JPS6057714B2 - Optical semiconductor device - Google Patents

Optical semiconductor device

Info

Publication number
JPS6057714B2
JPS6057714B2 JP53008671A JP867178A JPS6057714B2 JP S6057714 B2 JPS6057714 B2 JP S6057714B2 JP 53008671 A JP53008671 A JP 53008671A JP 867178 A JP867178 A JP 867178A JP S6057714 B2 JPS6057714 B2 JP S6057714B2
Authority
JP
Japan
Prior art keywords
layer
region
semiconductor device
impurity concentration
optical semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53008671A
Other languages
Japanese (ja)
Other versions
JPS54101688A (en
Inventor
博文 大内
藤司 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP53008671A priority Critical patent/JPS6057714B2/en
Priority to US06/006,913 priority patent/US4242695A/en
Publication of JPS54101688A publication Critical patent/JPS54101688A/en
Publication of JPS6057714B2 publication Critical patent/JPS6057714B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

【発明の詳細な説明】 本発明は光半導体装置に関し、特に暗電流を低減した光
半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical semiconductor device, and more particularly to an optical semiconductor device with reduced dark current.

ホトダイオードなどの光半導体装置は光検出手段として
用いられるが、光計測機器では微弱な光信号まで精度よ
く検出することが要求されるため、光検出器の雑音、す
なわち暗電流はできるだけ小さくすることが必要とされ
ている。特に、分光光度計などの理化学機器では、可視
から紫外波長領域までの測光を要求されるが、半導体受
光素子は可視領域に比べて紫外波長領域での受光感度が
相対的に低いため、短波長側の光を測定する検出器では
、長波長側の測光用検出器に比べて暗電流を低くするこ
とが特に望まれている。ところで、従来の一般的なホト
ダイオードは、第1図に示すように基板1、能動領域2
および拡散層3よりなるp゛n゛(あるいはn゛pp*
厘)構造を持つている。
Optical semiconductor devices such as photodiodes are used as photodetection means, but optical measurement equipment is required to accurately detect even weak optical signals, so it is important to minimize the noise, or dark current, of the photodetector. is necessary. In particular, physical and chemical instruments such as spectrophotometers are required to measure light from the visible to the ultraviolet wavelength range, but semiconductor photodetectors have relatively low light-receiving sensitivity in the ultraviolet wavelength range compared to the visible range, so short wavelengths It is particularly desirable for a detector that measures side light to have a lower dark current than a photometric detector that measures long wavelength side light. By the way, a conventional general photodiode has a substrate 1, an active region 2, as shown in FIG.
and a diffusion layer 3 (or npp*
厘) has a structure.

4は表面保護膜、5、6は電極、10は主接合である。
このようなホトダイオードの暗電流IDは、pn接合の
高抵抗側領域すなわち光吸収に対する実質的な能動領域
2によつて支配され、n層2の厚さがそこでの少数キャ
リアに比べて十分厚い場合には次式で与えられる。ID
ユSqDpPn/Lp゜゜゜゜゜゜田ここで、Sは接合
面積、qは電気素量、Dpはn層での少数キャリアの拡
散係数、Pnはn層での熱平衡少数キャリアの数、Lp
はn層での少数キャリアの拡散長である。
4 is a surface protective film, 5 and 6 are electrodes, and 10 is a main junction.
The dark current ID of such a photodiode is dominated by the high-resistance region of the p-n junction, that is, the substantial active region 2 for light absorption, and if the thickness of the n-layer 2 is sufficiently thick compared to the minority carriers there. is given by the following equation. ID
Here, S is the junction area, q is the elementary charge, Dp is the diffusion coefficient of minority carriers in the n-layer, Pn is the number of thermally balanced minority carriers in the n-layer, Lp
is the diffusion length of minority carriers in the n-layer.

