is a charge reading unit.

【0016】図示の通り、厚さ約270〜290μmで
矩形のP型シリコン基板1の一方の面上に、厚さ約10
〜30μmのシリコンエピタキシャル層(以下エピ層と
いう)1Aが形成されている。シリコン基板1及びエピ
層1Aの抵抗率は10〜100Ω・cmで面方位は(1
00)である。エピ層1Aのシリコン基板1と反対の面
の中央には、埋め込みチャネル5Aが設けられている。
エピ層1A上には、ゲート酸化膜1Bが形成されてお
り、埋め込みチャネル5Aと対応する位置に、垂直転送
電極群7と水平転送電極群9とが形成され、いわゆるフ
ルフレーム転送型のCCD5を構成している。
As shown in the figure, on one surface of a rectangular P-type silicon substrate 1 having a thickness of about 270 to 290 μm,
A silicon epitaxial layer (hereinafter referred to as an epi layer) 1A having a thickness of 〜30 μm is formed. The resistivity of the silicon substrate 1 and the epilayer 1A is 10 to 100 Ω · cm, and the plane orientation is (1
00). A buried channel 5A is provided in the center of the surface of the epi layer 1A opposite to the silicon substrate 1.
A gate oxide film 1B is formed on the epi layer 1A, and a vertical transfer electrode group 7 and a horizontal transfer electrode group 9 are formed at positions corresponding to the buried channel 5A. Make up.

【0017】次に、CCD5の回路構成を説明する。Next, the circuit configuration of the CCD 5 will be described.

【0018】エピ層1A上の埋め込みチャネル5Aに
は、垂直転送チャネル6が512ないし1024列配置
されており、これは約25μm×25μmの画素が12
8個ないし256個配列されて構成されている。これに
直交して垂直転送電極群7が配置されて、垂直シフトレ
ジスタを構成している。垂直転送チャネル6は埋め込み
チャネル5A内にある幅25〜100μmの水平転送チ
ャネル8に接続され、これに直交して水平転送電極群9
が配置され、水平シフトレジスタを構成している。
In the buried channel 5A on the epi layer 1A, 512 to 1024 columns of vertical transfer channels 6 are arranged, each having about 25 μm × 25 μm pixels.
Eight to 256 elements are arranged. The vertical transfer electrode group 7 is arranged orthogonally to this to constitute a vertical shift register. The vertical transfer channel 6 is connected to a horizontal transfer channel 8 having a width of 25 to 100 μm in the buried channel 5A.
Are arranged to form a horizontal shift register.

【0019】水平シフトレジスタには、アウトプットゲ
ート(OG)10が接続されており、OG10には、リ
セットゲート(RG)11が、フローティングダイオー
ド12を介して接続されている。また、フローティング
ダイオード12には、チップ上にある電界効果トランジ
スタ(FET)13が接続されている。FET13に
は、出力端子15とFETドレイン17が接続され、出
力端子15はチップ外の負荷抵抗14を介して接地され
て、ソースホロア回路を構成している。また、RG11
はリセットドレイン16に接続されている。
An output gate (OG) 10 is connected to the horizontal shift register, and a reset gate (RG) 11 is connected to the OG 10 via a floating diode 12. The floating diode 12 is connected to a field effect transistor (FET) 13 on a chip. An output terminal 15 and an FET drain 17 are connected to the FET 13, and the output terminal 15 is grounded via a load resistor 14 outside the chip to form a source follower circuit. Also, RG11
Are connected to the reset drain 16.

【0020】次に、CCD5が形成されている面と反対
の面である受光面側の構造について説明する。
Next, the structure on the light receiving surface side opposite to the surface on which the CCD 5 is formed will be described.