能動領域であるn層2の厚さがLpに比べて短い場合に
は暗電流は(1)式よりも低減される。従つて、従来の
ホトダイオードの暗電流を小さくしようとすると、能動
領域の厚さを小さくするが、あるいは不純物濃度を高く
することが必要になる。しかし、こうした対策は暗電流
を小さくすることはできるものの、吸収係数の小さい光
に対する(一般に波長が長くなるほど吸収係数は小さく
なる)光電変換効率を低下させる要因となるため、広い
波長帯域にわたつて高い光電変換効率を得ることは困難
になる。また、上述した対策によれば、耐逆方向バイア
ス電圧が小さくなる欠点も生じる。それ故に能動領域の
厚さや不純物濃度を考慮することによつて得られる性能
改善には限度がある。従つて、光電変換特性を損なうこ
となく、暗電流を低減して、S/N比の高い光検出を行
なうためには素子構造的な新しい工夫が望まれる。また
、このようなホトダイオードを利用したマルチチャンネ
ル検出法は既にイメージセンサや位置検出装置などに適
用されているが、半導体技術の進歩に支えられて光検出
器自体の安定化や高感度化が進むに伴い、マルチチャン
ネル検出法を分光測定に適用することが考えられている
。この場合、小型化、軽量化、高性能化が期待できるた
め、走査回路を内蔵した自己走査型のホトタイオードア
レイ、あるいは光検出にホトダイオードを使用した電荷
結合素子(Char?COupledDevice)が
有望な装置と考えられている。分光.光度計などの理化
学機器では、微弱な光信号を精度よく検出することが要
求されるため、所定のS/N比を保持したままで如何に
低入射光まで検出できるかが重要になる。上述した自己
走査型ホトダイオード光検出装置におけるダイオードア
レ.イの1例を第2図、またその等価回路を第3図に示
す。図において第1図と同一符号は同一部分をあられし
、7Aは拡散層3と接続されるように拡散形成されたソ
ース、7BはP型のドレインであり、これらは制御電極
8と共にMOSトランジス・夕を構成する。9はドレイ
ン7Bに接続された信号読出用電極である。
When the thickness of the n-layer 2, which is the active region, is shorter than Lp, the dark current is reduced more than in equation (1). Therefore, in order to reduce the dark current of a conventional photodiode, it is necessary to reduce the thickness of the active region or increase the impurity concentration. However, although these measures can reduce dark current, they reduce the photoelectric conversion efficiency for light with a small absorption coefficient (generally, the longer the wavelength, the smaller the absorption coefficient). It becomes difficult to obtain high photoelectric conversion efficiency. Further, according to the above-mentioned measures, there is also a drawback that the withstand reverse bias voltage becomes small. Therefore, there is a limit to the performance improvement that can be obtained by considering the thickness and impurity concentration of the active region. Therefore, in order to reduce dark current and perform photodetection with a high S/N ratio without impairing photoelectric conversion characteristics, a new device structure is desired. Additionally, multi-channel detection methods using photodiodes have already been applied to image sensors and position detection devices, but advances in semiconductor technology are helping to make photodetectors themselves more stable and more sensitive. Accordingly, the application of multichannel detection methods to spectroscopic measurements is being considered. In this case, a self-scanning photodiode array with a built-in scanning circuit or a charge-coupled device (Char-COupled Device) that uses photodiodes for light detection are promising because they can be expected to be smaller, lighter, and have higher performance. It is considered a device. Spectroscopy. Physical and chemical instruments such as photometers are required to accurately detect weak optical signals, so it is important to detect even low incident light while maintaining a predetermined S/N ratio. Diode array in the self-scanning photodiode photodetector described above. An example of A is shown in FIG. 2, and its equivalent circuit is shown in FIG. In the figure, the same reference numerals as in FIG. make up the evening. 9 is a signal reading electrode connected to the drain 7B.