【0021】シリコン基板1を矩形の凹部2が貫通し、
その開口面積は受光面側からエピ層1A側に向かって次
第に小さくなっている。図1(a)の点線は、この凹部
2の斜面2Aを示している。受光面前面にあるシリコン
基板1を排除して、受光部を薄型にすることで、シリコ
ン基板1による光の吸収を抑え、高感度の測定を実現し
ている。凹部2の開口部に対応するエピ層の受光面側表
面には、厚さ約0.2μmのP+高濃度層4(濃度約5
×1018/cm3)が形成されている。この高濃度層に
より、感度が高く、安定した測定をすることが可能とな
る。シリコン基板1とP+高濃度層4の受光面側表面に
は、受光面を保護する厚さ約0.1μmのシリコン酸化
膜3が蒸着若しくは成長されている。
A rectangular recess 2 penetrates the silicon substrate 1,
The opening area gradually decreases from the light receiving surface side toward the epi layer 1A side. The dotted line in FIG. 1A indicates the slope 2 </ b> A of the recess 2. By eliminating the silicon substrate 1 on the front surface of the light receiving surface and reducing the thickness of the light receiving unit, light absorption by the silicon substrate 1 is suppressed, and high-sensitivity measurement is realized. On the light-receiving surface side surface of the epi layer corresponding to the opening of the concave portion 2, a P + high concentration layer 4 (with a concentration of about 5 μm) having a thickness of about 0.2 μm is formed.
× 10 18 / cm 3 ). This high-concentration layer enables high sensitivity and stable measurement. On the light receiving surface side surface of the silicon substrate 1 and the P + high concentration layer 4, a silicon oxide film 3 having a thickness of about 0.1 μm for protecting the light receiving surface is deposited or grown.

【0022】上記の凹部2は、CCDのウェファプロセ
ス工程中において、シリコン基板1にシリコン窒化膜を
堆積し、ホトリソグラフィー工程により矩形形状にパタ
ーニングして、そのパターンをマスクとしてKOHから
なるエッチング液で、シリコン基板1をエッチングする
ことによって形成される。本実施形態のような裏面入射
型CCDでは、受光部の前面にあるシリコン基板1を排
除して、受光部を薄くすることで、基板による光の吸収
を抑え、高感度としている。
The concave portion 2 is formed by depositing a silicon nitride film on the silicon substrate 1 during a wafer process step of a CCD, patterning the silicon nitride film into a rectangular shape by a photolithography step, and using an etching solution made of KOH using the pattern as a mask. Is formed by etching the silicon substrate 1. In the back-illuminated CCD as in the present embodiment, the silicon substrate 1 in front of the light-receiving unit is eliminated and the light-receiving unit is made thinner to suppress light absorption by the substrate and achieve high sensitivity.

【0023】シリコン基板1の受光面側には、光を透過
する入射窓21を有する厚さ約200〜300μmの矩
形の補強板22がエポキシ製の樹脂を用いて接着されて
いる。補強板22の材質は、シリコン基板1と熱膨張係
数が等しいシリコンが好ましい。入射窓21の形状は、
電荷読み出し部である垂直転送チャネル6の配列方向に
直交する方向の開口幅が、この配列方向に沿って一方か
ら他方に向かって線形的に縮小する台形になっている。
また、検出器に入射する光は1次元方向に波長分布を持
ち、その分布方向と上記の配列方向は一致し、入射窓2
1の開口幅の大きい側が入射光の波長の短い側に対応し
ている。この開口形状を調整することにより、検出器の
分光感度特性を調整することができる。
On the light-receiving surface side of the silicon substrate 1, a rectangular reinforcing plate 22 having a thickness of about 200 to 300 μm and having an incident window 21 for transmitting light is adhered using an epoxy resin. The material of the reinforcing plate 22 is preferably silicon having the same thermal expansion coefficient as that of the silicon substrate 1. The shape of the entrance window 21 is
The opening width in the direction perpendicular to the arrangement direction of the vertical transfer channels 6 serving as the charge readout portions has a trapezoidal shape that decreases linearly from one side to the other along this arrangement direction.
The light incident on the detector has a wavelength distribution in a one-dimensional direction, and the distribution direction coincides with the above arrangement direction.
The side with the larger aperture width of 1 corresponds to the shorter side of the wavelength of the incident light. By adjusting this opening shape, the spectral sensitivity characteristics of the detector can be adjusted.

【0024】次に、本実施形態の動作を説明する。Next, the operation of this embodiment will be described.

【0025】受光面から光が入射すると、入射窓21の
外側の領域では、光の大部分は導電性板22で反射又
は、吸収され、その奥にあるP+高濃度層4から埋め込
みチャネル5Aまでの領域からなる光電変換部まで到達
できない。入射窓21の内側の領域では、受光面と光電
変換部の間には、障害物は薄いシリコン酸化膜3しか存
在しないため、入射した光はほとんど吸収されることな
く、その大部分が光電変換部まで到達する。したがっ
て、シリコン等に吸収されやすい紫外域の光についても
高感度で測定することが可能である。
When light is incident from the light receiving surface, most of the light is reflected or absorbed by the conductive plate 22 in the region outside the entrance window 21, and from the P + high concentration layer 4 at the back to the buried channel 5 A. Cannot reach the photoelectric conversion section consisting of the region of. In the region inside the entrance window 21, there is only an obstacle between the light receiving surface and the photoelectric conversion portion, the thin silicon oxide film 3, so that the incident light is hardly absorbed and most of the incident light is photoelectrically converted. Reach the department. Therefore, it is possible to measure with high sensitivity even ultraviolet light that is easily absorbed by silicon or the like.

【0026】一般的に、CCDの分光感度特性は、紫外
域で感度が低く、長波長側ほど感度が高くなる。本実施
形態では、紫外域を測定する部分の入射窓21の開口部
の幅が広く、長波長側ほど開口部の幅が狭くなってい
る。つまり、CCDの感度の低い側ほど光電変換部に到
達する光量が多く、CCDの感度の高い側ほど光電変換
部に到達する光量が少なくなっている。このため、CC
Dの分光感度特性が補正される。分光感度特性が平坦に
なるようにするには、入射窓21の形状を図3(a)に
示す形状とすることが好ましい。しかし、本実施形態の
ように紫外域から近赤外域にかけて線形的に幅を狭くす
ることでも一定の補正効果が得られる。この場合、入射
窓21の作成や導電性板22を検出器に取り付ける際の
位置合わせが容易になるという利点がある。
In general, the spectral sensitivity characteristic of a CCD is low in the ultraviolet region, and is higher at longer wavelengths. In the present embodiment, the width of the opening of the entrance window 21 in the part for measuring the ultraviolet region is wide, and the width of the opening is narrower toward the longer wavelength side. That is, the lower the sensitivity of the CCD, the larger the amount of light reaching the photoelectric conversion unit, and the higher the sensitivity of the CCD, the smaller the amount of light reaching the photoelectric conversion unit. For this reason, CC
The spectral sensitivity characteristic of D is corrected. In order to make the spectral sensitivity characteristics flat, it is preferable that the shape of the entrance window 21 be the shape shown in FIG. However, a certain correction effect can also be obtained by linearly reducing the width from the ultraviolet region to the near infrared region as in the present embodiment. In this case, there is an advantage that the alignment at the time of forming the entrance window 21 and attaching the conductive plate 22 to the detector becomes easy.

【0027】光電変換により生じた電荷はCCD5に向
かって拡散し、CCD5の各画素のポテンシャル井戸に
到達して蓄積される。受光面表面の電位が光電変換部よ
りも高くなると、表面付近で光電変換により生じた電荷
は、電位の高い受光面側に逆行する現象が起こり、画素
のポテンシャル井戸に到達しないため、感度が低下す
る。しかし、P+高濃度層4には受光面表面付近の電位
を低下させる効果があるため、この逆行が起こりにく
く、光電変換により発生した電荷が安定して各画素のポ
テンシャル井戸に転送される。したがって、感度の高い
安定した測定が可能となる。
The charges generated by the photoelectric conversion diffuse toward the CCD 5 and reach the potential well of each pixel of the CCD 5 and are accumulated. If the potential of the light receiving surface is higher than that of the photoelectric conversion part, the charge generated by the photoelectric conversion near the surface will go back to the light receiving surface side with the higher potential and will not reach the potential well of the pixel, resulting in lower sensitivity. I do. However, since the P + high-concentration layer 4 has the effect of lowering the potential near the light-receiving surface, this backward movement is unlikely to occur, and the charges generated by the photoelectric conversion are stably transferred to the potential well of each pixel. Therefore, stable measurement with high sensitivity is possible.

【0028】蓄積期間中に各画素のポテンシャル井戸に
蓄積された電荷は、垂直シフトレジスタを通じて、その
後全て水平シフトレジスタのポテンシャル井戸に転送さ
れて、垂直シフトレジスタ一列分の信号がそれぞれの各
水平シフトレジスタで加算される。その結果、各垂直転
送チャネル6内の画素一列分の信号をそれぞれ1画素の
信号として取り扱うことができ、リニアセンサーと同様
の取り扱いができる。垂直方向に複数の画素があるた
め、リニアセンサーに比べて、高S/N比で高感度の測
定ができる。
The electric charges accumulated in the potential wells of the respective pixels during the accumulation period are transferred to the potential wells of the horizontal shift registers through the vertical shift registers, and the signals for one column of the vertical shift registers are shifted to the respective horizontal shift registers. It is added in the register. As a result, signals for one column of pixels in each vertical transfer channel 6 can be handled as one pixel signal, and the same handling as a linear sensor can be performed. Since there are a plurality of pixels in the vertical direction, high sensitivity measurement can be performed at a high S / N ratio as compared with the linear sensor.