この例では、入射光に応じて発生する光電流をホトダイ
オードの逆バイアスによつて形成される接合容量D(第
3図)に蓄積し、サンプリングパルスによつてその蓄積
電荷を検出して、光量に比例した信号を取り出している
。走査回路からのサンプリング時間の間に主接合10の
容量に充電された電荷は、蓄積時間の間に入射光の光量
に応じて流れる光電流によつてて放電され、次のサンプ
リングパルスによつてMOSゲートが導通状態にあると
き、信号光の光量に比例して放電された前記電荷量が再
び充電され、これが信号読み出し出力として検出される
。・この動作方法では、容量に再充電される電荷は蓄積
時間に比例して多くなるため、一般のホトダイオードに
おける瞬時測光方式に比べて、蓄積時間の長さに比例し
た光検出利得を得ることができる。従つて、充分長い蓄
積時間をかければかなり低入射光レベルの光まで精度良
く検出てきるはずである。しかし、一般には、入射光が
無い場合でも、前述のようにホトダイオードには固有の
暗電流が流れるため、暗電流による電荷の蓄積が生じる
。したがつて、所定のS/N比を維持した光検出を行な
うためには、暗電流のレベルに依存した信号入射光の最
小検出限界レベルが生じる。上述した自己走査機能を有
する光検出装置ては、上述した雑音の他に走査方式に依
存した走査回路からの雑音にも十分注意しなければなら
ないが、この雑音低減処置が取られたとしても、受光素
子自身の内部雑音があれば、これが検出限界を決定する
ことになり、光検出部の暗電流を低下させることが重要
になる。したがつて前記のような自己走査型ホトダイオ
ードアレイにおいては、受光感度を高くすること、MO
Sトランジスタのドレイン耐圧およびMOSのしきい値
電圧などを考慮してn層2の比抵抗や厚さが決定される
。さらに、能動領域すなわちn層2は、上述した諸条件
を満たす必要最少量厚さに設計される。一般には、上述
した考えに基づき、n側領域はn−n+層で形成される
。これは、n+層でのキャリアの寿命が短いため、n+
層内で熱的に発生したキャリアが暗電流にほとんど寄与
しないためである。しかしあがら、n−n+構造にして
n層2の厚みを小さくすることには、受光感度や耐圧の
関係から限度が有り、他の特性を損なわずに暗電流を小
さくすることが望まれている。本発明の目的は前述した
従来の欠点をなくし、暗電流の小さいホトダイオードあ
るいはこれを利用した光検出装置などの光半導体装置を
提供することにある。
In this example, the photocurrent generated in response to the incident light is accumulated in the junction capacitance D (Figure 3) formed by the reverse bias of the photodiode, and the accumulated charge is detected using a sampling pulse to determine the amount of light. A signal proportional to is extracted. The charge accumulated in the capacitance of the main junction 10 during the sampling time from the scanning circuit is discharged by the photocurrent flowing according to the amount of incident light during the accumulation time, and is discharged by the next sampling pulse. When the MOS gate is in a conductive state, the amount of discharged charge is charged again in proportion to the amount of signal light, and this is detected as a signal readout output.・With this operating method, the amount of charge recharged to the capacitor increases in proportion to the storage time, so it is possible to obtain a photodetection gain that is proportional to the length of the storage time, compared to the instantaneous photometry method using a general photodiode. can. Therefore, if a sufficiently long accumulation time is allowed, it should be possible to accurately detect light even at a fairly low level of incident light. However, in general, even when there is no incident light, a unique dark current flows through the photodiode as described above, so that charge is accumulated due to the dark current. Therefore, in order to perform photodetection while maintaining a predetermined S/N ratio, a minimum detection limit level of the signal incident light is generated depending on the level of the dark current. In addition to the above-mentioned noise, the photodetector having the above-mentioned self-scanning function must be careful about the noise from the scanning circuit depending on the scanning method, but even if this noise reduction measure is taken, If there is internal noise in the light receiving element itself, this will determine the detection limit, and it is important to reduce the dark current of the photodetector. Therefore, in the self-scanning photodiode array as described above, it is necessary to increase the light receiving sensitivity and to increase the MO
The resistivity and thickness of the n-layer 2 are determined in consideration of the drain breakdown voltage of the S transistor, the threshold voltage of the MOS, and the like. Furthermore, the active region, ie, the n-layer 2, is designed to have the required minimum thickness that satisfies the above-mentioned conditions. Generally, based on the above-mentioned idea, the n-side region is formed of an n-n+ layer. This is due to the short lifetime of carriers in the n+ layer.
This is because carriers thermally generated within the layer hardly contribute to dark current. However, there are limits to reducing the thickness of the n-layer 2 by creating an n-n+ structure due to light-receiving sensitivity and breakdown voltage, and it is desired to reduce the dark current without impairing other characteristics. . SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned conventional drawbacks and to provide an optical semiconductor device such as a photodiode with a small dark current or a photodetector using the photodiode.