【0029】水平シフトレジスタへ転送された電荷は、
一定電位のOG10を通過し、RG11によって一定電
位に保たれたフローティングダイオード12のポテンシ
ャル井戸に転送される。このため、フローティングダイ
オード12の電位が変化する。この電位の変化をソース
ホロア回路を通じて、出力端子15より読み出すことに
より、出力信号が得られる。フローティングダイオード
12のポテンシャル井戸に転送された電荷は、RG11
を通過して、リセットドレイン16より排出される。
The electric charge transferred to the horizontal shift register is
The light passes through the OG 10 having a constant potential and is transferred to the potential well of the floating diode 12 maintained at a constant potential by the RG 11. Therefore, the potential of the floating diode 12 changes. By reading this change in potential from the output terminal 15 through the source follower circuit, an output signal is obtained. The charge transferred to the potential well of the floating diode 12 is
And is discharged from the reset drain 16.

【0030】次に、本実施形態の応用例について説明す
る。
Next, an application example of the present embodiment will be described.

【0031】分光分析等で用いられる光源の分光特性は
近赤外域に出力ピークを持つことが多い。ピーク波長よ
り長波長の領域では、光源の出力が小さくなるため、こ
の波長領域についても高S/N比で測定するには、入射
窓21の形状を工夫する必要がある。具体的には、この
ピーク波長を測定する部分で入射窓21の開口幅が極小
となっていることが好ましい。すなわち、ピーク波長が
1ヶ所のみとなる単純な分光特性の光源の場合には、入
射窓21は図3(b)に示すように、紫外域の測定部か
ら開口幅が次第に減少し、上記のピーク波長で最小にな
った後、長波長領域にかけて次第に大きくなる形状とな
る。
The spectral characteristics of a light source used in spectral analysis or the like often have an output peak in the near infrared region. Since the output of the light source is small in the wavelength region longer than the peak wavelength, it is necessary to devise the shape of the entrance window 21 in order to measure the wavelength region at a high S / N ratio. Specifically, it is preferable that the opening width of the entrance window 21 is extremely small in the portion where the peak wavelength is measured. That is, in the case of a light source having a simple spectral characteristic having only one peak wavelength, the opening width of the entrance window 21 gradually decreases from the measurement part in the ultraviolet region as shown in FIG. After reaching the minimum at the peak wavelength, the shape gradually increases over the long wavelength region.

【0032】このピーク波長が何ヶ所もある光源に対す
る検出器について補正をする場合には、入射窓21の形
状は図3(c)に示すように、基本的に紫外域から近赤
外域に向かって開口幅が次第に小さくなり、そのうちピ
ーク波長部分の開口幅は他の波長領域より小さく、それ
ぞれのピーク波長の中間の波長領域の開口幅は隣接する
ピーク波長部分の開口幅より大きくなるような波形の形
状とすることが好ましい。入射窓21をこのような形状
にすることで、光源の分光特性を考慮して分光感度特性
を平坦化した半導体エネルギー検出器を提供することが
できる。
When correcting the detector for a light source having a number of peak wavelengths, the shape of the incident window 21 is basically changed from the ultraviolet region to the near infrared region as shown in FIG. The opening width of the peak wavelength part is smaller than the other wavelength regions, and the opening width of the middle wavelength region of each peak wavelength is larger than the opening width of the adjacent peak wavelength portion. The shape is preferably By forming the entrance window 21 in such a shape, it is possible to provide a semiconductor energy detector whose spectral sensitivity characteristics are flattened in consideration of the spectral characteristics of the light source.

【0033】また、分光感度特性を平坦化するだけでな
く、図3(d)に示すように、特定の波長領域を測定す
る部分の開口幅を小さくするか、その部分に開口部を設
けないことで、その波長領域の入射エネルギーを遮るこ
とにより、検出器自体にフィルター機能を併せ持つこと
ができる。逆に、図3(e)に示すように、特定の波長
領域を測定する部分の開口幅を他の波長領域より大きく
した場合は、その波長領域についての感度を他の波長領
域より高めることができる。このようにして、所定の分
光感度特性を持つ半導体エネルギー検出器を作成するこ
とができる。
In addition to flattening the spectral sensitivity characteristics, as shown in FIG. 3D, the opening width of a portion for measuring a specific wavelength region is reduced or no opening is provided in that portion. Thus, by blocking incident energy in the wavelength region, the detector itself can also have a filter function. Conversely, as shown in FIG. 3E, when the opening width of a portion for measuring a specific wavelength region is made larger than that of another wavelength region, the sensitivity for that wavelength region may be made higher than that of other wavelength regions. it can. Thus, a semiconductor energy detector having a predetermined spectral sensitivity characteristic can be produced.

【0034】入射窓31の形状は、本実施形態のような
対称形でなく、図3(f)に示すような非対称形でもよ
い。必要とする受光面積から形状が一義的に定まるもの
ではないため、入射窓21の作成の利便性等を考慮して
形状を定めることが望ましいからである。
The shape of the entrance window 31 is not limited to the symmetric shape as in this embodiment, but may be an asymmetric shape as shown in FIG. This is because the shape is not uniquely determined from the required light receiving area, and therefore it is desirable to determine the shape in consideration of the convenience of creating the entrance window 21 and the like.

【0035】電荷読み出し部は雑音が少なく、高S/N
比での測定が可能なCCDが好ましいが、BBD(バケ
ットブリゲード素子)等の他の電荷読み出し形式につい
ても応用が可能である。
The charge reading section has low noise and high S / N
Although a CCD capable of measuring at a ratio is preferable, other charge readout formats such as a BBD (bucket brigade element) can be applied.

【0036】なお、本実施形態においてはP型シリコン
基板を用いる場合の例について、説明したが、これに限
定されるものではなく、N型シリコン基板を用いる場合
であっても同様の効果が得られる。
In this embodiment, an example in which a P-type silicon substrate is used has been described. However, the present invention is not limited to this, and similar effects can be obtained even when an N-type silicon substrate is used. Can be

【0037】[0037]

【発明の効果】以上説明したように、本発明によれば、
裏面入射型の半導体エネルギー検出器の受光面の前面
に、電荷読み出し部の配列方向と直交方向の開口幅が、
電荷読み出し部の配列方向に沿って異なる入射窓を有す
る補強板が固定されている。したがって、有効な受光面
面積を調整して、画素の出力分布特性を補正することが
できる。また、補強板には半導体エネルギー検出器を補
強する効果がある。この板は製造工程で固定され、半導
体エネルギー検出器と一体化するため、検出器を使用す
る際の位置合わせが不要で、取り扱いが容易になる。
As described above, according to the present invention,
On the front surface of the light-receiving surface of the back-illuminated semiconductor energy detector, the opening width in the direction orthogonal to the arrangement direction of the charge readout unit is
A reinforcing plate having different entrance windows along the arrangement direction of the charge readout portions is fixed. Therefore, the effective light receiving surface area can be adjusted to correct the output distribution characteristics of the pixel. The reinforcing plate has the effect of reinforcing the semiconductor energy detector. Since this plate is fixed in the manufacturing process and is integrated with the semiconductor energy detector, there is no need for positioning when using the detector, and the handling becomes easy.

【0038】また、電荷読み出し部を複数のCCDによ
り構成すれば、雑音の少ない高S/N比での測定が可能
となる。
Further, if the charge reading section is constituted by a plurality of CCDs, it is possible to perform measurement at a low S / N ratio with less noise.

【0039】さらに、1次元方向で一方から他方に向か
って波長が長くなる波長分布を持つエネルギー線の波長
の短い側に入射窓の開口幅の大きい側を対応させれば、
感度の低い紫外域を測定する画素の有効受光面積が大き
くなり、感度の高い近赤外域を測定する画素の有効受光
面積が小さくなる。このため、画素出力が平坦化して、
全ての波長域で高S/N比での測定が可能となる。ま
た、入射窓の形状を変更することにより、所定の分光感
度特性を有する半導体エネルギー検出器を作成すること
もできる。
Furthermore, if the shorter side of the wavelength of the energy ray having a wavelength distribution in which the wavelength becomes longer from one side to the other side in the one-dimensional direction is made to correspond to the side having the larger opening width of the entrance window,
The effective light receiving area of the pixel measuring the ultraviolet region with low sensitivity increases, and the effective light receiving area of the pixel measuring the near infrared region with high sensitivity decreases. For this reason, the pixel output is flattened,
Measurement at a high S / N ratio is possible in all wavelength ranges. Further, by changing the shape of the entrance window, a semiconductor energy detector having a predetermined spectral sensitivity characteristic can be produced.