本発明は、ホトダイオードの能動領域、すなわち入射光
を吸収する役割を果す高抵抗領域内に、その領域と反対
導電形の領域をなるべくは主接合の空乏層端からキャリ
アの拡散長の2倍以内の位置に埋込むことによつて、暗
電流を低減することに特徴がある。
In the present invention, a region of the opposite conductivity type to the active region of the photodiode, that is, a high-resistance region that plays the role of absorbing incident light, is preferably placed within twice the carrier diffusion length from the edge of the depletion layer of the main junction. The feature is that dark current is reduced by embedding in the position.

第4図は本発明を自己走査型ホトダイオードアレイに適
用した1実施例てあり、主接合10の真下のn+層1と
n層2との境界位置にP型埋込層11を設けている。
FIG. 4 shows an embodiment in which the present invention is applied to a self-scanning photodiode array, in which a P-type buried layer 11 is provided at the boundary between the n+ layer 1 and the n layer 2 directly below the main junction 10.

本発明によれば、埋込層11と高抵抗n層2によつて形
成された従接合12は、受光表面近くに形成されたホト
タイオードの主接合10と同様に熱励起されたキャリア
に対する吸い口として働く。
According to the present invention, the secondary junction 12 formed by the buried layer 11 and the high-resistance n-layer 2 is a suction port for thermally excited carriers, similar to the main junction 10 of the photodiode formed near the light-receiving surface. Work as.

このため、主接合10によつて形成された空乏層端と従
接合12との間の領域内で熱的に発生したキャリアの約
112は従接合12に吸い寄せられて主接合10に達す
ることができなくなる。したがつてフォトダイオードの
暗電流は低減する。一方、光が入射した場合、光は表面
から指数函数的に吸収されるため、吸収係数が非常に小
さい場合を除いて、n層2内で発生したキャリアの大部
分は主接合10に捕えられ、光電流に寄与する。吸収係
数が小さい場合には、暗電流と同様に光電流もある程度
低減するが、光は表面から指数函数的に吸収されるため
、暗電流の低減割合に比べて光電流の低減割合は小さい
。n+シリコン基板を用いた場合の第4図示実施一例の
製造方法の1例について説明する。
Therefore, about 112 of the carriers thermally generated in the region between the end of the depletion layer formed by the main junction 10 and the secondary junction 12 are attracted to the secondary junction 12 and cannot reach the main junction 10. become unable. Therefore, the dark current of the photodiode is reduced. On the other hand, when light is incident, it is absorbed exponentially from the surface, so most of the carriers generated in the n-layer 2 are captured by the main junction 10, unless the absorption coefficient is very small. , contributes to the photocurrent. When the absorption coefficient is small, the photocurrent as well as the dark current is reduced to some extent, but since light is absorbed from the surface in an exponential manner, the reduction rate of the photocurrent is smaller than the reduction rate of the dark current. An example of the manufacturing method of the fourth illustrated embodiment using an n+ silicon substrate will be described.

n+基板1はアンチモンをドープ几た比抵抗0.01Ω
−d1厚さ150〜200pmのウェハである。基板1
内に公知の拡散方法によつてボロンを1050℃で5紛
間選択拡散し、p領域11を形成する。基板1上に工.
ピタキシヤル成長法によつて厚さ10pm1比抵抗5Ω
−Cm(7)n層2を形成する。この際、拡散によつて
領域11は領域2側にも伸びる。公知の選択拡散法によ
つて、ソースおよびドレイン領域となる拡散深さ2μm
のボロン拡散領域7A,7Bを形成した後、さらに、公
知の選択拡散法によつて、ホトダイオード領域となる拡
散深さ0.5μmのボロン拡散層3を形成する。拡散領
域7A,7Bおよび3の形成の際に拡散マスクとして使
用した酸化膜4を残したまま、拡散領域3を覆うゲート
酸化膜7を乾燥酸素雰囲気中で厚さ0.1μmに形成す
る。公知の選択ホトエッチングにより、不要部の酸化膜
を除去した後、アルミニウムを真空蒸着し、公知のホト
エッチングにより不要部を除去することによつて電極8
,9を形成し、また裏面電極6を形成する。この場合の
埋込みP層の不純物濃度は、能動領域すなわちn層2の
それよりは高く、約1×1Cf!0c71よりは低いこ
とが望ましい。その理由は、上記以上の濃度にすると、
不純物の高濃度ドーピングによつて誘起される欠陥が能
動領域にまで欠陥を導入して電気的特性を損なうし、ま
た上記以下の濃度にすることは製造上の困難を伴なうか
らである。本発明によつて得られた効果を以下に述べる
N+ substrate 1 is doped with antimony and has a specific resistance of 0.01Ω.
-d1 The wafer has a thickness of 150 to 200 pm. Board 1
By a known diffusion method, boron is selectively diffused into five layers at 1050° C. to form p region 11. On board 1.
Thickness 10 pm 1 specific resistance 5 Ω by pitaxial growth method
-Cm(7)n layer 2 is formed. At this time, the region 11 also extends to the region 2 side due to diffusion. Diffusion depth of 2 μm to become source and drain regions by known selective diffusion method
After forming the boron diffusion regions 7A and 7B, a boron diffusion layer 3 having a diffusion depth of 0.5 μm, which will become a photodiode region, is further formed by a known selective diffusion method. Gate oxide film 7 covering diffusion region 3 is formed to a thickness of 0.1 μm in a dry oxygen atmosphere while leaving oxide film 4 used as a diffusion mask when forming diffusion regions 7A, 7B, and 3 remaining. After removing unnecessary portions of the oxide film by known selective photo-etching, aluminum is vacuum-deposited, and unnecessary portions are removed by known photo-etching to form the electrode 8.
, 9 are formed, and a back electrode 6 is also formed. In this case, the impurity concentration of the buried P layer is higher than that of the active region, that is, the n layer 2, and is about 1×1 Cf! It is desirable that it be lower than 0c71. The reason is that when the concentration is higher than the above,
This is because defects induced by high-concentration doping of impurities will introduce defects into the active region, impairing electrical characteristics, and reducing the concentration below the above-mentioned level will be accompanied by manufacturing difficulties. The effects obtained by the present invention will be described below.

(1)暗電流が低減されるため、より低レベルの入射光
を検出できるようになり、自己走査型ホトダイオードア
レイに適用した場合には蓄積時間を長くとることができ
、低入射光検出限界レベルを従来の1h以下に下げるこ
とができた。(11)領域11の埋込によるホトダイオ
ードの光電変換特性は、短波長側ではほとんど変らず、
長波長側でやや低下する。しかし、長波長側での感度低
下は、タングステンランプのように長波長側で光照射強
度の強い光源を用いる一般の分光光度計では、却つて短
波長側波長測定素子における迷光が低減されるという効
果がある。以上、本発明を自己走査型ホトダイオードに
適用した例について述べたが、ホトダイオード単体とし
ても前述と全く同じ作用効果が達成されることは明らか
であろう。以上ではn+基板を用いた場合について述べ
たが、p″+N9n+pと変えたp+基板を用いた場合
、あるいはシリコン以外の他の半導体材料を用いた場合
においても本発明の本質が変るものではないことはいう
までもない。
(1) Since the dark current is reduced, it becomes possible to detect lower levels of incident light, and when applied to self-scanning photodiode arrays, it is possible to take a longer accumulation time and lower the detection limit level of incident light. We were able to reduce the time to less than 1 hour. (11) The photoelectric conversion characteristics of the photodiode due to the embedding of region 11 hardly change on the short wavelength side;
It decreases slightly on the long wavelength side. However, the decrease in sensitivity on the long wavelength side is due to the fact that in general spectrophotometers that use a light source with strong light irradiation intensity on the long wavelength side, such as a tungsten lamp, stray light in the wavelength measurement element on the short wavelength side is reduced. effective. Although an example in which the present invention is applied to a self-scanning photodiode has been described above, it is clear that the same effects as described above can be achieved using a single photodiode. Although the case where an n+ substrate is used has been described above, the essence of the present invention does not change even when a p+ substrate is used instead of p''+N9n+p, or when a semiconductor material other than silicon is used. Needless to say.

また以上においては、主接合がPn接合によつて形成さ
れた場合について述べたが、前記接合としては例えばシ
リコンとシリコン酸化膜(SiO2)との界面にできる
表面反転層を利用した実質的な接合、シリコンと酸化ス
ズによつて形成されたヘテロ接合、または薄い光透過性
の金属と半導体とて形成される、いわゆるショットキ接
合を用いることも可能であり、このような場合も本発明
の範囲に含まれるものである。ショットキ接合を利用し
た自己走査型ホトダイオードアレイの1例を第5図に示
す。金属層15とn層2との境界にショットキ接合が形
成され、これが主接合として作用する。
Furthermore, in the above, the case where the main junction is formed by a Pn junction has been described, but the junction may be a substantial junction using a surface inversion layer formed at the interface between silicon and a silicon oxide film (SiO2), for example. It is also possible to use a heterojunction formed of silicon and tin oxide, or a so-called Schottky junction formed of a thin light-transmitting metal and a semiconductor, and such cases are also within the scope of the present invention. It is included. An example of a self-scanning photodiode array using a Schottky junction is shown in FIG. A Schottky junction is formed at the boundary between metal layer 15 and n-layer 2, and this serves as a main junction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のホトダイオードの断面図、第2図は従来
の自己走査型ホトダイオードの断面図、第3図はその等
価回路図、第4図は本発明による自己走査型ホトダイオ
ードの1実施例を示す断面図、第5図は本発明の他の実
施例の断面図である。 1・・・・・・基板、2・・・・・・能動領域、3・・
・・・・拡散層、7A・・・・・・ソース、7B・・・
・・・ドレイン、8・・・・・・ゲート電極、9・・・
・・・信号読出電極、10・・・・主接合、11・・・
・・・埋込層、12・・・・・・従接合。
FIG. 1 is a sectional view of a conventional photodiode, FIG. 2 is a sectional view of a conventional self-scanning photodiode, FIG. 3 is an equivalent circuit diagram thereof, and FIG. 4 is an embodiment of a self-scanning photodiode according to the present invention. The sectional view shown in FIG. 5 is a sectional view of another embodiment of the present invention. 1...Substrate, 2...Active area, 3...
...Diffusion layer, 7A... Source, 7B...
...Drain, 8...Gate electrode, 9...
...Signal readout electrode, 10...Main junction, 11...
...Buried layer, 12...Subjunction.

Claims (1)

【特許請求の範囲】 1 少なくとも低不純物濃度層を有する一導電型の半導
体と、前記半導体の低不純物濃度層との間に主接合を形
成する第3領域とを具備し、前記主接合の下方の低不純
物濃度層に形成される空乏層端から拡散長の2倍以内の
位置に反対導電型の埋込領域を設けられたことを特徴と
する光半導体装置。 2 第3領域が反対導電型の半導体層であることを特徴
とする第1項記載の光半導体装置。 3 埋込領域の不純物濃度が1×10^2^0/cm^
3以下であることを特徴とする第1又は第2項記載の光
半導体装置。 4 少なくとも低不純物濃度層を有する一導電型の半導
体と、前記半導体の低不純物濃度層との間に主接合を形
成する第3領域と低不純物濃度層に設けられ、そのソー
スが前記第3領域と接続されたMOSFETとを具備し
、主接合の下方の低不純物濃度層に形成される空乏層端
から拡散長の2倍以内の位置に反対導電型の埋込領域を
設けられたことを特徴とする光半導体装置。 5 第3領域が反対導電型の半導体層であることを特徴
とする第4項記載の光半導体装置。 6 埋込領域の不純物濃度が1×10^2^0/cm^
3以下であることを特徴とする第4または第5項記載の
光半導体装置。
[Scope of Claims] 1. A semiconductor of one conductivity type having at least a low impurity concentration layer, and a third region forming a main junction between the low impurity concentration layer of the semiconductor, and a third region below the main junction. An optical semiconductor device characterized in that a buried region of an opposite conductivity type is provided at a position within twice the diffusion length from the end of a depletion layer formed in a low impurity concentration layer. 2. The optical semiconductor device according to item 1, wherein the third region is a semiconductor layer of an opposite conductivity type. 3 The impurity concentration of the buried region is 1×10^2^0/cm^
3 or less, the optical semiconductor device according to item 1 or 2, wherein 4 A third region forming a main junction between a semiconductor of one conductivity type having at least a low impurity concentration layer and the low impurity concentration layer of the semiconductor and a low impurity concentration layer, the source of which is provided in the third region A buried region of the opposite conductivity type is provided at a position within twice the diffusion length from the end of the depletion layer formed in the low impurity concentration layer below the main junction. Optical semiconductor device. 5. The optical semiconductor device according to item 4, wherein the third region is a semiconductor layer of an opposite conductivity type. 6 The impurity concentration of the buried region is 1×10^2^0/cm^
5. The optical semiconductor device according to claim 4 or 5, wherein the optical semiconductor device has an optical density of 3 or less.
JP53008671A 1978-01-27 1978-01-27 Optical semiconductor device Expired JPS6057714B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP53008671A JPS6057714B2 (en) 1978-01-27 1978-01-27 Optical semiconductor device
US06/006,913 US4242695A (en) 1978-01-27 1979-01-26 Low dark current photo-semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53008671A JPS6057714B2 (en) 1978-01-27 1978-01-27 Optical semiconductor device

Publications (2)

Publication Number Publication Date
JPS54101688A JPS54101688A (en) 1979-08-10
JPS6057714B2 true JPS6057714B2 (en) 1985-12-16

Family

ID=11699387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53008671A Expired JPS6057714B2 (en) 1978-01-27 1978-01-27 Optical semiconductor device

Country Status (2)

Country Link
US (1) US4242695A (en)
JP (1) JPS6057714B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128884A (en) * 1979-03-28 1980-10-06 Hitachi Ltd Semiconductor photodetector
JPS5737888A (en) * 1980-08-19 1982-03-02 Mitsubishi Electric Corp Photo detector
US4488038A (en) * 1982-04-12 1984-12-11 At&T Bell Laboratories Phototransistor for long wavelength radiation
US4507674A (en) * 1982-06-07 1985-03-26 Hughes Aircraft Company Backside illuminated blocked impurity band infrared detector
DE3379441D1 (en) * 1982-09-23 1989-04-20 Secr Defence Brit Infrared detectors
JPS59135762A (en) * 1983-01-24 1984-08-04 Mitsubishi Electric Corp Photodetector
US4616247A (en) * 1983-11-10 1986-10-07 At&T Bell Laboratories P-I-N and avalanche photodiodes
GB2172742B (en) * 1985-03-21 1988-08-24 Stc Plc Photoconductor
ATE109593T1 (en) * 1986-02-04 1994-08-15 Canon Kk PHOTOELECTRIC CONVERSION ELEMENT AND PROCESS FOR ITS MANUFACTURE.
FI82863C (en) * 1989-09-05 1991-04-25 Inoptics Oy SPEKTROMETRISKT FOERFARANDE OCH SPEKTROMETER.
WO2000052765A1 (en) * 1999-03-01 2000-09-08 Photobit Corporation Active pixel sensor with fully-depleted buried photoreceptor
US6541794B1 (en) * 2000-08-31 2003-04-01 Motorola, Inc. Imaging device and method
JP2002083949A (en) * 2000-09-07 2002-03-22 Nec Corp Cmos image sensor and method of manufacturing the same
US6518080B2 (en) 2001-06-19 2003-02-11 Sensors Unlimited, Inc. Method of fabricating low dark current photodiode arrays
JP4123415B2 (en) 2002-05-20 2008-07-23 ソニー株式会社 Solid-state imaging device
JP5010244B2 (en) * 2005-12-15 2012-08-29 オンセミコンダクター・トレーディング・リミテッド Semiconductor device
JP5301108B2 (en) * 2007-04-20 2013-09-25 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー Semiconductor device
JP2009032929A (en) * 2007-07-27 2009-02-12 Sanyo Electric Co Ltd Semiconductor device and method of manufacturing the same
RU2456707C1 (en) * 2011-03-03 2012-07-20 Российская Федерация, от имени которой выступает государственный заказчик - Министерство промышленности и торговли Российской Федерации High signal-to-noise ratio infrared photodiode and method of increasing signal-to-noise ratio in infrared photodiode
DE102013018789A1 (en) * 2012-11-29 2014-06-05 Infineon Technologies Ag Controlling light-generated charge carriers
RU2536088C1 (en) * 2013-08-19 2014-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский государственный университет" (ТГУ) Receiver of electromagnetic radiation of wide spectral range
WO2015171572A1 (en) * 2014-05-05 2015-11-12 Trustees Of Boston University Dark current mitigation with diffusion control
CN111403426A (en) * 2018-12-28 2020-07-10 天津大学青岛海洋技术研究院 CMOS image sensor pixel structure for reducing diffusion dark current

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3534231A (en) * 1968-02-15 1970-10-13 Texas Instruments Inc Low bulk leakage current avalanche photodiode
NL7308240A (en) * 1973-06-14 1974-12-17
US4087833A (en) * 1977-01-03 1978-05-02 Reticon Corporation Interlaced photodiode array employing analog shift registers

Also Published As

Publication number Publication date
US4242695A (en) 1980-12-30
JPS54101688A (en) 1979-08-10

Similar Documents

Publication Publication Date Title
JPS6057714B2 (en) Optical semiconductor device
JP4715203B2 (en) Photodetector circuit
US7256470B2 (en) Photodiode with controlled current leakage
JPH0728049B2 (en) Graded Gap Inversion Layer Photodiode Array
US4589003A (en) Solid state image sensor comprising photoelectric converting film and reading-out transistor
CN101090138A (en) P+PIN silicon photoelectric probe
US5187380A (en) Low capacitance X-ray radiation detector
JP4856031B2 (en) Avalanche photodiode
WO2001075977A1 (en) Semiconductor energy detector
Guo et al. High-responsivity Si photodiodes at 1060 nm in standard CMOS technology
TWI663720B (en) Methods of forming an infrared photodetector
JPH01207640A (en) Semiconductor photodetecting device and ultraviolet detecting method, and semiconductor photodetecting element and its manufacture
Ouchi et al. Silicon pn junction photodiodes sensitive to ultraviolet radiation
US4146904A (en) Radiation detector
US4140909A (en) Radiation detector
JPH0517492B2 (en)
JPH06216404A (en) Uv photodetector
CN201078806Y (en) Silicon photoelectric detector
JP2670289B2 (en) Infrared detecting photodiode and method for manufacturing the same
US9806217B2 (en) Fully integrated CMOS-compatible photodetector with color selectivity and intrinsic gain
JPH0570945B2 (en)
RU2086047C1 (en) Cumulative photodetector
JPS5938748B2 (en) semiconductor photodetector
RU2185689C2 (en) Avalanche photodetector (versions)
RU2240631C1 (en) Photodetector