【0040】以上の結果、簡単で歩留まりのよい作成方
法により、波長依存の出力特性を補正して全波長域にお
いて高感度の半導体エネルギー検出器を提供することが
可能となった。
As a result, it has become possible to provide a semiconductor energy detector with high sensitivity over the entire wavelength range by correcting the wavelength-dependent output characteristics by a simple and high-yield production method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る半導体エネルギー検
出器の外観正面図及び縦断面図である。
FIG. 1 is an external front view and a longitudinal sectional view of a semiconductor energy detector according to an embodiment of the present invention.

【図2】図1の半導体エネルギー検出器におけるフル・
フレーム転送方式のCCDの構成図である。
FIG. 2 is a schematic diagram of a full-size semiconductor energy detector in FIG.
FIG. 2 is a configuration diagram of a frame transfer type CCD.

【図3】凹部形状の応用例を示す図である。FIG. 3 is a diagram showing an application example of a concave shape.

【符号の説明】[Explanation of symbols]

1…P型シリコン基板、1A…シリコンエピタキシャル
層、1B…ゲート酸化膜、2… 凹部、2A…斜面、3
…シリコン酸化膜、4…P+高濃度層、5…CCD、5
A…埋め込みチャネル、6…垂直転送チャネル、7…垂
直転送電極群、8…水平転送チャネル、9…水平転送電
極群、10…アウトプットゲート、11…リセットゲー
ト、12…フローティングダイオード、13…FET、
14…負荷抵抗、15…出力端子、16…リセットドレ
イン、17…FETドレイン、21…入射窓、22…補
強板。
DESCRIPTION OF SYMBOLS 1 ... P type silicon substrate, 1A ... Si epitaxial layer, 1B ... Gate oxide film, 2 ... Concave part, 2A ... Slope, 3
... Silicon oxide film, 4 ... P + high concentration layer, 5 ... CCD, 5
A: Embedded channel, 6: Vertical transfer channel, 7: Vertical transfer electrode group, 8: Horizontal transfer channel, 9: Horizontal transfer electrode group, 10: Output gate, 11: Reset gate, 12: Floating diode, 13: FET ,
14: load resistance, 15: output terminal, 16: reset drain, 17: FET drain, 21: incident window, 22: reinforcing plate.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体薄板の一方の面に光電変換部及び
この電荷を読み出す電荷読み出し部が形成され、前記半
導体薄板の他方の面からエネルギー線が入射する半導体
エネルギー検出器において、前記半導体薄板の前記エネ
ルギー線が入射する面に半導体の一部を除去した凹部が
形成され、前記半導体薄板のエネルギー線が入射する側
に、前記エネルギー線を透過する窓を有する補強板が設
けられており、前記窓の形状は前記電荷読み出し部の配
列方向と直交方向の幅が、前記電荷読み出し部の配列方
向に沿って異なることを特徴とする半導体エネルギー検
出器。
1. A semiconductor energy detector in which a photoelectric conversion portion and a charge reading portion for reading out the charges are formed on one surface of a semiconductor thin plate, and energy rays are incident from the other surface of the semiconductor thin plate. A concave portion in which a part of the semiconductor is removed is formed on a surface on which the energy rays are incident, and a reinforcing plate having a window that transmits the energy rays is provided on a side of the semiconductor thin plate on which the energy rays are incident; The semiconductor energy detector according to claim 1, wherein a shape of the window has a width in a direction orthogonal to an arrangement direction of the charge readout portions different along the arrangement direction of the charge readout portions.
【請求項2】 前記電荷読み出し部は、複数の電荷転送
素子により構成されていることを特徴とする請求項1記
載の半導体エネルギー検出器。
2. The semiconductor energy detector according to claim 1, wherein said charge reading section is constituted by a plurality of charge transfer elements.
【請求項3】 前記エネルギー線は、1次元方向で一方
から他方に向かって波長が長くなる波長分布を持つエネ
ルギー線であり、前記エネルギー線の波長の短い側に前
記入射窓の開口幅の大きい側が対応していることを特徴
とする請求項1又は2記載の半導体エネルギー検出器。
3. An energy ray having a wavelength distribution in which a wavelength becomes longer from one side to the other side in a one-dimensional direction, and an opening width of the entrance window is larger on a shorter side of the wavelength of the energy ray. 3. The semiconductor energy detector according to claim 1, wherein the sides correspond to each other.
JP27626196A 1996-10-18 1996-10-18 Semiconductor energy detector Expired - Fee Related JP3588204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27626196A JP3588204B2 (en) 1996-10-18 1996-10-18 Semiconductor energy detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27626196A JP3588204B2 (en) 1996-10-18 1996-10-18 Semiconductor energy detector

Publications (2)

Publication Number Publication Date
JPH10125885A true JPH10125885A (en) 1998-05-15
JP3588204B2 JP3588204B2 (en) 2004-11-10

Family

ID=17566974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27626196A Expired - Fee Related JP3588204B2 (en) 1996-10-18 1996-10-18 Semiconductor energy detector

Country Status (1)

Country Link
JP (1) JP3588204B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210794A (en) * 2008-03-04 2009-09-17 Fujifilm Corp Spectroscopic element, solid-state imaging element, imaging apparatus, and spectroscopic method
JP2021044439A (en) * 2019-09-12 2021-03-18 浜松ホトニクス株式会社 Backside incident type image sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4317280B2 (en) * 1998-11-02 2009-08-19 浜松ホトニクス株式会社 Semiconductor energy detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210794A (en) * 2008-03-04 2009-09-17 Fujifilm Corp Spectroscopic element, solid-state imaging element, imaging apparatus, and spectroscopic method
JP2021044439A (en) * 2019-09-12 2021-03-18 浜松ホトニクス株式会社 Backside incident type image sensor
WO2021049140A1 (en) * 2019-09-12 2021-03-18 浜松ホトニクス株式会社 Backside incident-type imaging element
CN114402584A (en) * 2019-09-12 2022-04-26 浜松光子学株式会社 Back-illuminated image pickup device
US11862659B2 (en) 2019-09-12 2024-01-02 Hamamatsu Photonics K.K. Backside incident-type imaging element

Also Published As

Publication number Publication date
JP3588204B2 (en) 2004-11-10

Similar Documents

Publication Publication Date Title
JP4786035B2 (en) Semiconductor device
US4876586A (en) Grooved Schottky barrier photodiode for infrared sensing
US8436401B2 (en) Solid-state photosensor with electronic aperture control
US7622704B2 (en) Optoelectronic detector with multiple readout nodes and its use thereof
WO1999065248A1 (en) Cmos image sensor with different pixel sizes for different colors
CN101488509A (en) Sensor, solid-state imaging device, and imaging apparatus and method of manufacturing the same
JPS6057714B2 (en) Optical semiconductor device
US20060231913A1 (en) Method for determining wavelengths of light incident on a stacked photodetector structure
JP4257989B2 (en) Infrared detector and infrared detector array using the same
JPH09266296A (en) Solid-state image sensing device
US4213137A (en) Monolithic variable size detector
JPH01207640A (en) Semiconductor photodetecting device and ultraviolet detecting method, and semiconductor photodetecting element and its manufacture
JP3588204B2 (en) Semiconductor energy detector
US20060232767A1 (en) Method for determining wavelengths of light incident on a photodetector
JP3691176B2 (en) Semiconductor energy detector
JP3581502B2 (en) Method for manufacturing photodetector
JP3588203B2 (en) Semiconductor energy detector
JPH0964329A (en) Solid-state image pickup element
US6723994B2 (en) Semiconductor energy detector
JPS6089967A (en) Photoelectric conversion element
WO2000026967A1 (en) Semiconductor energy sensor
JPS6117150B2 (en)
JPH08193888A (en) Method for detecting infrared radiation by using electrostatic capacitance, infrared sensor and infrared imaging device
Erhardt et al. Silicon cylindrical lens arrays for improved photoresponse in focal plane arrays
JP3303571B2 (en) Infrared detector and infrared detector array

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees