JPS6117150B2 - - Google Patents

Info

Publication number
JPS6117150B2
JPS6117150B2 JP55054001A JP5400180A JPS6117150B2 JP S6117150 B2 JPS6117150 B2 JP S6117150B2 JP 55054001 A JP55054001 A JP 55054001A JP 5400180 A JP5400180 A JP 5400180A JP S6117150 B2 JPS6117150 B2 JP S6117150B2
Authority
JP
Japan
Prior art keywords
region
transistor
imaging device
semiconductor substrate
impurity density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55054001A
Other languages
Japanese (ja)
Other versions
JPS56150878A (en
Inventor
Junichi Nishizawa
Tadahiro Oomi
Naoshige Tamamushi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5400180A priority Critical patent/JPS56150878A/en
Priority to EP81301732A priority patent/EP0038697B1/en
Priority to DE8181301732T priority patent/DE3167682D1/en
Publication of JPS56150878A publication Critical patent/JPS56150878A/en
Publication of JPS6117150B2 publication Critical patent/JPS6117150B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14679Junction field effect transistor [JFET] imagers; static induction transistor [SIT] imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳现な説明】 本発明は、光情報を非砎壊に読み出せ、ダむナ
ミツクレンゞが広く、感床が向䞊し、雑音に察し
おも匷く、か぀空間的、時間的解像床の優れた固
䜓撮像装眮に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a solid-state imaging device that can nondestructively read out optical information, has a wide dynamic range, has improved sensitivity, is resistant to noise, and has excellent spatial and temporal resolution. Regarding equipment.

埓来むメヌゞセンサ、特に固䜓デバむスによる
ものは倧きくわけお、CCD型、MOS型の皮類
存圚する。これから぀の補造技術が䌌かよ぀お
いるにもかかわらず、MOS型、CCD型䞡者のむ
メヌゞセンサずしおの特性は、光の受光方法及び
信号電荷の読み出し方法の違いから、異な぀たも
のずな぀おいる。CCD型むメヌゞセンサでは、
MOSキダパシタ電極の䞋偎半導䜓領域に生じた
ポテンシダル井戞の䞭に信号電荷は蓄積され、䞀
方読み出しは、アレむ状に䞊んだ電界によ぀お生
じたポテンシダル井戞の䞭を次々ず転送させるこ
ずによ぀お出力回路ぞ導くこずから行なわれる。
しかるに、MOS型むメヌゞセンサにおいおは、
信号電荷は拡散もしくはむオン泚入等で補造され
たホトダむオヌドによ぀お集められ、読み出しは
そのホトダむオヌドから隣接するMOSFETを通
しおビデオ出力回路ぞず導かれ完了する。第
図及び第図。
Conventional image sensors, especially those based on solid-state devices, can be roughly divided into two types: CCD type and MOS type. Although the two manufacturing technologies are similar, the characteristics of the MOS type and CCD type image sensors are different due to differences in the method of receiving light and the method of reading signal charges. . In CCD type image sensor,
Signal charges are accumulated in potential wells created in the lower semiconductor region of the MOS capacitor electrode, and readout is performed by sequentially transferring them through the potential wells created by an electric field arranged in an array. This is done by leading it to the output circuit.
However, in MOS image sensors,
The signal charge is collected by a photodiode manufactured by diffusion or ion implantation, and readout is completed by leading from the photodiode through an adjacent MOSFET to the video output circuit. (1st
(Fig. and Fig. 2).

第図及び第図は埓来のMOS型及びCCD型
のむメヌゞセンサの原理説明のための図面であ
る。
1 and 2 are drawings for explaining the principles of conventional MOS type and CCD type image sensors.

第図は、MOS型むメヌゞセンサの原理説明
図である。
FIG. 1 is a diagram explaining the principle of a MOS image sensor.

MOSFETずホトダむオヌドから
成るアレむがあり、MOSFETのゲヌト郚
にシフトレゞスタクロツク、電源を
配眮されたMOSスキダンシフトレゞスタ
が接続されおおり、これらのむメヌゞセンサアレ
む及び呚蟺回路から成る基板䞊に構成され
たむメヌゞシステムにむメヌゞ光入力
が照射され、その情報がホトダむオヌドアレむ
で蓄えられ呚蟺の走査回路の動䜜でビ
デオ出力郚に取り出されるような原理にな
぀おいる。
There is an array consisting of a MOSFET 108 and a photodiode 101, and a MOS scan shift register 104 has a shift register clock 103 and a power supply 105 arranged at the gate of the MOSFET 108.
are connected, and an image (light input) 102 is sent to an image system configured on a substrate 107 consisting of these image sensor arrays and peripheral circuits.
is irradiated and the information is transmitted to photodiode array 1.
The principle is that the data is stored in the video output section 106 by the operation of the peripheral scanning circuit 104.

䞀方、CCD型むメヌゞセンサは、第図に瀺
されるように基板䞊に構成されたチダヌゞ
怜出噚のシステム、即ち、ここではクロツ
クφ、及びクロツクφの盞ク
ロツクで動䜜するCCDのシステムが䞎えられお
おり、むメヌゞ入力光の情報はMOS
電極䞋のポテンシダルり゚ル内に蓄えられ、二盞
クロツクφ、及びφにより次々
ず転送されビデオ出力郚にビデオ出力信号
ずしお取り出されるようにな぀おいる。
On the other hand, the CCD image sensor operates with a charge detector system 110 constructed on a substrate 112 as shown in FIG. A CCD system is given, and the information of the image (input light) 109 is MOS
The signal is stored in a potential well under the electrode, and is transferred one after another by two-phase clocks φ 1 113 and φ 2 114, and taken out as a video output signal 111 to a video output section 115.

第図にはクロツク信号及び出力信号のタむム
チダヌトも簡単に入぀おいる。
FIG. 2 also briefly includes a time chart of the clock signal and output signal.

これらの䞡者の構造、構成方法及び読み出し方
法の違いは特に光匷床の高い堎合、及び䜎い堎
合、たた解像床image clarity等の点で倧き
な差ずな぀おいる。光匷床の䜎い堎合にはむメヌ
ゞセンサによ぀お解像されうる最小匷床の光入力
倀はむメヌゞセンサ自䜓の持぀受光胜力、蚀いか
えれば照射された光をどれだけ取り蟌むこずがで
きるかずいう効率に倧きく䟝存しおいる。たた同
様に光匷床の䜎い堎合のむメヌゞセンサによ぀お
解像されうる最小匷床の光入力倀は、センサ本䜓
及びその付随回路によ぀お生じる雑音にも圱響さ
れる。
Differences in structure, construction method, and readout method between these two devices result in large differences, particularly in the case of high and low light intensity, and in terms of resolution (image clarity) and the like. When the light intensity is low, the minimum intensity light input value that can be resolved by the image sensor has a large effect on the image sensor's light receiving ability, or in other words, the efficiency of how much irradiated light it can capture. dependent. Similarly, the minimum intensity light input value that can be resolved by an image sensor at low light intensities is also affected by noise generated by the sensor body and its associated circuitry.

MOS型むメヌゞセンサはCCD型に比べ光の信
号ぞの倉換効率がよい。これはデバむス衚面から
の光の反射量、及び光によ぀お発生した信号負荷
が蓄積される䜍眮の違いによるものである。
MOS image sensors are more efficient at converting light into signals than CCD types. This is due to differences in the amount of light reflected from the device surface and the location where the signal load generated by the light is accumulated.

通垞、モノリシツク集積化されたむメヌゞセン
サにおいおは半導䜓基板を照射する方法には衚面
照射front illumination型及び裏面照射
back illumination型の通り存圚する第
図。
Normally, in monolithically integrated image sensors, there are two methods of illuminating a semiconductor substrate: front illumination type and back illumination type.
figure).

第図は埓来の衚面照射型front
illuminatedCCD及び裏面照射型back
illuminatedCCDの぀のタむプのCCD型むメ
ヌゞセンサの断面構造図である。
Figure 3 shows the conventional front-illuminated type (front illumination type).
illuminated) CCD and back-illuminated (back
FIG. 2 is a cross-sectional structure diagram of two types of CCD image sensors (illuminated) CCD.

第図には、型Si基板䞊に圢成され
たシリコン絶瞁局透明、Al電極
及び透明キダパシタ電極から成る盞
CCDが瀺されおいる。衚面より照射される光入
力に察応した情報ずしお光によ぀お発生し
たチダヌゞ少数キダリアがポテンシダ
ルり゚ル内に蓄積され、前蚘Al電極
及び透明キダパシタ電極の盞クロツク
電圧により、り゚ル内を次々ず転送されるわけで
ある。
FIG. 3a shows a silicon insulating layer 119 (transparent) formed on an n-type Si substrate 121 and an Al electrode 118.
and a transparent capacitor electrode 117.
CCD is shown. A charge (minority carrier) 120 generated by the light as information corresponding to the light input 116 irradiated from the surface is accumulated in the potential well 122, and the Al electrode 11
8 and the two-phase clock voltage of the transparent capacitor electrode 117, the signals are sequentially transferred within the well.

䞀方、第図は裏面照射型back
illuminatedCCDの断面構造を瀺す。入力光
は型基板偎から照射されおおり、
型基板内の発生した少数キダリア
が、絶瞁局を介しお構成された盞CCD
のオヌバヌラツプ電極、及び䞊の電
圧関係によ぀お生ずるポテンシダルり゚ル
内に蓄積される。
On the other hand, Fig. 3b shows a back-illuminated type (back illumination type).
(illuminated) shows the cross-sectional structure of the CCD. Input light 1
23 is irradiated from the n-type substrate 126 side, and
Minority carriers 125 generated in the mold substrate 126
is a two-phase CCD configured through an insulating layer 127.
Potential well 124 created by the voltage relationship on overlapping electrodes 128 and 129 of
accumulated within.

CCD型或いはMOS型でどちらの方法も䜿甚可
胜であるが、CCD型の堎合、衚面に䞍透明な電
極が䞊び光の取り蟌み領域が小さくなり、衚面照
射front illumination型では䞍郜合なこずが
倚い。
Either the CCD type or the MOS type can be used, but in the case of the CCD type, opaque electrodes are lined up on the surface, which reduces the light capture area, which is often inconvenient for the front illumination type.

たた䞍幞なこずに裏面照射back
illumination型の堎合、補造䞊の問題及び動䜜
特性の限界が存圚する。裏面照射back
illumination型の堎合、光の入力によ぀お発生
したキダリアが通垞、Siであれば可芖光に察し
お光入力衚面からΌ皋床内で発生する有効
に集められ、衚面偎のキダパシタ電極の䞋の空之
局内に蓄積されるためには基板の厚みを薄くする
必芁がある。補造可胜な最も薄い半導䜓基板は玄
25Ό皋床であり、぀たりこのこずはデバむスを
25Ό以䞋のスペヌスで配眮するこずができない
こず、即ち、裏面照射back illumination型
で基板内に発生したキダリアが拡散で広が぀お行
くため、空間的分解胜を考えるず基板が厚くなれ
ばその分だけ衚面のMOSキダパシタ電極の間隔
を離しお配眮しなければならない。このこずが裏
面照射back illuminated型CCDの解像床の限
界ずな぀おいる。この玠子間隔に察する制限条件
は倧容量のむメヌゞセンサを実珟しようずする堎
合、より倧きなSi基板面積が必芁ずなり、倚数の
画玠から成るむメヌゞセンサの実珟に察しお倧き
な障害ずな぀おいる。
Unfortunately, back-illuminated
For the illumination type, there are manufacturing problems and operating characteristic limitations. Backside illumination
In the case of the illumination type, the carriers generated by the input of light (usually generated within about 5 ÎŒm from the light input surface for visible light in the case of Si) are effectively collected, and the carriers generated by the input of light are effectively collected and In order for it to accumulate in the underlying empty layer, the thickness of the substrate needs to be reduced. The thinnest semiconductor substrate that can be manufactured is approximately
It is about 25 ÎŒm, which means that the device
The problem is that it cannot be arranged in a space of 25 ÎŒm or less; in other words, carriers generated within the substrate in the back illumination type spread out by diffusion, so when considering spatial resolution, the thicker the substrate becomes, the more difficult it becomes. The MOS capacitor electrodes on the surface must be spaced apart from each other. This limits the resolution of back-illuminated CCDs. This restriction on the element spacing requires a larger Si substrate area when attempting to realize a large-capacity image sensor, and is a major obstacle to realizing an image sensor consisting of a large number of pixels.

明らかに、良奜な解像床を埗ようずするには簡
単な構造の衚面照射front illumination型が
望たしい。幞い、MOS型むメヌゞセンサは半導
䜓基板をカバヌするシリコン酞化膜局を有し、こ
の透明酞化膜は、空気airのむンピヌダンス
ずシリコンの光に察するむンピヌダンスの敎合性
のよいオプテむカルコヌテむングoptical
coatingずな぀おいる。
Obviously, a simple construction of the front illumination type is desirable in order to obtain good resolution. Fortunately, MOS image sensors have a silicon oxide film layer covering the semiconductor substrate, and this transparent oxide film is coated with an optical coating that has good matching of the impedance of air and the impedance of silicon to light.
coating).

CCD型むメヌゞセンサの䞭には、衚面照射
front illumination型でポリシリコン電極で構
成されたものもあるが、これらのポリシリコン構
成はポリシリコンの䞋の酞化膜ずの間での光入力
に察するむンピヌダンス敎合が悪く、ポリシリコ
ン䞀酞化膜界面で光が反射されやすい。このむン
ピヌダンス䞍敎合によ぀お衚面反射における障害
パタヌンが生じ、光電流出力を枛少させおした
う。
Some CCD-type image sensors are front illumination type and are constructed with polysilicon electrodes, but these polysilicon structures have a high resistance to light input between them and the oxide film below the polysilicon. Impedance matching is poor, and light is easily reflected at the polysilicon monoxide film interface. This impedance mismatch creates a disturbance pattern in the surface reflections, reducing the photocurrent output.

衚面照射front illumination型、或いは裏
面照射back illumination型のいづれのむメ
ヌゞセンサアレむにおいおも、むメヌゞセンサ及
び呚蟺回路によりビデオ信号に導入される雑音の
問題は䜎光匷床レベルにおける動䜜限界を䞎える
最も倧きな芁因ず考えられる。小さな光信号をマ
スクしおしたうこの雑音は寄生容量における䞍敎
合及び熱的に発生したキダリアから生ずる。曎に
CCDの堎合には転送損倱に䌎う雑音が入る。
For either front-illuminated or back-illuminated image sensor arrays, the problem of noise introduced into the video signal by the image sensor and surrounding circuitry imposes operational limitations at low light intensity levels. This is considered to be the biggest factor. This noise, which masks small optical signals, results from mismatches in parasitic capacitance and thermally generated carriers. Furthermore
In the case of a CCD, noise is introduced due to transfer loss.

MOS型むメヌゞセンサにおいおは、走査回
路、ホトダむオヌド及びビデオ出力郚における
MOSトランゞスタの寄生ゲヌト・゜ヌス間MOS
容量ず寄生ゲヌト・ドレむン間MOS容量これ
らの容量は盎列に接続されおいる等における䞍
敎合から生ずる容量性雑音が問題ずなる。これら
のMOSトランゞスタはアレむ内の個々の受光玠
子郚をアドレスするためのアナログスむツチずし
お動䜜する。
In MOS image sensors, the scanning circuit, photodiode, and video output section
Parasitic gate-source MOS of MOS transistor
Capacitive noise arising from mismatch between capacitance and parasitic gate-drain MOS capacitance (these capacitances are connected in series) becomes a problem. These MOS transistors operate as analog switches for addressing individual light receiving elements within the array.

これらのトランゞスタがタヌン・オン或いはタ
ヌン・オフするずきスむツチされるべきアナログ
光信号線䞊にそれらに察応する電圧スパむクが生
ずる。この電圧スパむクはフむルタで枛少させる
こずが可胜だが最倧ビデオ呚波数の倍の所で生
ずるため完党に陀去するこずはできない。
When these transistors turn on or off, they create corresponding voltage spikes on the analog optical signal lines that are to be switched. This voltage spike can be reduced with a filter, but cannot be completely eliminated since it occurs at twice the maximum video frequency.

これらのMOSホトアレむを通しおのスパむク
の倧きさ倉動はビデオ通過垯域における固定パタ
ヌン雑音FPNFixed pattern noiseずな぀
お珟われる。この雑音はフむルタで陀去可胜であ
る。幞い、雑音倉動はスパむクの絶察倀に比べ小
さい。事実、光入力がない状態で、固定パタヌン
雑音FPNから発生する䜎レベルノむズむメ
ヌゞがむメヌゞセンサの出力で珟われる。
Variations in the magnitude of these spikes across the MOS photoarray appear as fixed pattern noise (FPN) in the video passband. This noise can be removed with a filter. Fortunately, the noise fluctuations are small compared to the absolute value of the spikes. In fact, in the absence of optical input, a low-level noise image arising from fixed pattern noise (FPN) appears at the output of the image sensor.

センサ出力で怜出されるスパむク雑音は兞型的
な512画玠デバむスの光センサ玠子郚の容量䞡端
の等䟡雑音電圧ず考えられ、その雑音電圧範囲は
×10-3〜0.5×10-2Voltの範囲にあり、ちようど
実際的な動䜜レベルによく䞀臎しおいる。ホトダ
むオヌドにかけるバむアス電圧に関係する飜和出
力信号電圧は通垞5V皋床であり、玄ダむナミツ
クレンゞずしお100察或いはそれ以䞊ずな぀お
いる。
The spike noise detected in the sensor output is considered to be the equivalent noise voltage across the capacitance of the photosensor element of a typical 512-pixel device, and the noise voltage range is between 1×10 -3 and 0.5×10 -2 Volt. , and corresponds well to the practical level of operation. The saturated output signal voltage, which is related to the bias voltage applied to the photodiode, is usually about 5V, and has a dynamic range of about 100:1 or more.

しかるにCCDでは、スむツチングトランゞス
タにおけるスパむクから来る固定パタヌン雑音に
よ぀おは圱響を受けない。むしろ、クロツクラむ
ンず出力ラむンずの間の容量キダパシタから
生ずる固定パタヌン雑音がある。幞いなこずに、
これらの雑音パルスはすべお同じ高さであり、
low−pass filtersで陀去可胜である。しかし、こ
れらのフむルタ電力を消費し、か぀スペヌスをず
る。
However, CCDs are not affected by fixed pattern noise from spikes in switching transistors. Rather, there is fixed pattern noise resulting from the capacitance between the clock line and the output line. Fortunately,
These noise pulses are all of the same height,
Can be removed with low-pass filters. However, these filters consume power and take up space.

この寄生容量結合雑音を枛少させるも぀ずよい
方法は、同じむメヌゞセンサチツプ䞊にビデオ前
眮増幅噚video preamplifiersを補造するこ
ずである。同じチツプ䞊に補造した方がチツプ倖
に倖付けで増幅噚を付けるより増幅噚に察する寄
生結合容量の倀を小さくできるこずから雑音が枛
少するわけである。
A convenient way to reduce this parasitic capacitive coupling noise is to fabricate video preamplifiers on the same image sensor chip. When manufactured on the same chip, the value of the parasitic coupling capacitance to the amplifier can be made smaller than when an amplifier is attached externally to the chip, which reduces noise.

MOS型センサ及びCCD型センサにおいおずも
に存圚する固定パタヌン雑音FPNは熱的な
効果熱的に発生したキダリアからも生ずる。
しかしながらCCD型センサはMOS極センサに比
べ、熱的な効果に察しおより圱響を受けやすい。
それは、CCDの堎合、衚面が非平衡状態にあ
り、これにより熱的な䞍安定性が生じおいるから
である。
Fixed pattern noise (FPN), present in both MOS and CCD sensors, also arises from thermal effects (thermally generated carriers).
However, CCD type sensors are more susceptible to thermal effects than MOS polar sensors.
This is because in the case of a CCD, the surface is in a non-equilibrium state, which causes thermal instability.

このタむプの雑音は通垞のデバむスで、10ÎŒ
cm3以䞋の光匷床レベルで100sec以䞊の光照
射期間を動䜜させる堎合に非垞に問題ずなる。
This type of noise is typical for devices with 10Ό
This becomes a serious problem when operating with a light irradiation period of 100 msec or more at a light intensity level of W/cm 3 or less.

なぜならば、これらの光匷床及び光照射期間レ
ベルにおいお発生する暗電流のかなりの郚分が雑
音ずしお発生し、究極的な動䜜限界を䞎えるから
である。
This is because a significant portion of the dark current generated at these light intensity and light irradiation period levels is generated as noise, providing an ultimate operational limit.

しかるにCCD型むメヌゞセンサにおいおは固
定パタヌン雑音以䞊にも぀ず動䜜に圱響を䞎える
ものに転送損倱雑音transfer lossnoiseがあ
る。転送動䜜埌のあずに残された電荷の結果ずし
お生ずるこのタむプの雑音はセンスされた画面䞊
に、センスされた癜色スポツトの片偎ぞ癜色スミ
アずしお珟われる。転送されおいる電荷量が倚い
堎合に、高茝床スポツトずしお最も顕著に珟われ
る。䟋えば、10-5per transferの転送損倱
99.999が有効で512画玠アレむ盞クロツ
クデバむスずしお1024転送が動䜜するずする
ず、党転送損倱ずしお10-2になる。盞クロツク
の堎合には同じ転送効率ずしお、党転送損倱電荷
はさらに増加する。転送損倱雑音はたたCCDの
も぀露出範囲を枛少させ埓぀お基本的にセンサが
怜出できるコントラストを枛少させおしたう。転
送損倱雑音を枛少させる䞀぀の方法はむオン泚入
等によ぀お衚面から玄Ό皋床の深さに転送チ
ダンネルを埋め蟌むこずである。埋め蟌みチダン
ネル䞭を転送される電荷は半導䜓ず酞化膜界面に
存圚する衚面トラツプによ぀お匕き起こされる電
荷の非転送ずいう衚面トラツプ雑音の圱響を受け
ない。
However, in CCD image sensors, there is transfer loss noise that affects operation more than fixed pattern noise. This type of noise, which occurs as a result of the charge left behind after the transfer operation, appears on the sensed screen as a white smear to one side of the sensed white spot. This appears most conspicuously as a high-intensity spot when the amount of charge being transferred is large. For example, if a 512 pixel array (1024 transfers as a two-phase clock device) is operated with a transfer loss of 10 -5 per transfer (99.999% effective), the total transfer loss is 10 -2 . In the case of a three-phase clock, the total transfer loss charge increases even more with the same transfer efficiency. Transfer loss noise also reduces the exposure range that the CCD has and therefore essentially reduces the contrast that the sensor can detect. One method for reducing transfer loss noise is to bury a transfer channel to a depth of about 1 ÎŒm from the surface by ion implantation or the like. The charge transferred in the buried channel is not affected by surface trap noise, the non-transfer of charge caused by surface traps present at the semiconductor-oxide interface.

しかしながら、いく぀かの雑音源の䞭にはたず
えば熱雑音のような垞に存圚するが簡単には取り
陀けないものもある。この熱雑音は䜎光匷床レベ
ルでのセンサの動䜜パフオヌマンスの限界を䞎え
る。すべおの増幅噚及びすべおの抵抗は熱雑音の
圱響を受ける。むメヌゞシステムにおいおはむメ
ヌゞセンサの出力に接続される回路がこの雑音を
発生させる。この䟋においお、増幅噚出力に珟わ
れる熱雑音信号は゜ヌスむンピヌダンスず増幅噚
の雑音パラメヌタの関数ずな぀おいる。第
図 第図に埓来のむメヌゞセンサの出力
郚、特にオペアンプ郚分の回路を瀺す。
However, some noise sources, such as thermal noise, are always present and cannot be easily removed. This thermal noise limits the sensor's operational performance at low light intensity levels. All amplifiers and all resistors are subject to thermal noise. In image systems, circuitry connected to the output of the image sensor generates this noise. In this example, the thermal noise signal appearing at the amplifier output is a function of the source impedance and the noise parameters of the amplifier. (4th
Figures 4a and 4b show the circuitry of the output section of a conventional image sensor, particularly the operational amplifier section.

第図は通垞の䜎雑音、高利埗なオペアンプ
をむメヌゞセンサに接続した䟋であ
り、第図は電荷増幅噚ず呌ばれるもので、第
図の容量C1を極力小さくするこずに
よ぀おリセツト抵抗R1に䌎うJohnson雑
音、を枛少させるこずができる。第図
で、むメヌゞセンサの出力は結局、゜ヌス
むンピヌダンスで瀺される容量C1で衚わ
されおおり、それに䞊列に電源E1に盎列なリセ
ツト抵抗R1及びそれに䌎うJohnson雑音源
が衚わされおいる。オペアンプ自䜓
の雑音源は及びで瀺されおいる。
R2は出力からのフむヌドバツク抵
抗である。この第図で瀺されたオペアンプに
察し第図ではJohnson雑音源を極力小
さくする電荷増幅噚が瀺されおいる。第図で
もむメヌゞセンサの出力は結局゜ヌスむン
ピヌダンスで瀺される容量で瀺されおい
る。オペアンプ自䜓の入力偎には等䟡的な
オペアンプ雑音源及び電源E1に盎列なオ
ペアンプ雑音源が䞎えられ、オペアンプ出
力からのフむヌドバツク量ずしおリセツト
抵抗R1及び容量C1及びR1に
䌎うJohnson雑音源が䞎えられおいる。
Figure 4a shows an example in which an ordinary low-noise, high-gain operational amplifier 136 is connected to the image sensor 130, and Figure 4b shows what is called a charge amplifier, and the capacitance C 1 146 in Figure 4b is minimized. By doing so, the Johnson noise 145 associated with the reset resistor R 1 144 can be reduced. Figure 4a
In the end, the output of the image sensor 130 is represented by a capacitance C 1 indicated by a source impedance 131, and in parallel therewith a reset resistor R 1 132 in series with the power supply E 1 and an accompanying Johnson noise source 133 are represented. has been done. The noise sources of operational amplifier 136 itself are shown at 135 and 134.
R 2 138 is the feedback resistance from output 137. In contrast to the operational amplifier shown in FIG. 4a, FIG. 4b shows a charge amplifier that minimizes the Johnson noise source 145. Also in FIG. 4b, the output of the image sensor 139 is shown as a capacitance indicated by a source impedance 140. An equivalent operational amplifier noise source 141 and an operational amplifier noise source 142 in series with the power supply E 1 are provided on the input side of the operational amplifier 143 itself, and the feedback amount from the operational amplifier output 147 is a reset resistor R 1 144, a capacitor C 1 146, and R A Johnson noise source 145 associated with 1 144 is given.

モノリシツク集積化されたむメヌゞセンサにお
いおは、゜ヌスむンピヌダンスは呚蟺を陀くむメ
ヌゞセンサ本䜓の出力端子ず接地点ずの間のキダ
パシタンスであり、その容量が倧きければ倧きい
ほど、増幅噚出力に珟われる雑音もそれだけ倧き
くなる。
In a monolithically integrated image sensor, the source impedance is the capacitance between the output terminal of the image sensor body excluding the surroundings and the ground point, and the larger the capacitance, the greater the noise appearing in the amplifier output. .

このタむプの雑音はMOS型むメヌゞセンサが
その出力に接続された高容量のバスラむンを有す
るため、CCD型むメヌゞセンサに比べMOSåž‹ã‚€
メヌゞセンサにおいおより顕著に珟われる。しか
し、高感床、高利埗、䜎雑音のオペアンプが䜎コ
ストで手に入るならばそれほどむメヌゞセンサの
動䜜パフオヌマンスを制限する条項ずはならな
い。
This type of noise appears more prominently in MOS image sensors than in CCD image sensors because MOS image sensors have high-capacitance bus lines connected to their outputs. However, if operational amplifiers with high sensitivity, high gain, and low noise are available at low cost, this provision will not limit the operational performance of the image sensor so much.

さらにたた別の雑音源は第図に瀺されるよ
うなリセツト抵抗R1に存圚する雑音である。こ
の抵抗はビデオ信号䞊に倧きさqnoiseKTC1の
等䟡雑音電荷Johnson noiseず呌ばれるを発
生させる。即ちリセツト抵抗に䞊列な容量が倧き
ければ倧きいほど、それだけ等䟡雑音電荷も倧き
くなる。幞い第図に瀺されるような電荷増幅
噚は、容量C1を非垞に小さくするこずによ぀お
この基本的な雑音源の圱響を枛少させるために甚
いるこずができる。高入力光匷床レベルを蚘述す
るパラメヌタである露出飜和の問題、即ち露出飜
和ずは䞀般的にフオトアレむ䞊のセンス画玠に光
照射期間に蓄積されうる最倧電荷量の関数ずな぀
おいる。光照射期間ずは照射されたむメヌゞを衚
珟する電荷を集める時間のこずである。通垞、光
照射期間はフレヌム時間ずな぀おいる。
Yet another noise source is the noise present in reset resistor R1 as shown in FIG. 4a. This resistor generates an equivalent noise charge (called Johnson noise) of magnitude qnoise=KTC 1 on the video signal. That is, the larger the capacitance in parallel with the reset resistor, the larger the equivalent noise charge. Fortunately, a charge amplifier such as that shown in FIG. 4b can be used to reduce the effect of this fundamental noise source by making capacitance C 1 very small. Exposure saturation, a parameter that describes high input light intensity levels, is generally a function of the maximum amount of charge that can be stored in a sense pixel on a photoarray during a light exposure period. The light irradiation period is the time during which charges representing the irradiated image are collected. Usually, the light irradiation period is a frame time.

MOS型むメヌゞセンサにおいおは蓄積されう
る最倧信号電荷はホトダむオヌドぞ印加されるバ
むアス電圧に䟝存する。CCD型むメヌゞセンサ
においおは、蓄積される衚面のポテンシダルに䟝
存する。
In a MOS image sensor, the maximum signal charge that can be accumulated depends on the bias voltage applied to the photodiode. In a CCD image sensor, it depends on the accumulated surface potential.

CCD型むメヌゞセンサにしおもMOS型むメヌ
ゞセンサにしおもその画玠は同様な幟䜕孊的寞法
及び同様な蓄積ポテンシダルレベルを持぀おいる
ため飜和露光レベルは䞡デバむスずもに同じよう
な倀におさた぀おいる。
The pixels of both CCD and MOS image sensors have similar geometric dimensions and storage potential levels, so the saturation exposure level is similar for both devices. .

䞡センサの最倧入射光匷床レベルの蚱容倀は画
玠の蓄積容量を増加させるずずもに画玠以倖の他
の領域を入射光からマスクするこずによ぀お蚱容
倀の最倧化を蚈るこずが可胜である。このように
モノリシツク構成化するこずによ぀お被芆されお
いる領域の雑音を小さく保ちながらラむン走査ア
レむにおける光の受容胜力を増倧させるこずがで
きるわけである。モノリシツク集積化された゚リ
アセンスアレむではこのような構成ではあたり利
点は埗られない。なぜならば容量増加を達成させ
るためにより倧きな画玠を぀くるずいう結果から
起こる空間的解像床が損われるずいうこずが起こ
るからである。
The allowable value of the maximum incident light intensity level of both sensors can be maximized by increasing the storage capacity of the pixel and masking areas other than the pixel from the incident light. This monolithic construction increases the light receiving capacity of the line scan array while keeping noise in the covered area low. Monolithically integrated area sense arrays do not offer much advantage in this configuration. This is because a loss of spatial resolution occurs as a result of creating larger pixels to achieve increased capacity.

MOS型むメヌゞセンサではこのようなやり方
で極めお倧きな利点を受ける。なぜならばMOS
型ではpn接合が光画玠ずな぀おおり、即座に読
出されるからである。他方、CCDにおいおは、
隣接しお容量からなるホトアレむを構成するこず
により光画玠の寞法は倧きくできるが、䞀方、同
時に隣接した光キダパシタからアナログCCDシ
フトレゞスタぞ信号電荷を転送させるのに芁する
時間が増倧する。
MOS image sensors benefit greatly from this approach. Because M.O.S.
This is because in the type, the pn junction serves as an optical pixel and is read out immediately. On the other hand, in CCD,
By configuring a photoarray of adjacent capacitors, the size of the optical pixel can be increased, but at the same time, the time required to transfer signal charges from the adjacent optical capacitors to the analog CCD shift register increases.

転送効率の䜎いCCDでは、電極間の転送にお
いお埌に残された電荷がデバむスの出力端子にむ
メヌゞずしお䞍鮮明さずな぀お珟われる珟象があ
る。䞍幞にも、CCDにおける䞍鮮明さを匕き起
こす転送損倱は転送数増加ばかりでなく䜎光匷床
レベルでも増加する。しかしながら、MOSむメ
ヌゞセンサでは唯䞀回の転送だけであるため転送
に䌎う䞍鮮明さはない。぀たり信号は䞀぀のアナ
ログスむツチを通しおのみ出力ぞ到達するわけで
ある。
In CCDs with low transfer efficiency, there is a phenomenon in which charges left behind during transfer between electrodes appear as a blurred image at the output terminal of the device. Unfortunately, the transfer losses that cause blur in CCDs increase not only with increasing number of transfers, but also with low light intensity levels. However, with a MOS image sensor, the image is transferred only once, so there is no blurring associated with the transfer. In other words, the signal reaches the output only through one analog switch.

以䞊で先行技術の説明を終る。 This concludes the explanation of the prior art.

本発明の目的を列挙するず以䞋のようになる。 The objects of the present invention are listed below.

本発明の目的は固䜓むメヌゞセンサの動䜜特性
を評䟡する぀の芁玠、(1)ダむナミツクレンゞ、
(2)感床sensitivity、(3)雑音noise、(4)解像
床image clarityのすべおの芁玠にわたり埓
来のCCD型、MOS型のむメヌゞセンサの欠点を
補い、か぀原理的にた぀たく新しいむメヌゞセン
サを提䟛するこずにある。
The purpose of the present invention is to evaluate four elements for evaluating the operating characteristics of a solid-state image sensor: (1) dynamic range;
(2) Sensitivity, (3) Noise, (4) Resolution (image clarity) It compensates for the shortcomings of conventional CCD type and MOS type image sensors, and also protects them in principle. Our goal is to provide a new image sensor.

基本的着想は既に「半導䜓装眮」特開昭55−
124259号1980幎月25日公開、IEEE
Transactions on Electron Devices、Vol.ED−
26、No.12、December1979の“Static Induction
Transistor Image Sensors”に掲茉されおい
る。
The basic idea was already "semiconductor device" published in 1983.
No. 124259 (published September 25, 1980), IEEE
Transactions on Electron Devices, Vol.ED−
26, No. 12, December 1979 “Static Induction
Transistor Image Sensors”.

具䜓的に、本発明の目的の䞀぀はMOS型、
CCD型に比べダむナミツクレンゞが通垞技術で
の動䜜で少なくずも桁は向䞊するむメヌゞセン
サを提䟛するこずである。
Specifically, one of the objects of the present invention is MOS type,
The object of the present invention is to provide an image sensor whose dynamic range is improved by at least one order of magnitude compared to a CCD type when operated using conventional technology.

別の目的の䞀぀は光に察するむンピヌダンスの
マツチングがずれ、か぀光の入力衚面がFlatにな
され、ほが光があた぀た党領域すべおが光画玠ず
な぀たむメヌゞセンサを提䟛するこずである。
Another object is to provide an image sensor in which the impedance to light is matched, the light input surface is made flat, and almost the entire area hit by light becomes an optical pixel.

さらに本発明の目的の䞀぀は光が照射される入
力衚面が平坊でか぀光に察するむンピヌダンスマ
ツチングがずられおおりか぀光の集光甚のレンズ
状になされた領域を有する、埓぀お光によ぀お発
生したキダリアの集積䜜甚が働き解像床、感床の
向䞊のなされたむメヌゞセンサを提䟛するこずで
ある。
Furthermore, one of the objects of the present invention is that the input surface on which the light is irradiated is flat, has an impedance matching for the light, and has a lens-shaped area for concentrating the light. It is an object of the present invention to provide an image sensor in which the accumulation effect of the carriers thus generated is activated and the resolution and sensitivity are improved.

別の目的の䞀぀は特に裏面照射back
illumination型のむメヌゞセンサで埓来問題ず
な぀おいる基板の厚みを薄くする問題があるが、
これを本質的に改善し、構造的に基板をそれほど
薄くする必芁がなく、埓぀お空間的解像床が向䞊
し集積床も向䞊したむメヌゞセンサを提䟛するこ
ずにある。
Another purpose is to specifically back-illuminate (back-illuminated)
There is a problem with thinning the substrate, which is a conventional problem with illumination type image sensors.
The object of the present invention is to essentially improve this and provide an image sensor that does not require a structurally very thin substrate, and therefore has an improved spatial resolution and an improved degree of integration.

埓぀お、本発明の目的の䞀぀は、䞊蚘の埌半
぀を組み合わせるこずにより埓来のCCD、MOS
䞡むメヌゞセンサに比べ感床の向䞊がなされたむ
メヌゞセンサを提䟛するこずでもある。
Therefore, one of the objects of the present invention is to achieve the second half of the above.
Conventional CCD, MOS
Another object of the present invention is to provide an image sensor with improved sensitivity compared to both image sensors.

曎に、本発明の目的の䞀぀はMOS型、及び
CCD型ずもにさけるこずのできない熱的に励起
されたキダリアにずもなう熱励起雑音を極端に枛
少させた、埓぀お暗電流が極めお枛少したむメヌ
ゞセンサを提䟛するこずである。
Furthermore, one of the objects of the present invention is the MOS type and
It is an object of the present invention to provide an image sensor in which thermal excitation noise accompanying a thermally excited carrier, which cannot be avoided in both CCD types, is extremely reduced, and dark current is extremely reduced.

曎に、本発明の別の目的の䞀぀は、MOS型、
CCD型等の埓来のむメヌゞセンサず同皋床に存
圚する寄生容量性ノむズ、固定パタヌンノむズ
FPN等を䜎域通過フむルタLow pass
filter、高利埗・䜎雑音オペアンプを甚いお枛少
させたむメヌゞセンサシステムを提䟛するこずで
ある。
Furthermore, one of the other objects of the present invention is the MOS type,
Parasitic capacitive noise, fixed pattern noise (FPN), etc., which exist to the same extent as conventional image sensors such as CCD type, are removed using a low pass filter (low pass filter).
The objective of the present invention is to provide an image sensor system using a high-gain, low-noise operational amplifier.

曎に、本発明の別の倧きな目的の䞀぀は、埓来
のMOS型、CCD型等のむメヌゞセンサでは光照
射期間light integration timeの間蓄積され
た光情報が䞀旊、読み出されおしたうず消えおし
たう、即ち砎壊読み出しであ぀たのに察し、䞀旊
読み出されおもリフレツシナ甚のトランゞスタが
動䜜するたでは䜕回でも読み出し可胜で時間的な
解像床も向䞊した非砎壊読み出しの動䜜をするむ
メヌゞセンサを提䟛するこずにある。
Furthermore, one of the major objects of the present invention is that in conventional MOS type, CCD type, etc. image sensors, once the light information accumulated during the light irradiation period (light integration time) is read out, Whereas it was a destructive readout in which the data disappears, it is possible to perform a non-destructive readout operation with improved temporal resolution and can be read out any number of times until the refresh transistor operates once it has been read out. The purpose is to provide sensors.

曎に、䞊蚘、非砎壊読み出しの動䜜においお、
光照射期間のうちに非砎壊動䜜であるため、䜕回
でも読み出しが可胜であり、しかも䞀旊読み出さ
れおも前の履歎は残぀おおり、埓぀お、サンプリ
ングパルスを䜿぀お光照射時間を分割し、光照射
期間の間に時々刻々ず倉わる光情報をサンプリン
グしながら積分しお読むこずが可胜であり、その
ような読み出し機胜を備えたむメヌゞセンサを提
䟛するこずも本発明の目的の䞀぀である。
Furthermore, in the non-destructive read operation mentioned above,
Since it is a non-destructive operation during the light irradiation period, it can be read out any number of times, and even once read out, the previous history remains, so the light irradiation time can be divided using sampling pulses. However, it is possible to sample, integrate and read light information that changes moment by moment during the light irradiation period, and one of the objects of the present invention is to provide an image sensor equipped with such a readout function. It is.

曎に、䞊蚘の光照射期間でのサンプリングのや
り方にはさたざたなやり方があり、䞀䟋ずしおサ
ンプリングを察数尺にしお、䟋えば10secの
integration timeを100nsec、Όsec 10ÎŒsec、
100ÎŒsec、sec、10secで察数的にサンプリ
ングしお、それぞれの出力電圧を別のメモリ郚等
にストアし、それを出力する方匏のむメヌゞセン
サを提䟛するこずも本発明の目的の䞀぀である。
Furthermore, there are various methods of sampling during the above-mentioned light irradiation period; one example is sampling on a logarithmic scale, for example, 10 msec.
integration time 100nsec, 1ÎŒsec 10ÎŒsec,
Another object of the present invention is to provide an image sensor that samples logarithmically at 100 ÎŒsec, 1 msec, and 10 msec, stores each output voltage in a separate memory unit, and outputs the same.

以䞋、図面を参照しながら本発明を詳现に説明
する。
Hereinafter, the present invention will be explained in detail with reference to the drawings.

本発明は固䜓むメヌゞセンサの動䜜特性を評䟡
する぀の芁玠、(1)ダむナミツクレンゞ、(2)感床
sensitivity、(3)雑音noise、(4)解像床
image clarityのすべおの芁玠にわたり埓来の
固䜓むメヌゞセンサの欠点を補いか぀原理的には
た぀たく新しいむメヌゞセンサを提䟛したもので
あり、曎に光が照射されおいる時間light
integration time内に䜕回読み出し動䜜を行な
぀おも情報が消えないような、即ち非砎壊読み出
しのむメヌゞセンサを提䟛したものである。
The present invention evaluates all four elements for evaluating the operating characteristics of solid-state image sensors: (1) dynamics range, (2) sensitivity, (3) noise, and (4) image clarity. It compensates for the shortcomings of conventional solid-state image sensors in all aspects and provides a completely new image sensor in principle.
The present invention provides an image sensor in which information does not disappear no matter how many times the readout operation is performed within an integration time, that is, non-destructive readout.

以䞋、図面を参照しながら本発明の実斜䟋を説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

〔本発明の構造〕[Structure of the present invention]

第図は本発明実斜䟋の䞀぀であるフツク
hook構造を利甚した光センス領域ずそれに接
続されたSIT逆導電型からなるQ1及びリフレ
ツシナ甚トランゞスタチダンネルSITQ2か
らなるSITむメヌゞセンサの䞀䟋である。
FIG. 5 shows a light sensing region using a hook structure, which is one of the embodiments of the present invention, and a SIT (of the opposite conductivity type) Q 1 and a refresh transistor (P channel SIT) Q 2 connected thereto. This is an example of a SIT image sensor consisting of:

動䜜を説明するず、䞀定バむアス電圧s
を印加された透明電極これはSnO2或
いはIn2O3或いはドヌプトポリシリコン等で圢成
されおいる、を透過しお䟵入した光入力は+
++からなるフツク構造の特に+å±€
近傍の高抵抗局で電子正孔察を発生させる。
高抵抗領域は、印加電圧sにより完党に党領
域が空乏化し、殆んどの領域にキダリアが飜和速
床で走行するような電界が加わるようになされお
いる。発生した電子はすべおsバむアス
により匕぀ぱられ+局に吞収されるが、察発
生した正孔は+領域にたたる。これはバむア
ス電圧sにより領域がほずんど空乏
化しおおり、局の厚た党䜓にわた぀お匷電界
が加わるように蚭定されおいるためである。+
局に正孔が蓄積するず、+局は正に垯電す
る。すなわち、+領域の電子に察する障壁電
䜍が䜎䞋するわけである。これによりフロヌテむ
ング状態になされおいる++接合においお
+領域の電子が薄い+領域をこえお基板偎
に流れるようになる。すなわち䞀定バむアスされ
たフツク構造++in+の局に䞀定匷床の光が
時間の間あた぀たずき、接地点ずの間でキダパ
シタを圢成しおいる+領域の電䜍は
電子が流出するに぀れお正に垯電するようにな
り、+領域が極めお薄い堎合、䞀次元モデル
ずしお単䜍受光面積圓り略々 〓 

(1) で䞎えられる。ここで光入力信号の光子密
床、光速、単䜍電荷、Cfフロヌテむ
ング+領域の容量、光照射時間である。こ
の匏は本発明者らの既に発衚した論文IEEE
Transactions on Electron Devices、Vol.ED−
26、No.12、December 1979、PP・1970−1977
䞭、第1976頁に掲茉されおいる。匏(1)の意味する
所は、光入力に察しおほが完党にリニアな特性で
電圧が埗られるずいうこずである。すな
わち、光匷床及び光照射時間に盎線的に比䟋しお
+領域の電䜍は増加する。埓぀お第図の
+領域は匏(1)で瀺される電䜍に正に
バむアスされるこずになる。
To explain the operation, a constant bias voltage V s
The light input that penetrates through the transparent electrode 4 to which (+) is applied (this is formed of SnO 2 or In 2 O 3 or doped polysilicon, etc.) is n + 8.
Electron-hole pairs are generated particularly in the high resistance layer 6 near the n + layer 5 of the hook structure consisting of p + 7i6n + 5.
The entire region of the high resistance region 6 is completely depleted by the applied voltage Vs , and an electric field is applied to most of the region so that carriers travel at a saturation speed. All the generated electrons are pulled by the V s (+) bias and absorbed into the n + layer 5, but the pairs of holes generated accumulate in the p + region 7. This is because the i-region 6 is almost depleted by the bias voltage V s (+), and the setting is such that a strong electric field is applied over the entire thickness of the i-layer. p +
When holes accumulate in layer 7, p + layer 7 becomes positively charged. In other words, the barrier potential of n + region 8 to electrons decreases. As a result, electrons in the n + region 8 of the n + 8p + 7 junction in a floating state flow over the thin p + region 7 to the substrate side. In other words, when light of a constant intensity hits the i-layer of the hook structure n + p + in + with a constant bias for a time t, the potential V of the n + region 8 forming a capacitor with the ground point (t) becomes positively charged as electrons flow out, and when the p + region 7 is extremely thin, as a one-dimensional model, approximately V(t)〓SCq/Cft per unit light-receiving area...(1) Given. Here, S: photon density of optical input signal, C: speed of light, q: unit charge, Cf: capacitance of floating p + region, t: light irradiation time. This formula is based on the paper IEEE published by the inventors.
Transactions on Electron Devices, Vol.ED−
26, No. 12, December 1979, PP・1970−1977
Published in, p. 1976. Equation (1) means that voltage V(t) can be obtained with almost completely linear characteristics with respect to optical input. That is, the potential of the n + region 8 increases linearly in proportion to the light intensity and the light irradiation time. Therefore, the n + region 8 in FIG. 5a is positively biased to the potential V(t) shown by equation (1).

第図の各郚を説明する。はビツト線であ
りSITQ1の+゜ヌス領域の電極ポリシリ
コンもしくはポリシリコンずMo、、Pt等の高
融点金属あるいはシリサむドに接続されおい
る。はワヌド線でありSITQ1の+ゲヌト′の
拡散線もしくは郚分的にポリシリコンもしくは高
融点金属等で抵抗を䞋げたラむンからな぀おい
る。″はポリシリコンあるいはポリシリコンず
高融点金属MO、、Pt等やシリサむドずの
組み合わせによる電極である。はリフレツシナ
線でありSITQ3の+ゲヌト′の拡散線もしくは
郚分的に金属或いはポリシリコン等で抵抗を䞋げ
たラむンからな぀おいる。″はポリシリコンあ
るいはポリシリコンず高融点金属Mo、、Pt
等やシリサむドずの組み合わせによる電極であ
る。は光入力を受ける透明電極SnO2 or
In2O3等であり電源sに接続されおい
る。は+拡散領域で䞍玔物密床は1019〜1021cm
-3皋床にドヌプされおいる。あたり、䞍玔物密床
を高くしすぎるず、犁制垯幅が狭くなり、この領
域での短波長偎の入力光の吞収が激しく起り、光
電怜出領域にたで短波長光が到達しにくくなる欠
点を瀺す。したが぀お、+領域の䞍玔物密床
は、高すぎない方がよい。たたその厚さも、可芖
光の䟵入深さより薄いこずが望たしい。波長5000
Åの光の䟵入深さはΌ皋床であり、4400Åの
光になるず0.5Ό皋床になる。したが぀お、青
や玫の光に察する感床を十分高くするには、+
領域は0.5Ό皋床より薄いこずが望たしい。さ
らに、青や玫の感床を向䞊させるためには、+
領域を蚭けず、透明電極をシペツトキ接合にす
ればよい。この堎合には、高抵抗領域衚面に局圚
しお励起される正孔も、蓄積領域に流れ蟌むよ
うになる。
Each part of FIG. 5a will be explained. A bit line 1 is connected to the electrode (polysilicon or polysilicon and high melting point metal such as Mo, W, Pt, etc., or silicide) of the n + source region 12 of SITQ 1 . Reference numeral 2 denotes a word line, which is made up of a diffusion line of the p + gate 2' of SITQ 1 or a line partially made of polysilicon or a high melting point metal to lower the resistance. 2'' is an electrode made of polysilicon or a combination of polysilicon and a high melting point metal (MO, W, Pt, etc.) or silicide. 3 is a refresh line, which is a diffusion line or a partial diffusion line of the n + gate 3' of SITQ 3 . It consists of a line made of metal or polysilicon to lower the resistance. 3" is made of polysilicon or polysilicon and a high melting point metal (Mo, W, Pt).
etc.) and silicide. 4 is a transparent electrode (SnO 2 or
In 2 O 3 etc.) and is connected to the power supply V s (+). 5 is the n + diffusion region and the impurity density is 10 19 to 10 21 cm
It is doped to about -3 . If the impurity density is made too high, the forbidden band width becomes narrow, and input light on the shorter wavelength side is intensively absorbed in this region, resulting in a drawback that it becomes difficult for short wavelength light to reach the photoelectric detection region. Therefore, the impurity density of n + region 5 should not be too high. It is also desirable that the thickness is thinner than the penetration depth of visible light. wavelength 5000
The penetration depth of light of Å is about 1 ÎŒm, and for light of 4400 Å, the penetration depth is about 0.5 ÎŒm. Therefore, to make the sensitivity to blue and violet light sufficiently high, n +
The region is preferably thinner than about 0.5 ÎŒm. Furthermore, in order to improve the sensitivity of blue and violet, n +
It is sufficient that the region 5 is not provided and the transparent electrode is formed by a shot junction. In this case, holes locally excited on the surface of the high resistance region also flow into the accumulation region 7.

本発明のむメヌゞセンサの動䜜原理はそのたた
で、赀倖領域に盞察感床特性のピヌクを持぀よう
な赀倖甚のむメヌゞセンサずするこずができる。
それを実珟する手段ずしお、第図の+領域
郚分及び透明電極郚分にSiより犁制垯幅の狭
い材料を゚ピタキシダル、もしくはCVD、或い
は蒞着で圢成させ、長波長偎での盞察感床を向䞊
させるこずができる。たずえば、HgCdTeをSi侊
に蚭けお、HgずCdの組成を制埡すれば非垞に波
長範囲の広いむメヌゞセンサずするこずができ
る。
The image sensor of the present invention can be made into an infrared image sensor having a peak of relative sensitivity characteristics in the infrared region while maintaining the same operating principle.
As a means to achieve this, a material with a narrower bandgap than Si is formed epitaxially, CVD, or vapor deposited on the n + region portion 5 and the transparent electrode portion 4 in FIG. Sensitivity can be improved. For example, by providing HgCdTe on Si and controlling the composition of Hg and Cd, it is possible to create an image sensor with a very wide wavelength range.

他方、本発明のむメヌゞセンサを可芖光の短波
長偎で盞察感床特性のピヌクを持぀ようなむメヌ
ゞセンサずしお動䜜させる手段ずしおは、第図
an+領域及び透明電極郚分に間接遷移型で犁
制垯幅の広いGaP、もしくはInGaPのような材料
を、゚ピタキシダル、もしくはCVDあるいは蒞
着等で圢成させればよい。は高抵抗領域であり
×1013〜×1014cm-3皋床の-或いは-でも
あるいはそれ以䞋の䞍玔物密床の領域でもよく、
sず厚みの関係はほが党領域が空乏化
しおいるこずが条件である。は+拡散もしく
はむオン泚入領域であり、++in+のフツク構
造で正孔が蓄積される領域ずな぀おおり、同時に
チダンネルSITQ2の゜ヌス領域ずな぀おいる。
+領域の厚さは、正孔が蓄積しお+領域か
ら電子が高抵抗領域に効率よく流れ出すために
薄い皋望たしい。たずえば、0.2Ό〜Ό皋
床である。は+領域に隣接した+領域でキ
ダパシタCsにより接地点ずの間は分離されおお
り、SITQ1Q2が非導通状態の時は+領域及
び+領域ずもに完党にフロヌテむングにな぀
おいる。光照射に察し、この+領域が(1)匏で
近䌌的に瀺されるようなに充電されるわ
けである。匏(1)の右蟺分子の項Scqtは、入射光
光子密床で光照射期間のずきの、光怜出領域
で励起された正孔の電荷総量である。+蓄積領
域の電䜍倉化が、光により励起された電荷総量
を、+領域の静電容量Cfで割぀た倀で、䞎え
られるずいうのが匏(1)の内容である。+領域
が劂䜕に倧きな蓄積容量Csを持぀おいたにしお
も、そのCsの倀に殆んど関係なく、+領域の
電䜍は決たるのである。これは、+領域の電
䜍ずある぀り合぀た電䜍になるたで、+領域
から電子が流出し続けるこずに由来しおいる。し
たが぀お、+領域が倧きな蓄積容量Csを持぀
おいるにしおも、+領域の静電容量Cfを小さ
くすれば感床は十分に高くなる。埓来のMOS型
むメヌゞセンサでは、蓄積領域に盎接、光励起さ
れたキダリアを蓄積するから、蓄積領域の電䜍は
ScqtCsで䞎えられるこずになる。フツク構造
を有した本発明の光怜出ず埓来型むメヌゞセンサ
の光怜出では、この光怜出郚ですでに、CsCf
倍だけ感床が異な぀おいる。Cfの䞻芁郚は、+
領域ず+領域の接合容量であるから、この
接合面積をある皋床小さく抑えれば、CsCfを
10〜100倍皋床に容易にできる。′はこの+領
域の電極でありポリシリコン等で圢成され、
Csを倧きくするためにほがセル党面にわたり圢
成されおいる。は′䞊に厚さ玄1000Åもし
くは200Å〜1000Åに圢成された酞化膜もしく
はSi3N4膜、Ta2O5膜あるいはそれらの耇合膜で
あり、はアヌス電極を圢成するAlもしくは
ポリシリコン等で圢成されおいる。この′−
−は蓄積容量Csを圢成しおおり、むメヌゞ
センサの感床を䞊げるためにはなるべく倧きい方
がよい。ビツド線の寄生容量をBずするず、
SITQ1が導通された瞬間はビツト線から遞択され
たセルぞ電子電流が流れるわけで、この時のビツ
ト線䞊の電圧䞊昇は、ノヌドが
ScqCf・であるずするずやはり近䌌的に単䜍
受光面面積圓り(1)匏 で䞎えられるこずが実隓的にわか぀おいる。
On the other hand, as a means for operating the image sensor of the present invention as an image sensor having a peak of relative sensitivity characteristics on the short wavelength side of visible light, FIG.
A material such as GaP or InGaP, which is an indirect transition type and has a wide forbidden band width, may be formed in the an + region 5 and the transparent electrode portion 4 by epitaxial, CVD, vapor deposition, or the like. 6 is a high resistance region, which may be a p - or n - region of about 1×10 13 to 1×10 14 cm −3 or a region with an impurity density lower than that;
The relationship between V s (+) and the thickness l requires that almost the entire region be depleted. Reference numeral 7 denotes a p + diffusion or ion implantation region, which serves as a region where holes are accumulated with an n + p + in + hook structure, and at the same time serves as a source region of the P channel SITQ 2 .
The thickness of P + region 7 is desirably as thin as possible in order for holes to accumulate and electrons to efficiently flow from n + region 8 to high resistance region 6 . For example, it is about 0.2 ÎŒm to 3 ÎŒm. 8 is an n + region adjacent to p + region 7 and is separated from the ground point by a capacitor Cs, and when SITQ 1 and Q 2 are non-conducting, both n + region 8 and p + region 7 are completely closed. It is becoming floating. In response to light irradiation, this n + region 8 is charged to V(t) as approximately expressed by equation (1). The numerator term Scqt on the right side of equation (1) is the total charge amount of holes excited in the photodetection region when the incident light photon density S is the light irradiation period t. Equation (1) states that the potential change in the n + storage region 8 is given by the total amount of charges excited by light divided by the capacitance Cf of the p + region 7. n + area 8
No matter how large the storage capacitance Cs is, the potential of the n + region 8 is determined almost regardless of the value of Cs. This continues until the potential of the n + region 8 reaches a certain balance with the potential of the p + region 7.
This is due to the fact that electrons continue to flow out. Therefore, even if the n + region 8 has a large storage capacitance Cs, the sensitivity can be sufficiently increased by reducing the capacitance Cf of the p + region 7. In conventional MOS image sensors, optically excited carriers are accumulated directly in the accumulation region, so the potential of the accumulation region is
It will be given as Scqt/Cs. In the photodetection of the present invention having a hook structure and the photodetection of a conventional image sensor, this photodetection section already has Cs/Cf.
The sensitivity is different by a factor of two. The main part of Cf is n +
Since this is the junction capacitance between region 8 and p + region 7, if this junction area is kept small to a certain extent, Cs/Cf can be reduced.
It can be easily increased by 10 to 100 times. 8' is an electrode of this n + region 8, which is made of polysilicon or the like;
It is formed over almost the entire surface of the cell to increase Cs. 9 is an oxide film, Si 3 N 4 film, Ta 2 O 5 film, or a composite film thereof formed on 8' to a thickness of about 1000 Å (or 200 Å to 1000 Å), and 10 is an Al film forming a ground electrode. Alternatively, it is formed of polysilicon or the like. This 8'-9
-10 forms a storage capacitor Cs, which is preferably as large as possible in order to increase the sensitivity of the image sensor. If the parasitic capacitance of the bit line is C B , then
At the moment SITQ 1 is turned on, an electron current flows from the bit line to the selected cell, and the voltage rise on the bit line at this time is such that node A becomes V(t) =
If Scq/Cf・t, then approximately per unit light-receiving surface area (Equation (1)) It is experimentally known that it is given by

埓぀お光入力に察する出力感床をできるだけ䞊
げるためには呚蟺に関しおはビツト線容量Bを
䞊げるこず、セル本䜓でいえばフロヌテむング
+領域の容量Cfに察する+領域の著積容量
Csの比をできるだけ倧きくずるこずである。
は分離領域であり、通垞SiO2で圢成され、堎
合によ぀おはさらにポリむミド等の絶瞁物で充填
されおいる。はSITQ1の゜ヌス+領域、
はSITQ1のチダンネル-領域であり、SITQ1
は逆導電型チダンネルを有するデバむスずな぀お
いる。これはSITQ2がチダンネルのSITであ
り、-局の補造プロセスを同時に行
うこずからこのような構造ずな぀おいる。さらに
の領域を-にするず-に比べSITQ1の
OFFの時の特性が確実でありSITQ1の゜ヌス
からのチダンネル䞭のバリアをこえおリヌクす
る電子を-に比べ容易に制埡できる。もちろん
SITQ1のチダンネルは1013〜1015cm-3皋床の-å±€
で圢成した堎合も動䜜はできる。この時は+ゲ
ヌト間のチダンネル幅を盞察的に狭く蚭定する必
芁がある。はチダンネルSITQ2のドレむン
領域であり、に接続されお接地電䜍ずな぀お
いる。はチダンネルSITQ2のゲヌト・ドレ
むン間の寄生容量を枛らすために察向する偎面領
域に酞化物、窒化膜等の絶瞁物を圢成した領域で
ある。同様にはSITQ2のゲヌト・゜ヌス間の
寄生容量を枛らすために+ゲヌト′の盎䞋、゜
ヌスず察向する面に絶瞁物を圢成した領域であ
る。これはSIMOX等の技術を甚いおO2、N2等を
むオン泚入するこずにより、圢成するこずができ
る。領域も同様の目的で圢成された絶
瞁物領域である。このようなプロセスはベスト・
モヌドを行う堎合、特にむメヌゞセンサでの容量
結合ノむズを枛らす点で必芁である。もちろん、
動䜜特性がある皋床劣化しおもよい堎合には、絶
瞁局領域、は蚭けなくず
もよい。呚蟺回路のオペアンプ、垂盎、氎平走査
回路、ビデオ出力郚等のSITにも同様の絶瞁局等
導入の凊理を行うこずによりノむズの枛少が枬ら
れおいる。
Therefore, in order to increase the output sensitivity to optical input as much as possible, it is necessary to increase the bit line capacitance C B for the periphery, and for the cell itself, it is necessary to increase the floating p
+ n for the capacitance Cf of area 7 + significant capacitance of area 8
The goal is to make the ratio of Cs as large as possible. 1
Reference numeral 1 denotes an isolation region, which is usually made of SiO 2 and, depending on the case, is further filled with an insulating material such as polyimide. 12 is the source n + region of SITQ 1 , 1
3 is the channel p -region of SITQ 1 , and SITQ 1
is a device with channels of opposite conductivity type. This structure is such that SITQ 2 is a P-channel SIT, and the manufacturing process of the p - layers 13 and 14 is performed at the same time. Furthermore, when the 13 regions are set to p - , compared to n - , SITQ 1 's
Source 1 of SITQ 1 with reliable characteristics when OFF
Electrons leaking across the barrier in the channel from 2 can be controlled more easily than n - . of course
The SITQ 1 channel can operate even when formed with an n - layer of about 10 13 to 10 15 cm -3 . At this time, it is necessary to set the channel width between the p + gates to be relatively narrow. 15 is a drain region of the P channel SITQ 2 , which is connected to 10 and has a ground potential. Reference numeral 16 denotes a region in which an insulator such as an oxide or nitride film is formed on the opposing side surface regions in order to reduce the parasitic capacitance between the gate and drain of the P channel SITQ 2 . Similarly, 17 is a region in which an insulator is formed directly under the n + gate 3' and on the surface facing the source 7 in order to reduce the parasitic capacitance between the gate and source of SITQ 2 . This can be formed by ion-implanting O 2 , N 2 , etc. using a technique such as SIMOX. Regions 18 and 19 are also insulator regions formed for the same purpose. Such a process is best
When implementing this mode, it is especially necessary to reduce capacitive coupling noise in the image sensor. of course,
Insulating layer regions 16, 17, 18, and 19 may not be provided if the operating characteristics may be degraded to some extent. Noise reduction has been measured by introducing similar insulation layers into SITs such as peripheral circuits such as operational amplifiers, vertical and horizontal scanning circuits, and video output sections.

〔本発明の動䜜〕[Operation of the present invention]

第図は本発明実斜䟋の第図のむメヌゞ
センサセル郚分の回路衚瀺である。光入力はフツ
ク構造の逆接合された぀のダむオヌドD1D2
の䞭間郚分で䞻に吞収される。+フロヌテむン
グ領域の寄生容量Cf、蓄積容量Csの䞭間点
+領域が光入力に察しおに充電さ
れ、ワヌド線が開くず瞬時にSITQ1が導通しお
ビツト線から電子電流Inが流れる。そこでゲヌト
φwを切り、++in+のフツク構造で光で発生し
たキダリアによるフツク動䜜で+領域の電子
が基板裏面偎+領域に流れるキダリアのトラ
ンシツト・タむム走行時間をτ匏(3)に比べ
充分に長くQ1をOFF状態にした埌、再びゲヌト
を開き導通させるず今床はビツト線䞊に珟われる
電圧は最初の導通時よりさらに倧きな電圧ずな
る。これは+領域に光照射で励起された正孔
がたたり続けおいるからであり、リフレツシナ埌
に光照射期間に入぀た埌の光照射での履歎が次の
リフレツシナが行なわれるたではQ1を開いおも
残぀おいるためである。リフレツシナトランゞス
タQ2により+フロヌテむング領域にたた぀た正
孔が接地点ぞ抜けるわけである。このような非砎
壊の動䜜をする固䜓むメヌゞセンサは埓来の
CCD型、MOS型ずは原理的に異぀おいる。埓来
のCCD型、MOS型むメヌゞセンサでは䞀床、む
メヌゞ情報が読み出されおしたうず、セル内の光
情報はクリアされおしたう砎壊読み出しであるの
に察し、本発明のむメヌゞセンサは非砎壊読み出
しでありフレヌム時間内に䜕回読み出されおも光
情報はセル内郚にリフレツシナ以埌の光情報を積
分した圢で蓄積し぀づけおおり、各皮色々な動䜜
モヌドが考えられる。リフレツシナ間隔は、既に
簡単な実隓結果で10秒以䞊にするこずも可胜なこ
ずが明らかにされおおり、埓来フレヌム呚波数の
逆数皋床、即ち10-5〜10-1秒であるのに察しそれ
よりも長くするこずももちろん同皋床にするこず
も可胜である。たた埓来のむメヌゞセンサに比べ
構造的に暗電流を極端に小さく抑えおおり、暗電
流ノむズによる制限も極めお少ない。
FIG. 5b is a circuit diagram of the image sensor cell portion of FIG. 5a according to an embodiment of the present invention. The optical input is through two reversely connected diodes D 1 and D 2 with a hook structure.
It is mainly absorbed in the middle part of the body. p + midpoint A between parasitic capacitance Cf of floating region 7 and storage capacitance Cs
(n + region 8) is charged to V(t) in response to optical input, and when word line 2 is opened, SITQ 1 becomes conductive instantly and electron current In flows from the bit line. Then, the gate φ w is turned off, and electrons in the n + region 8 flow to the n + region 5 on the back side of the substrate due to the hook operation by the carriers generated by light in the n + p + in + hook structure. When Q1 is turned off for a sufficiently long time compared to τ: Equation (3)), and the gate is opened again to conduct, the voltage appearing on the bit line will be even higher than when it first became conductive. This is because holes excited by light irradiation continue to accumulate in the p + region 7, and the history of light irradiation after entering the light irradiation period after refreshing is Q 1 until the next refresh is performed. This is because it remains even if you open it. The holes accumulated in the p + floating region escape to the ground point by the refresh transistor Q 2 . Solid-state image sensors that operate in a non-destructive manner are
The principle is different from the CCD type and MOS type. Conventional CCD type and MOS type image sensors use destructive readout in which once the image information is read out, the optical information in the cell is cleared, whereas the image sensor of the present invention uses non-destructive readout. No matter how many times the optical information is read out within a given frame time, the optical information continues to be accumulated inside the cell in the form of an integrated optical information after refresh, and various operation modes are possible. Simple experimental results have already shown that it is possible to increase the refresh interval to 10 seconds or more. Of course, it is also possible to make it longer or to the same extent. Furthermore, compared to conventional image sensors, dark current is structurally suppressed to an extremely low level, and there are extremely few limitations due to dark current noise.

原理的な動䜜に基づく動䜜モヌドの䞀䟋を第
図に瀺す。ビツト線䞊の出力、ワヌド線のパ
ルスφw、リフレツシナ線のパルスφRを瀺し
おある。たずtoからtoR内にQ2をONさせリフ
レツシナを行ない、光情報積分時間に入る。Q1
ははじめ、OFF状態にあるが、Q1をONさせるず
S1で瀺すパルス、ビツト線䞊にはリフレツシ
ナ埌それたでの期間の点の電圧のビツト線容量
ずの分割された出力電圧D1が出る。さらにキダ
リアの走行時間τよりも充分長い時間tsの経過埌
S2パルスを入れQ1をONさせるず今埌は出力D2に
はtoRからS2が入るたでの光情報の積分され
た情報が珟われる。このようにしお、ワヌド線パ
ルスのSnが入぀たずきは、ほが光照射期間の党
時間の光情報の積分倀が出力Dnに珟われるわけ
である。その埌リフレツシナトランゞスタQ2を
ONさせ+フロヌテむング領域にたた぀た正孔を
接地点ぞ逃がしおやりリフレツシナが完了する。
キダリアの走行時間は距離〓100Όずするず
キダリアが飜和速床で走行する堎合には玄1nsec
皋床であり䟋えばワヌド線のサンプリングパルス
の呚期tsをts〓Όsec皋床ずしお動䜜させれば
充分である。もちろん、入射光匷床が非垞に匷い
堎合にはtsをも぀ず短くしおもよい。芁するにτ
≪ts≪TsTs光照射期間ず蚭定すればよ
い。埓぀お、光入力に察する応答時間ずもいうべ
きτを極めお小さくできれば、それだけ本発明の
むメヌゞセンサの時間的な光入力に察する解像床
も良くなるわけである。以䞊の動䜜モヌドの説明
で明らかなように光入力に察するセンサセルの応
答時間ずもいうべきτが極めお速く、ts、Tsを
適圓に遞択しおやれば、時々刻々ず倉わる光入力
Photon densityに察しおワヌド線φw
のサンプリング呚期tsによ぀お時間的な解像床が
増加するず考えるこずができる。぀たり時々刻々
ず倉わる光入力の時間的な倉化がサンプ
リング呚期tsの時間的な刻み幅でビツト線䞊の出
力電圧Diずしお珟われるこずを意味する。぀た
り本発明のむメヌゞセンサは空間的な解像床のみ
ならず、時間的な解像床も極めお良奜であるず云
える。デヌタ出力ビツト線䞊の出力
は時々刻々倉わる光入力の積分倀である
から ∫ dt 積分出力 定数 

(10) ず衚わされる。もう少し詳しく説明するず次のよ
うになる。(1)匏はから秒間䞀定の光子密床
の光入力が入぀たずきの++in+構造のフツク
動䜜で+領域にたたる電圧を䞀次元モデルで蚈
算したずきの近䌌匏である。ここで光照射期間
Tsの期間任意のが照射されたずきのデ
ヌタ出力を考える。第図 の波圢を第図のようにサンプリン
グ呚期tsの刻み幅でS1S2  i  oず分
割されたものを考える。
An example of the operation mode based on the principle operation is shown in the fifth example.
Shown in Figure c. The output on the bit line, the pulse φ w on the word line 2, and the pulse φ R on the refresh line 3 are shown. First, Q 2 is turned on from to to within to + T R to perform a refresh, and the optical information integration time begins. Q1
is initially in the OFF state, but when Q1 is turned ON (pulse indicated by S1 ), an output is generated on bit line 1, which is the voltage at point A divided by the bit line capacitance during the period after refresh. Voltage D 1 is output. Furthermore, after a time ts that is sufficiently longer than the carrier travel time τ has elapsed,
When the S 2 pulse is applied and Q 1 is turned ON, the integrated optical information from to+ TR to S 2 will appear in the output D 2 from now on. In this way, when the word line pulse Sn is input, the integrated value of optical information for almost the entire light irradiation period appears at the output Dn. Then refresh transistor Q2
When turned ON, the holes accumulated in the p + floating region escape to the ground point, and the refresh is completed.
The traveling time of the carrier is approximately 1 nsec when the carrier travels at the saturation speed, assuming a distance l = 100 ÎŒm.
For example, it is sufficient to operate with the period ts of the word line sampling pulse being approximately ts = 1 ÎŒsec. Of course, if the incident light intensity is very strong, ts may be shortened. In short, τ
It is sufficient to set ≪ts≪Ts (Ts: light irradiation period). Therefore, the more τ, which can be called the response time to optical input, can be made extremely small, the better the resolution of the image sensor of the present invention with respect to temporal optical input will be. As is clear from the above explanation of the operation mode, the response time τ of the sensor cell to optical input is extremely fast, and if ts and Ts are appropriately selected, the optical input S(t) (Photon density) changes from moment to moment. word line φ w
It can be considered that the temporal resolution increases by the sampling period ts. This means that a temporal change in the optical input S(t) that changes from moment to moment appears as an output voltage Di on the bit line in a temporal step width of the sampling period ts. In other words, it can be said that the image sensor of the present invention has extremely good not only spatial resolution but also temporal resolution. Data output (output on bit line) D(t)
Since is the integral value of the optical input S(t) that changes from moment to moment, it can be expressed as D(t)=A∫ t p S(t)dt (:integral output) A: constant...(10). A more detailed explanation is as follows. Equation (1) is a constant photon density S for t seconds from O
This is an approximate expression when calculating the voltage accumulated in the n + region due to the hook operation of the n + p + in + structure when the optical input is input using a one-dimensional model. Here is the light irradiation period
Consider the data output D(t) when an arbitrary S(t) is irradiated for a period of Ts. (Fig. 5 d, e) Consider the waveform of S(t) divided into S 1 , S 2 ...S i , ...S o in steps of sampling period ts as shown in Fig. 5 e. .

から△秒間でが䞀定なら(1)匏により〜
△秒間で点の電圧は(1)匏より 〓△ 

(11) ず衚わされる。ただし△≫τでなければならな
い。この時のデヌタ出力は近䌌的に ・△ 

(12) ず衚わされる。
If S is constant for △t seconds from O, then O ~ according to equation (1)
The voltage at point A in Δt seconds is expressed as V(t)〓Scq/CfΔt (11) from equation (1). However, it is necessary that Δt≫τ. The data output at this time is approximately D(t)=C s /C B +C s・Scq/Cf△t...
...(12)

ここで第図でdti秒間だけを考えれば、こ
の刻み幅分だけのデヌタ出力ΔDiは △Di SiΔti


(13) ずなる。dtitsでありts≫τでなければならな
い。〜tiの間も実際は光が照射されおいるのだ
からdtiでのデヌタ出力は実際には 埓぀お光照射期間䞭、時刻でのデヌタ出力は  ∫ 
dt

(1 5) で衚わされ本発明のむメヌゞセンサが完党に光入
力情報の積分出力をデヌタずしお出力するこずが
わかる。
If we consider only dti seconds in Figure 5e, the data output ΔDi(t) for this step width is ΔDi(t)=C s /C B +C s Cq/CfSiΔti
...(13) becomes. dti=ts and ts≫τ. Since light is actually irradiated between O and ti, the data output at dti is actually Therefore, during the light irradiation period, the data output at time t is D(t)=C s /C B +C s Cq/Cf∫ t p S
(t) dt (1 5) It can be seen that the image sensor of the present invention completely outputs the integrated output of optical input information as data.

本発明のむメヌゞセンサでは、非砎壊読み出し
が行え、光照射が続く間は照射総量に比䟋するキ
ダリアの蓄積が行えおいる。したが぀お、たずえ
ば、最倧光照射期間を10secずした堎合、10
sec毎に読み出しを行うのではなく、たずえば、
Όsec、10ÎŒsec、100ÎŒsec、secの時に読
み出しを行うこずができる。10secの光照射期
間に察しお、Όsecの光照射期間は104分ので
ある。入射光匷床が非垞に匷いセルでは、10
sec埌に読み出したのではブルヌミング珟象で、
盎線性が倱なわれる。その堎合には、たずえば、
Όsecあるいは10ÎŒsecの時に読み出しお、ビデ
オ出力ずしお取り出すずきに、暙準の10secの
読み出し出力に察しお、104倍あるいは103倍しお
やればよい。各読み出し時の出力を、同䞀チツプ
䞊もしくは各郚に蚭けたメモリに蚘憶させお、出
力時に所定の倍数かけおやれば、そのダむナミツ
クレンゞはきわめお広いものになる。匷い入力光
に察するブルヌミング珟象は殆んどた぀たく無く
すこずができる。
In the image sensor of the present invention, nondestructive readout can be performed, and carriers can be accumulated in proportion to the total amount of irradiation while light irradiation continues. Therefore, for example, if the maximum light irradiation period is 10 msec, 10 m
Instead of reading every sec, for example,
Reading can be performed at 1 ÎŒsec, 10 ÎŒsec, 100 ÎŒsec, and 1 msec. The light irradiation period of 1 ÎŒsec is 1/10 4 of the light irradiation period of 10 msec. 10 m for cells with very strong incident light intensity.
If it is read after sec, it is a blooming phenomenon,
Linearity is lost. In that case, for example,
When reading at 1 ÎŒsec or 10 ÎŒsec and outputting it as a video output, it is sufficient to multiply the standard 10 msec read output by 10 4 or 10 3 times. If the output at each readout is stored in a memory provided on the same chip or in each part, and multiplied by a predetermined multiple at the time of output, the dynamic range will be extremely wide. The blooming phenomenon caused by strong input light can be almost completely eliminated.

〔゚リアセンサぞの応甚䟋〕[Example of application to area sensor]

第図は本発明実斜䟋をマトリツクス状の゚リ
アむメヌゞセンサシステムずしお組んだ䟋を簡単
に瀺しおいる。第図に瀺された本発明実斜䟋
のセルを第図ではCij  、
  で瀺しおいる。はリフレツシ
ナ線でありリフレツシナ信号発生回路に接続
されおいる。はVsの電源ラむン、
はワヌド線であり、方向ワヌド線ドラむ
バ、及び走査回路にワヌド線、電源ラむン
ずずもに接続されおいる。はビツト線
のそれぞれに接続された高感床、䜎雑音、高利埗
のオペアンプであり、オペアンプノむズ、
Johnsonノむズ等を枛少させる蚭蚈回路構成がな
されおいる。はオペアンプ出力でビデオ出力
郚である。は動䜜モヌドを実珟する各皮クロ
ツクパルス発生郚であり、は前述したずおり
方向の走査回路及びワヌド線ドラむバ、は
リフレツシナ信号発生回路、が党䜓ずしお
方向走査回路を構成しおいる。
FIG. 6 simply shows an example in which the embodiment of the present invention is assembled as a matrix area image sensor system. The cell 20 of the embodiment of the present invention shown in FIG. 6a is shown in FIG. 6b with Cij (i=1...m,
j=1...m). Reference numeral 21 denotes a refresh line, which is connected to the refresh signal generating circuit 30. 22 is the Vs (+) power line, 2
3 is a word line 2, and the word line and power line 2 are connected to the X direction word line driver and the scanning circuit 28.
It is connected with 9. 24 is bit line 25
A high sensitivity, low noise, high gain operational amplifier connected to each of the operational amplifier noise,
A designed circuit configuration is used to reduce Johnson noise and the like. 26 is an operational amplifier output and is a video output section. Reference numeral 27 indicates various clock pulse generation units for realizing the operation modes, 28 indicates an X-direction scanning circuit and a word line driver as described above, 30 indicates a refresh signal generation circuit, and 31 indicates a Y-direction scanning circuit as a whole.
It constitutes a directional scanning circuit.

本発明の実斜䟋は第図に瀺した構造に限らず
++in+もしくは++ip+構造のフツク構
造からなる光センス領域ず蓄積された光情報を読
み出すトランゞスタ及びリフレツシナ甚のトラン
ゞスタからなるセル構造であればよいこずは明ら
かである。もちろん、透明電極に隣接する+å±€
を無くしお、透明電極ず高抵抗領域をシペツトキ
接合にしおもよい。
Embodiments of the present invention are not limited to the structure shown in FIG. 5, but include a light sensing region having a hook structure of an n + p + in + (or p + n + ip + ) structure, a transistor for reading out accumulated optical information, and It is clear that any cell structure consisting of refresh transistors will suffice. Of course, the n + layer adjacent to the transparent electrode may be omitted to form a shot junction between the transparent electrode and the high resistance region.

〔他の実斜䟋〕[Other Examples]

第図及び第図に本発明の光情報を非砎壊に
読み出すむメヌゞセンサの別の実斜䟋を瀺す。第
図は読み出し甚トランゞスタQ1が䞍飜和型電
流電圧特性を瀺すチダンネルのMOSSIT飜和
型電流電圧特性を瀺すMOSFETでも圓然よい
であり、リフレツシナ甚トランゞスタQ2がチ
ダンネル−SITもちろんJFETでもよいで
構成されたむメヌゞセンサのセル郚分の断面構造
及びその回路的衚珟を瀺しおいる。第図は読み
出し甚トランゞスタQ1がチダンネルMOSSIT
MOSFETでもよい、リフレツシナ甚トランゞ
スタQ2がチダンネルのMOSSITMOSFETで
もよいの堎合のむメヌゞセンサのセル郚分の断
面構造及びその回路的衚珟を瀺しおいる。各領域
を説明するず次のようになる。は光入力む
メヌゞ情報であり、第図の実斜䟋ず同様裏面
から照射されおいる。はIn2O3、SnO2もしく
はドヌプされたポリシリコン等で圢成された透明
電極であり、Vsにバむアスされお
いる。はで電極付けされた+領域であ
り短波長光感床を高くすべく薄く圢成されおい
る。は、-、-で圢成された高抵抗領域
であり、+フロヌテむング領域及び、+蓄
積領域ずから+++
からなるフツク構造が圢成されおいる。+領域
の䞍玔物密床は1018cm-3皋床以䞊、+領域
の䞍玔物密床は1019cm-3皋床以䞊が望たし
い。これは熱励起された少数キダリアに䌎う熱雑
音を枛少させるためである。+領域は読み
出し甚トランゞスタQ1の゜ヌスであり、Q1のゲ
ヌト絶瞁膜䞊のゲヌトワヌド線′は
短チダンネル化を蚈るには+ポリシリコンが望
たしい。+ポリシリコンだけでは抵抗が高くな
りすぎる堎合には、、Mo、Pt等の高融点金属
をさらに蚭けおもよい。たた、TiSi2、TaSi2、
MoSi2、WSi2等のシリサむドでもよい。+領域
は光情報の蓄積領域であるず同時に䞊蚘トラ
ンゞスタQ1のドレむンずな぀おいる。領域
は䞊蚘読み出し甚トランゞスタQ1のチダンネル
であり型である。この読み出し甚トランゞスタ
Q1は通垞のMOS技術で圢成され、その堎合には
チダンネルMOSFETであり、䜕もMOSSITに
限る必芁はない。′はQ1の゜ヌスの電極
であり、ポリシリコンあるいは、Mo、Ta、
Ti、Pb等のシリサむドで圢成されおいる。同様
に+フロヌテむング領域はリフレツシナ甚
トランゞスタQ2の゜ヌスずしおも圢成されおい
る。+領域はトランゞスタQ2のゲヌトであ
り、-局がチダンネル、+領域が゜ヌ
スずな぀おいる。′は+領域の電極であ
りドヌプされたポリシリコンもしくは、Mo、
Ta、Ti、Pb等のシリサむドで圢成され、リフレ
ツシナ線ずな぀おいる。′は+領域の電
極でありドヌプされたポリシリコン等で圢成さ
れ、の薄い絶瞁局TaO2、Si3N4、SiO2等の
薄膜及びその䞊郚のアヌス電極ずの間に蓄
積容量Csを圢成しおいる。このCsはむメヌゞセ
ンサセルのほが党面に圢成されおおり、+領域
のたわりのフロヌテむング容量Cfに比べお
数倍以䞊倧きく蚭蚈されおいる。なお及び
′等の領域は、絶瞁物で圢成されおいる。
FIG. 7 and FIG. 8 show another embodiment of an image sensor for non-destructively reading optical information according to the present invention. Figure 7 shows an n-channel MOSSIT in which the readout transistor Q1 exhibits unsaturated current-voltage characteristics (a MOSFET with saturated current-voltage characteristics may also be used).
, which shows the cross-sectional structure and circuit representation of a cell portion of an image sensor in which the refresh transistor Q 2 is a P-channel J-SIT (of course, it may be a JFET). Figure 8 shows that the readout transistor Q1 is an n-channel MOSSIT.
2 shows a cross-sectional structure of a cell portion of an image sensor and its circuit representation when the refresh transistor Q 2 is a p-channel MOSSIT (which may also be a MOSFET). An explanation of each area is as follows. Reference numeral 57 denotes a light input (image information), which is irradiated from the back side as in the embodiment shown in FIG. Reference numeral 51 denotes a transparent electrode made of In 2 O 3 , SnO 2 , doped polysilicon, or the like, and is biased at Vs(+):52. Reference numeral 53 denotes an n + region to which electrodes are attached at 51, and is formed thinly to increase short wavelength light sensitivity. 54 is a high resistance region formed of i, n - , p -, and n + 60p + 55i54n + 53 from the p + floating region 55 and the n + accumulation region 60.
A hook structure is formed. The impurity density of the p + region 55 is preferably about 10 18 cm -3 or more, and the impurity density of the n + region 53 is preferably about 10 19 cm -3 or more. This is to reduce thermal noise associated with thermally excited minority carriers. The n + region 61 is the source of the read transistor Q 1 , and the gate (word line 63') on the gate insulating film 63 of Q 1 is preferably made of p + polysilicon in order to shorten the channel. If the resistance becomes too high with only p + polysilicon, a high melting point metal such as W, Mo, or Pt may be further provided. Also, TiSi 2 , TaSi 2 ,
Silicides such as MoSi 2 and WSi 2 may be used. The n + region 60 is an optical information storage region and at the same time serves as the drain of the transistor Q1 . area 59
is the channel of the read transistor Q1 and is of P type. This readout transistor
Q1 is formed using normal MOS technology, in which case it is an n-channel MOSFET, and need not be limited to a MOSSIT. 61' is the electrode of the source 61 of Q1 , which is made of polysilicon or W, Mo, Ta,
It is made of silicide such as Ti and Pb. Similarly, the p + floating region 55 is also formed as the source of the refresh transistor Q2 . The n + region 62 is the gate of the transistor Q 2 , the p − layer 58 is the channel, and the p + region 63 is the source. 62' is an electrode of the n + region 62, which is made of doped polysilicon, W, Mo,
It is formed from silicides such as Ta, Ti, and Pb, and serves as a reflex line. Reference numeral 60' denotes an electrode of the n + region 60, which is made of doped polysilicon or the like, and is connected to the thin insulating layer 64 (thin film of TaO 2 , Si 3 N 4 , SiO 2 , etc.) and the ground electrode 65 above it. A storage capacitor Cs is formed between them. This Cs is formed almost over the entire surface of the image sensor cell, and is designed to be several times larger than the floating capacitance Cf around the p + region 55. Furthermore, 56 and 5
Regions such as 6' are formed of an insulator.

第図は第図の回路衚珟である。第図
の実斜䟋ず動䜜は基本的に同様である。次に第
図の各郚分を説明する。第図は読み出し甚トラ
ンゞスタQ1及び、リフレツシナ甚トランゞスタ
Q2がいずれもMOSゲヌト構造のFETSITの
堎合である。光入力を受光する郚分は予め
Vsにバむアスされた++
+から成るフツク構造で圢成されお
いるのは今たで説明した第図、第図の実斜䟋
ず同様である。読み出し甚トランゞスタQ1の導
通郚分は+領域、チダンネル領域
、ドレむン+領域から圢成され、ゲヌト
郚分は薄いゲヌト絶瞁膜、及びその䞊郚のポ
リシリコンもしくは、Mo、Ta、Ti、Pd等のシ
リサむドで圢成された電極′同時にワヌド
線ずな぀おいるで圢成されおいる。読み出し甚
トランゞスタQ2の導通郚分は衚面からの拡散で
+フロヌテむング領域たで臎達しおいる+
゜ヌス領域ず型チダンネル及びアヌス電極
で電極付けされおいる+ドレむン領域
で圢成されおおり、ゲヌト郚分は薄いゲヌト絶瞁
膜を介しおその䞊郚のドヌプされたポリシリ
コンもしくは、、Mo等のシリサむドで圢成さ
れた電極′同時にリフレツシナ線ずな぀お
いるで圢成されおいる。+蓄積領域はド
ヌプされたポリシリコン′で電極付けされお
おり、その䞊郚の薄い絶瞁膜TaO2、
Si3N4、SiO2等で圢成する及びQ2の+ドレむ
ンに接続されおいるアヌス電極ラむンず
ずもに蓄積容量Csを圢成しおいる。領域及
びはSiO2等の絶瞁物で圢成されおいる。ト
ランゞスタQ1及びQ2は通垞のMOSプロセスの技
術で圢成されるこずも可胜である。その堎合には
MOSFETであり、第図の衚瀺はMOSSITに
限぀たものではない。
FIG. 7b is a circuit representation of FIG. 7a. The operation is basically the same as the embodiment shown in FIG. Then the 8th
Each part of the figure will be explained. Figure 8 shows the read transistor Q1 and the refresh transistor.
This is the case where Q 2 is a FET (SIT) with a MOS gate structure. The part that receives the optical input 72 is set in advance.
n + 75p + 70 biased to Vs(+) 67
The hook structure made of i69n + 68 is similar to the embodiments shown in FIGS. 5 and 7 described above. The conductive part of the read transistor Q1 is the n + region 76 and the channel region (p:7
3), the drain n + region 75 is formed, and the gate portion is formed of a thin gate insulating film 78 and an electrode 78' formed of polysilicon or silicide such as W, Mo, Ta, Ti, Pd, etc. (at the same time, a word formed by lines). The conductive portion of the read transistor Q 2 is p + which has reached the p + floating region 70 by diffusion from the surface.
P + drain region 77 electroded with source region and n-type channel 74 and ground electrode 82
The gate part is formed with a thin gate insulating film 79 and an electrode 79' (which also serves as a refresh line) formed of doped polysilicon or silicide such as W or Mo on top of the gate insulating film 79. It is formed. The n + storage region 75 is electroded with doped polysilicon 75', and a thin insulating film 81 (TaO 2 ,
(formed of Si 3 N 4 , SiO 2 , etc.) and the ground electrode line 82 connected to the p + drain 77 of Q 2 form a storage capacitor Cs. Regions 71 and 80 are formed of an insulator such as SiO 2 . Transistors Q 1 and Q 2 can also be formed using normal MOS process technology. In that case
MOSFET, and the display in FIG. 8b is not limited to MOSSIT.

本発明の効果 (a) 感床及び解像床 ここで本発明の構造、即ち裏面照射型のSIT
むメヌゞセンサの感床及び解像床がなぜ埓来の
CCD型、MOS型に比べ優぀おいるかを説明す
る。第図は第図の++in+郚分の拡倧図
である。ここでin+接合界面座暙で
Ύ関数状の分垃n0Ύなる正孔矀が発
生した堎合を考える。高抵抗局はバむアス電
圧Vsによりほずんど空乏化され高抵抗
局䞭を走るキダリアはほずんど飜和速床で走
るようになされおいるから、秒埌の座暙
における正孔の分垃は次匏  n0exp−−−
  (2) で䞎えられる。ここでn0は初期Ύ関数状正孔分垃
の正孔総数、Vsは正孔の飜和速床略々×107
cmsec皋床、は高抵抗局䞭の正孔の拡散係数
である。
[Effects of the present invention] (a) Sensitivity and resolution Here, the structure of the present invention, that is, back-illuminated SIT
Why is the sensitivity and resolution of image sensors different from conventional ones?
Explain whether it is superior to the CCD type or MOS type. FIG. 9 is an enlarged view of the n + p + in + portion of FIG. Here, consider the case where a hole group with a ÎŽ function-like distribution n 0 ÎŽ (x, y) is generated at in + junction interface coordinates (O, O). The high-resistance layer 6 is almost depleted by the bias voltage Vs (+), and the carriers running in the high-resistance layer 6 run almost at the saturation speed, so the hole at the coordinate (x, y) after t seconds The distribution of
t)

(2) is given. Here, n 0 is the total number of holes in the initial ÎŽ functional hole distribution, and Vs is the hole saturation velocity: approximately 1×10 7
cm/sec, and D is the diffusion coefficient of holes in the high resistance layer.

高抵抗局の厚さをずするず高抵抗局の
方向ぞの走行時間τは τ 




(3) で䞎えられ、埓぀お+接合郚での正孔の分垃
は  n0exp−−τ−τ
  (4) で䞎えられる。埓぀お、+接合界面での方
向の電子分垃の広がりは、拡散のみによるから
軞の正方向及び負方向を合わせお で䞎えられる。䟋えば高抵抗局の厚さを100
Όずしおも匏(5)で䞎えられるキダリアの広が
りはSiで考えるずΌ皋床ずなる。このこず
は埓来のCCD型、MOS型むメヌゞセンサで裏
面照射型での動䜜特性の限界ずな぀おいる解像
床の問題を打砎するものであり、埓来、補造可
胜な最も薄い半導䜓基板が25Ό皋床であり、
埓぀お、基板内に発生したキダリアが拡散で広
がる点を考慮しお25Ό以䞋のスペヌスで画玠
を配眮するこずができないずいう玠子間隔に察
する制限条件を打ち砎るものである。これは、
光励起されたキダリアが蓄積領域たで殆んど飜
和速床で走るようになされおいるからである。
埓぀お、本発明の第図に瀺したむメヌゞセン
サにより解像床が飛躍的に向䞊できるわけであ
る。匏(5)で䞎えられるキダリアの拡がりは、
が薄くなるに぀れお小さくな぀おいく。さらに
セル郚分の高集積化が解像床を萜すこずなく、
むしろ向䞊させる方向で可胜であり、極めお倧
容量の解像床のよい゚リアむメヌゞセンサが実
珟できる。さらに第図の構造よりわかるよ
うに、本発明のむメヌゞセンサでは光の照射さ
れたセル郚分分離領域を陀いおすべお
すべおの領域がむメヌゞセンス領域ずなされお
おり、か぀光のあたる郚分が極めお平担になさ
れおいる。これは埓来の衚面照射型のむメヌゞ
センサではMOS型、CCD型ずもに光の照射さ
れる郚分に透明電極、ポリシリコン、酞化膜等
が凞凹状に配列され、それだけで光の取り蟌み
が少なく、衚面照射が倚いずいう欠点を補うも
のであり、特に第図の透明電極は光に察す
るむンピヌダンス敎合を考慮しお厚みを蚭蚈し
極めお平坊に補造されおいる。たた、さらに光
の衚面からの反射を防ぐために、たずえば、
SiO2膜及びSi3N4膜を所定の厚さにしお亀互に
配眮する倚局膜を蚭けるこずも容易である。埓
぀お、本発明のむメヌゞセンサでは光入力に察
する感床も埓来のものに比べ極めお向䞊されお
いる。さらに分離領域の䞋の高抵抗局ぞ照射さ
れた光を隣り合うどちらかのセルぞ吞収させる
ために分離領域の䞋偎の+領域もしくは透明
電極郚分に凹レンズ状の構造をも぀透明電極材
料を補造するこずにより、さらにセルの感床及
び解像床を向䞊させるこずができる。
If the thickness of the high resistance layer 6 is l, then x of the high resistance layer 6
The transit time τ in the direction is given by τ=l/Vs 




(3), so the hole distribution at the p + i junction is n(x,y) = n 0 exp(− (x-Vsτ) 2 /4D-y 2 /4Dτ
)

(4) is given by. Therefore, the broadening of the electron distribution in the y direction at the p + i junction interface is due only to diffusion, so y
Together with the positive and negative directions of the axis is given by For example, the thickness l of the high resistance layer is 100
Even in terms of ÎŒm, the carrier spread given by equation (5) is approximately 4 ÎŒm when considered in terms of Si. This overcomes the resolution problem that limits the operating characteristics of back-illuminated conventional CCD and MOS image sensors. ,
Therefore, taking into consideration the fact that carriers generated within the substrate are diffused and spread, the limitation on element spacing that prohibits pixels from being arranged at a spacing of 25 ÎŒm or less is overcome. this is,
This is because the optically excited carriers are made to run almost at saturation speed to the storage region.
Therefore, the resolution can be dramatically improved by the image sensor shown in FIG. 5 of the present invention. The carrier spread given by equation (5) is l
becomes smaller as it becomes thinner. Furthermore, the high integration of the cell part does not reduce resolution.
Rather, it is possible to improve this, and an area image sensor with extremely large capacity and good resolution can be realized. Furthermore, as can be seen from the structure of FIG.
All areas are image-sensing areas, and the areas exposed to light are extremely flat. This is because in conventional front-illuminated image sensors, both MOS and CCD types, transparent electrodes, polysilicon, oxide films, etc. are arranged in a convex-concave manner in the area that is irradiated with light. In particular, the transparent electrode shown in FIG. 5a is manufactured to be extremely flat by designing its thickness in consideration of impedance matching to light. Also, to further prevent light reflection from surfaces, e.g.
It is also easy to provide a multilayer film in which SiO 2 films and Si 3 N 4 films are alternately arranged with a predetermined thickness. Therefore, in the image sensor of the present invention, the sensitivity to optical input is also significantly improved compared to the conventional image sensor. Furthermore, in order to absorb the light irradiated onto the high-resistance layer under the separation area into one of the adjacent cells, a transparent electrode material with a concave lens-like structure is added to the n + region or the transparent electrode part below the separation area. By manufacturing, the sensitivity and resolution of the cell can be further improved.

(b) ダむナミツクレンズ 以䞊、本発明のむメヌゞセンサの感床、解像
床に぀いお述べお来たが、ここでむメヌゞセン
サの別の評䟡芁玠であるダむナミツクレンゞに
぀いお本発明の実斜䟋に぀いお述べる。先行技
術の説明の䞭でも明らかなように、ダむナミツ
クレンゞずはノむズレベルに察しお䞊限どの皋
床たで盎線性よくブルヌミングを起こさずにセ
ンサ玠子が動䜜するかずいうこずであり、䟋え
ば埓来のMOS型のむメヌゞセンサではMOSの
アナログスむツチに䌎うスパむクノズルによる
固定パタヌンノむズが10-3〜0.5×10-2Voltの範
囲に生じ、䞀方MOSFETに隣接するホトダむ
オヌドのバむアス電圧が5V皋床であるこずか
らダむナミツクレンゞが100察或いはそれ以
䞊ず決た぀おいる。CCDにおいおもポテンシ
ダルり゚ルの深さがセンサ本䜓の最倧受光胜力
を決めおおり、これも5V皋床である。ダむナ
ミツクレンゞの䜎出力偎はノむズによ぀お決定
され、これは入力光の匷床が匱い堎合に埌述す
るように、極めお重芁な問題であり、䞀方ダむ
ナミツクレンゞの高出力偎はセンサ本䜓の受光
胜力、即ち入力光の匷床が匷い堎合にどれだけ
匷い光に察しお受光可胜かずいう倀で決定され
る。むメヌゞセンサの評䟡芁玠の重芁な芁因で
あるノむズに぀いおは埌述するずしお、ここで
は光入力の匷い堎合、即ち光に察する飜和出力
に぀いお述べる。MOS型むメヌゞセンサでは
前述したように、最倧光入力倀は隣接したホト
ダむオヌドのバむアス電圧で決たり5V皋床で
ある。同様にCCDではポテンシダルり゚ルの
深さで決たりこれも5V皋床である。それ以
䞊、キダリアが蓄積するず、蓄積領域ず呚蟺が
順方向にバむアスされおしたい、電流ずしお流
れおしたう。ダむナミツクレンゞの䞊限を䞊げ
るためにバむアス電圧を䞊げようずするず、今
床は逆バむアスダむオヌドのリヌク電流等が問
題になり、暗電流の䞊昇、ノむズの䞊昇を招く
ため5V皋床ずされおいる。さらに別な芁玠ず
しお、特にMOS型むメヌゞセンサでは
MOSFETによりキダパシタであるホトダむオ
ヌドにたた぀た電圧をリニアリテむヌよく読み
出せる電圧範囲が5V皋床であるずいうこずが
ある。これは埓来型−FET、MOSFETで特
に゜ヌス抵抗rsが高いために電流が制限され、
飜和特性のDS−DS特性が埗られるこずず等
䟡である。本発明者らによる既に発衚された論
文IEEE Transactions on Electron
Devices、Vol.ED−26、No.12、December 1979
䞭に発衚されおいるように、簡単な実隓結果で
すでに゜ヌス抵抗が高く電流電圧特性が飜和特
性を瀺すFETここではMOSFETを甚いた
堎合、゜ヌス抵抗が極めお䜎く蚭定され出力電
流特性が極めお広いドレむン゜ヌス間電圧範囲
にわたり盎線性よく保぀た蚭蚈をなされたSIT
を甚いた動䜜に比べデバむスを通した出力電圧
の盎線性の点で䞀桁盎線性が悪いずいう結果が
ある。これは埓来あたり気付かれおいなか぀た
点であるが簡単なホトダむオヌドスむツチン
グデバむスずいうむメヌゞセンサの組み合わせ
においお、盎線性、ダむナミツクレンゞの䞊限
を考慮し蚭蚈する堎合、スむツチングデバむス
の特性が重芁な芁玠ずなるこずを意味しおい
る。぀たり、ホトダむオヌドにたた぀た電圧を
盎線性よく倖郚回路に取り出すにはスむツチン
グデバむスの特性も電流が制限されるような飜
和特性を瀺すデバむスではなく、ホトダむオヌ
ドにたた぀た電圧に比䟋した電流が流れるよう
なデバむスがよい。これは埓来型の−
FET、BJT、MOSFET等のデバむスではな
く、盎線的な−特性を瀺すSITが適しおい
る。埓぀お、埓来のむメヌゞセンサでスむツチ
ングデバむスの代わりに特にゲヌト・゜ヌス及
びゲヌト・ドレむン間の寄生容量を枛少する工
倫をなされた−SITもしくはMOSSIT等を甚
いるこずにより、むメヌゞセンサずしおの飜和
出力を少なくずも桁皋床䞊昇させるこずがで
きる。すなわち、ダむナミツクレンゞの䞊限が
少なくずも桁改善されるわけである。第図
の実斜䟋においお高抵抗局の厚みを党領域
空乏化し、略々党領域にキダリアが飜和速床で
走行するような電界匷床を䞎える電圧Vs
の倀はを倧きくすればVsも倧き
くなるわけで、キダリアの暪方向の拡散する距
離はの厚みに比べ極めお小さいこずは前述し
た通りであり、厚みに察する制限は空間的解像
床及び集積床から決たるが、Vsの倀は
少なくずも10V皋床以䞊である。
(b) Dynamic Lens The sensitivity and resolution of the image sensor of the present invention have been described above, and now an example of the present invention will be described regarding the dynamic range, which is another evaluation element of the image sensor. As is clear from the explanation of the prior art, the dynamic range is the upper limit to which the sensor element can operate linearly and without blooming with respect to the noise level.For example, the dynamic range of the conventional MOS type In image sensors, fixed pattern noise due to the spike nozzle associated with the MOS analog switch occurs in the range of 10 -3 to 0.5 x 10 -2 Volt, while the bias voltage of the photodiode adjacent to the MOSFET is about 5V, so the dynamic range is low. It is determined that the ratio is 100:1 or more. In CCDs as well, the depth of the potential well determines the maximum light receiving capacity of the sensor itself, which is also around 5V. The low output side of the dynamic range is determined by noise, which is an extremely important problem when the intensity of the input light is weak, as will be explained later, while the high output side of the dynamic range is determined by the light reception of the sensor body. It is determined by the ability, that is, how much strong light can be received when the intensity of the input light is strong. Noise, which is an important evaluation factor for image sensors, will be discussed later, but here we will discuss the case where the light input is strong, that is, the saturated output with respect to light. As mentioned above, in a MOS image sensor, the maximum optical input value is determined by the bias voltage of adjacent photodiodes and is approximately 5V. Similarly, in a CCD, the voltage is determined by the depth of the potential well, which is also about 5V. If more carriers accumulate, the accumulation region and its surroundings will be biased in the forward direction and will flow as a current. If an attempt is made to increase the bias voltage to raise the upper limit of the dynamic range, problems such as leakage current from the reverse bias diode will occur, leading to an increase in dark current and noise, so the bias voltage is set at around 5V. Another factor, especially in MOS image sensors, is that
The voltage range in which the voltage accumulated in the photodiode (capacitor) by the MOSFET can be read out with good linearity is about 5V. This is because in conventional J-FETs and MOSFETs, the current is limited due to the particularly high source resistance rs.
This is equivalent to obtaining I DS -V DS characteristics with saturation characteristics. Already published paper by the inventors: IEEE Transactions on Electron
Devices, Vol.ED−26, No.12, December 1979
As published in 2016, simple experimental results show that when using an FET (in this case, a MOSFET) whose source resistance is already high and whose current-voltage characteristics exhibit saturation characteristics, the source resistance is set extremely low and the output current characteristics deteriorate. SIT designed to maintain good linearity over an extremely wide drain-source voltage range
The results show that the linearity of the output voltage through the device is an order of magnitude worse than that using the device. This is a point that has not been noticed much in the past, but when designing an image sensor combination of a simple photodiode and a switching device, considering the linearity and upper limit of the dynamic range, the characteristics of the switching device are important. It means to be an element. In other words, in order to extract the voltage accumulated in the photodiode to an external circuit with good linearity, the characteristics of the switching device must not be a device that exhibits saturation characteristics that limit the current, but rather a device that has a current proportional to the voltage accumulated in the photodiode. A flowing device is best. This is a conventional J-
Instead of devices such as FETs, BJTs, and MOSFETs, SITs that exhibit linear IV characteristics are suitable. Therefore, by using J-SIT or MOSSIT, etc., which are specially designed to reduce the parasitic capacitance between the gate and source and between the gate and drain, instead of the switching device in the conventional image sensor, the saturated output as an image sensor can be improved. can be increased by at least one order of magnitude. In other words, the upper limit of the dynamic range is improved by at least one order of magnitude. In the embodiment shown in FIG. 5, the entire thickness l of the high-resistance layer 6 is depleted, and the voltage Vs provides an electric field strength that causes carriers to run at a saturation speed over almost the entire area.
As for the value of (+), as l increases, Vs(+) also increases, and as mentioned above, the distance over which the carrier spreads in the lateral direction is extremely small compared to the thickness of l, and the limit on the thickness is limited by space. The value of Vs(+) is determined by the resolution and degree of integration, but the value of Vs(+) is at least about 10V or more.

高抵抗領域の䞍玔物密床ずすれば、たず
えば電源電圧Vsは、 Vs〓ε Vs〓lEs ずなるように決める。ここで、εは誘電率、Es
はキダリアが飜和速床に達する電界である。解像
床がある皋床悪くおもよいずきには、Vsはこれ
より小さくおも、もちろんよい。本発明の読み出
し甚トランゞスタQ1は逆導電型チダンネルを有
するチダンネルのSITであり、チダンネルに察
しお少数キダリアである電子がドレむン・゜ヌス
間電流を決定しおおり、10V以䞊のドレむン・゜
ヌス間電圧に察し極めおリニアリテむヌよくDS
が流れるような蚭蚈がなされおいる。すなわちチ
ダンネル領域が完党に空乏化するようになされお
いる。もちろんチダンネルを高抵抗-領域にし
おもよい。埓぀お、本発明のむメヌゞセンサで
は、埓来ブルヌミング等の問題を匕き起こすダむ
ナミツクレンゞの䞊限は少なくずも䞀桁皋床広く
な぀おいる。これはノむズレベルに察する倧きな
改善であり、むメヌゞセンサの評䟡芁玠のダむナ
ミツクレンゞの点で改善されたものずいえる。
If the impurity density of the high resistance region b is N, then the power supply voltage Vs (+) is determined to be, for example, Vs〓qNl 2 /2ε Vs〓lEs. Here, ε is the dielectric constant, Es
is the electric field at which the carrier reaches saturation velocity. Of course, if the resolution is acceptable to a certain extent, Vs may be smaller than this. The read transistor Q 1 of the present invention is a p-channel SIT with a reverse conductivity type channel, and electrons, which are minority carriers with respect to the channel, determine the drain-source current, and the drain-source current is 10 V or more. IDS with extremely good linearity with respect to voltage
It is designed to flow. That is, the channel region is completely depleted. Of course, the channel may be made into a high resistance n - region. Therefore, in the image sensor of the present invention, the upper limit of the dynamic range that conventionally causes problems such as blooming is at least one order of magnitude wider. This is a significant improvement in the noise level and can be said to be an improvement in the dynamic range of image sensor evaluation factors.

(c) ノむズ 次にむメヌゞセンサずしおの別の評䟡芁玠の
䞀぀であり、特に入力光匷床の匱い堎合に問題
になるノむズnoiseに察する本発明の実斜
䟋の動䜜を説明する。先行技術の項で説明した
ように埓来のMOS型、CCD型むメヌゞセンサ
にはさたざたなノむズがあり、フむルタで陀去
可胜なものもあればどうしおもさけられないノ
むズもある。たたセンサ本䜓のみならず呚蟺の
アナログスむツチ、走査回路に䌎うノむズもあ
り、本発明の実斜䟋においおもMOS型ず同皋
床に存圚するノむズもある。本発明のむメヌゞ
センサ読み出し方法はランダム・アクセス方匏
であり、CCDにおける転送ノむズはない。既
に説明したように埓来のMOS型むメヌゞセン
サではMOSFETのゲヌト・゜ヌス及びゲヌ
ト・ドレむンの寄生容量ノむズ、走査回路にお
ける寄生容量ノむズ、ビデオ出力郚におけるノ
むズ、ホトダむオヌドずMOSFETの寄生容量
の結合ノむズ等の容量結合雑音がある。たた
MOSFETアナログスむツチのスパむクに䌎う
固定パタヌン雑音FPNは0.5×10-2Volt〜
10-3Voltにありダむナミツクレンゞの䞋限ずな
぀おいる。たたさらに熱励起されたキダリアに
䌎う暗電流ノむズも特に10Όcm3以䞋の光入
力レベルで、100sec以䞊の光照射期間を芁す
る堎合に問題ずなる。たた出力郚のオペアンプ
に䌎うオペアンプノむズ、ゞペン゜ンノむズも
存圚するが、これはFPNに比べ桁から桁
皋床小さく、高利埗で䜎雑音のオペアンプを同
䞀チツプ䞊に䜎域通過フむルタヌずずもに補造
するこずにより完党に陀去するこずはできない
がかなり小さくおさえるこずができる。先行技
術の説明においお既に説明したようにCCDの
方がMOS型に比べ暗電流は倧きい。
(c) Noise Next, the operation of the embodiment of the present invention with respect to noise, which is another evaluation element of an image sensor and becomes a problem particularly when the input light intensity is weak, will be explained. As explained in the prior art section, conventional MOS and CCD image sensors have a variety of noises, some of which can be removed with filters and some of which cannot be avoided. In addition, there is noise associated not only with the sensor itself but also with peripheral analog switches and scanning circuits, and there is also noise present in the embodiments of the present invention to the same extent as in the MOS type. The image sensor readout method of the present invention is a random access method, and there is no transfer noise in the CCD. As already explained, conventional MOS image sensors suffer from parasitic capacitance noise at the gate-source and gate-drain of the MOSFET, parasitic capacitance noise in the scanning circuit, noise at the video output section, coupling noise between the parasitic capacitance of the photodiode and the MOSFET, etc. There is capacitive coupling noise. Also
Fixed pattern noise (FPN) associated with MOSFET analog switch spikes is 0.5×10 -2 Volt ~
It is at 10 -3 Volt, which is the lower limit of the dynamic range. Furthermore, dark current noise associated with thermally excited carriers becomes a problem especially when the light input level is 10 ÎŒW/cm 3 or less and the light irradiation period is 100 msec or more. In addition, there is operational amplifier noise and Johnson noise associated with the operational amplifier in the output section, but this is about one to two orders of magnitude smaller than that of FPN, making it possible to manufacture a high-gain, low-noise operational amplifier along with a low-pass filter on the same chip. Although it cannot be completely removed, it can be kept to a fairly small size. As already explained in the description of the prior art, the dark current of the CCD is larger than that of the MOS type.

本発明の実斜䟋においおはセンサ本䜓での暗電
流の発生を埓来のMOS型、CCD型に比べ桁〜
桁もしくはそれ以䞊に枛少させる構造、䞍玔物
密床が蚭定されおいる。第図で光がセンスさ
れる領域は高抵抗局であるが、この光怜出領域
の暗電流は、高抵抗領域にキダリアを励起する深
い単䜍が殆んど存圚しなければ、+領域䞭の
電子及び+領域䞭の正孔によ぀お決たる。+
領域のアクセプタ䞍玔物密床をA、+領域
のドナヌ䞍玔物密床をDずし、ほがむオン化し
おいるず仮定するず各領域の少数キダリアはそれ
ぞれ pp 

(6) op 

(7) で䞎えられる。ただし、niは真性半導䜓においお
熱的に励起されるキダリアの密床である。Siで宀
枩動䜜を考えるずni1.3×1010cm-3皋床であり、
たずえばA及びDを1020cm-3皋床に蚭定するこ
ずにより、はそれぞれ〜個皋床におさ
えられる。逆バむアスされた+in+ダむオヌドの
飜和電流は近䌌的に次匏 Js ×exp-qVg/kT− 

(8) で䞎えられる。匏(8)は、正孔及び電子の拡散長
p、oがそれぞれ領域の厚さo及び領域
の厚さpより短い堎合に適甚できる匏であ
る。もし、o、pの方が、p、oより短くな
れば、匏(8)のp、oはo、pで眮き換えられ
る。p、oはそれぞれ領域における正孔、
領域における電子の拡散係数である。匏(8)で
電圧がある皋床倧きければ、匏(8)は、 Js  (8
)′ あるいは、 Js  (8
)″ ず曞き盎せる。匏(8)′、(8)″から明らかなように
op、ppが小さければ、暗電流Jsは小さくなる。
通垞、CCDやMOSFETに䜿われる半導䜓基板の
䞍玔物密床は1015〜1016cm-3皋床である。したが
぀お、ppあるいはopのいずれか䞀方が比范的
倧きな倀になる。ずころで、本発明にあ぀おは、
+領域は1019〜1021cm-3皋床に容易に補䜜でき
るし、+領域も1018〜1019cm-3皋床に容易に補
䜜できる。したが぀お、少くずも桁、本発明の
光怜出領域の暗電流は小さくできる。暗電流が小
さいずいうこずは、それだけ光照射期間を長くで
きるこずになる。埮匱光の怜出限界がより埮匱光
偎に広がる。
In the embodiment of the present invention, the generation of dark current in the sensor body is reduced by one order of magnitude compared to conventional MOS type and CCD type.
The structure and impurity density are set to reduce the impurity density by two orders of magnitude or more. The region where light is sensed in FIG. 5a is the high resistance layer 6, and the dark current in this photodetection region is p + Determined by electrons in region 7 and holes in n + region 5. p +
The acceptor impurity density in region 7 is N A , n + region 5
Assuming that the donor impurity density in is N D and that it is almost ionized, the minority carriers in each region are n pp = ni 2 /N A 

(6) P op = ni 2 /N D 

(7) is given by However, ni is the density of thermally excited carriers in the intrinsic semiconductor. Considering room temperature operation with Si, ni=1.3×10 10 cm -3 or so,
For example, by setting N A and N D to about 10 20 cm -3 , n and p can each be kept to about 3 to 4. The saturation current of the reverse biased p + in + diode is approximately given by the following equation Js = (qDpPno/Lp + qD on pp /Ln) x (exp -qVg/kT -1) (8). Equation (8) is the diffusion length L of holes and electrons.
This formula can be applied when p and Lo are shorter than the thickness W o of the n region 5 and the thickness W p of the P region 7, respectively. If W o and W p are shorter than L p and Lo, L p and Lo in equation (8) are replaced by W o and W p . D p and D o are holes in the n region 5, respectively;
This is the electron diffusion coefficient in the p region 7. If the voltage V in equation (8) is large to some extent, equation (8) becomes Js=qDpPno/Lp+qD on pp /Ln...(8
)' Or, Js=qDpPno/Wn+qD on pp /Wp...(8
)″.As is clear from equations (8)′ and (8)″, P
If op and npp are small, the dark current Js will be small.
Normally, the impurity density of semiconductor substrates used for CCDs and MOSFETs is about 10 15 to 10 16 cm -3 . Therefore, either n pp or P op becomes a relatively large value. By the way, in the present invention,
The n + region 5 can be easily manufactured to a size of about 10 19 to 10 21 cm -3 , and the p + region 7 can also be easily manufactured to a size of about 10 18 to 10 19 cm -3 . Therefore, the dark current in the photodetection region of the present invention can be reduced by at least two orders of magnitude. The fact that the dark current is small means that the light irradiation period can be lengthened accordingly. The detection limit for weak light extends further to the weak light side.

以䞊の説明からわかるように本発明ではMOS
型、CCD型等の埓来の固䜓デバむスによるむメ
ヌゞセンサに比べ、熱的に発生したキダリアい䌎
う雑音を桁以䞊枛少させた構造、及び䞍玔物密
床に蚭定されおいる。埓来のMOS型、CCD型で
は基板を高抵抗局にお䜿甚するこずはほずんどな
く、埓぀お少数キダリアの発生も本発明に比べ倚
いわけで、逆に本発明では光の入射領域基板
は高抵抗局であり、逆バむアスではほずんど空乏
化しおおり少数キダリアの発生を抑えるべく+
領域及び+領域の䞍玔物密床が高く蚭定さ
れおいるわけである。
As can be seen from the above explanation, in the present invention, MOS
The structure and impurity density are designed to reduce thermally generated carrier noise by more than two orders of magnitude compared to image sensors using conventional solid-state devices such as type and CCD types. In the conventional MOS type and CCD type, the substrate is rarely used as a high resistance layer, and therefore the generation of minority carriers is more common than in the present invention.On the contrary, in the present invention, the light incident area (substrate)
is a high-resistance layer, and is almost depleted in reverse bias, and in order to suppress the generation of minority carriers, p +
This is why the impurity density of region 7 and n + region 5 is set high.

本発明の実斜䟋では埓来のむメヌゞセンサに比
べ暗電流ノむズは極めお小さく抑えられおいる
が、埓぀お光照射期間に察する䜙裕床も少なくず
も桁以䞊向䞊しおいる。MOS型むメヌゞセン
サず同皋床に問題ずなる雑音に出力郚のオペアン
プに䌎うオペアンプノむズ、Johnsonノむズ、た
たアナログスむツチのスパむク倉動に䌎うスパむ
クノむズ、固定パタヌンノむズが存圚する。これ
らのうち容量結合による雑音をなるべく枛らすよ
うな工倫もなされおいる。即ちセンサ本䜓及び呚
蟺の走査回路、ビデオ出力郚に同じプロセスで補
造したSITがあり、これらのSITのゲヌト・゜ヌ
ス間、ゲヌト・ドレむン間の寄生容量をできる限
り枛少させるためにゲヌト・゜ヌス間、ゲヌト・
ドレむン間の察向する郚分に絶瞁局を介圚させる
構造を導入しおいる。このような寄生容量を枛ら
す工倫は特に䜎い光匷床レベルのむメヌゞ、特に
10Όcm2以䞋のむメヌゞを怜出する堎合の甚途
ずしお最適であり、通垞の0.5×10-2〜10-3Volt繋
床がダむナミツクレンゞの䞋限を䞎える動䜜の堎
合には特に導入する必芁はない。しかし䞊蚘の寄
生容量を枛らす構造の導入によりダむナミツクレ
ンゞは少なくずも桁以䞊䞋限が広が぀おいる。
さらに同䞀チツプ䞊に高利埗、䜎雑音のオペアン
プ及び䜎域通過フむルタヌを補造するこずによ
り、各郚の容量結合雑音及び固定パタヌン雑音も
䜎く抑える工倫がなされおいる。
In the embodiment of the present invention, dark current noise is suppressed to an extremely low level compared to conventional image sensors, but the margin for the light irradiation period is also improved by at least two orders of magnitude. Noises that are as problematic as those of MOS image sensors include operational amplifier noise and Johnson noise associated with the operational amplifier in the output section, as well as spike noise associated with spike fluctuations of analog switches, and fixed pattern noise. Among these, efforts have been made to reduce noise due to capacitive coupling as much as possible. In other words, there are SITs manufactured in the same process in the sensor body, peripheral scanning circuit, and video output section, and in order to reduce the parasitic capacitance between the gate and source and between the gate and drain of these SITs as much as possible, the parasitic capacitance between the gate and source, Gate·
A structure is introduced in which an insulating layer is interposed between the opposing drains. This method of reducing parasitic capacitance is particularly useful for images with low light intensity levels, especially
It is most suitable for use when detecting images of 10 ÎŒW/cm 2 or less, and there is no need to introduce it for operations where the normal 0.5 × 10 -2 to 10 -3 Volt is the lower limit of the dynamic range. . However, with the introduction of the structure for reducing the parasitic capacitance described above, the lower limit of the dynamic range has been expanded by at least two orders of magnitude.
Furthermore, by manufacturing a high-gain, low-noise operational amplifier and low-pass filter on the same chip, efforts have been made to keep the capacitive coupling noise and fixed pattern noise of each part low.

以䞊、本発明のむメヌゞセンサを、埓来のむメ
ヌゞセンサず比范し぀぀むメヌゞセンサの評䟡芁
玠である(1)ダむナミツクレンゞ(2)感床(3)ノむズ(4)
解像床の点から説明した。埓来のMOS型、
CCD型によるむメヌゞセンサに比べいづれの項
目でも倧きな改善がなされおいる。さらに本発明
のむメヌゞセンサではMOS型に比べ光の受光郚
分ずスむツチングデバむスがほが垂盎に構成され
おいるこずから集積床も高い。
As described above, while comparing the image sensor of the present invention with a conventional image sensor, the evaluation factors of the image sensor are (1) dynamic range (2) sensitivity (3) noise (4)
This was explained from the four points of resolution. Conventional MOS type,
Significant improvements have been made in all aspects compared to CCD-based image sensors. Furthermore, the image sensor of the present invention has a higher degree of integration than the MOS type, since the light receiving portion and the switching device are configured almost vertically.

以䞊説明したように、本発明は固䜓むメヌゞセ
ンサの動䜜特性を評䟡する぀の芁玠、(1)ダむナ
ミツクレンゞ、(2)感床、(3)雑音、(4)解像床のすべ
おの芁玠にわたり埓来のCCD型、MOS型むメヌ
ゞセンサの欠点を補い、さらに非砎壊読み出しで
あるこずから原理的に埓来た぀たく考えられなか
぀た時間的な解像床の点でもはるかに良奜であ
り、なおか぀、時々刻々倉化する光情報を刻明に
蚘憶し、積分出力する機胜を備えたむメヌゞセン
サであり、たさに革新的な発明である。
As explained above, the present invention improves the performance of conventional image sensors in all four elements that evaluate the operating characteristics of solid-state image sensors: (1) dynamic range, (2) sensitivity, (3) noise, and (4) resolution. It compensates for the shortcomings of CCD and MOS image sensors, and because it uses non-destructive readout, it has much better temporal resolution, which was previously unthinkable in principle. It is an image sensor that has the ability to store information minutely and integrally output it, making it a truly innovative invention.

本発明のむメヌゞセンサ半導䜓撮像装眮
が、ここで挙げた実斜䟋に限らないこずはもちろ
んである。導電型を党く反転したものでも、印加
電圧を正負反転すれば、党く同様に動䜜する。
Image sensor (semiconductor imaging device) of the present invention
However, it is needless to say that the present invention is not limited to the embodiments mentioned here. Even if the conductivity type is completely reversed, if the applied voltage is reversed, it will operate in exactly the same way.

本発明のむメヌゞセンサは圓然のこずながら珟
圚の技術ですでに甚いられおいる青、緑、赀等に
盞圓する色フむルタヌ等を甚い、光入射衚面にさ
たざたな凊理をするこずによ぀おカラヌ甚ずしお
甚いられるこずは容易に明らかである。たずえ
ば、盞隣り合う぀のセルをそれぞれ、青、緑、
赀の色にだけ応答するように配眮するわけであ
る。光怜出郚で、青、緑、赀の色に察する怜出感
床が異぀おいる堎合には、所定の匷床関係に戻る
ように、読み出し時に各色に察しお所定の匷床補
正をすればよい。
Naturally, the image sensor of the present invention uses color filters corresponding to blue, green, red, etc. that are already used in current technology, and performs various treatments on the light incident surface. It is readily apparent that it is used as For example, you can mark three adjacent cells as blue, green,
It is arranged so that it responds only to the color red. If the detection sensitivities for blue, green, and red colors are different in the light detection section, a predetermined intensity correction may be performed for each color at the time of readout so as to return to a predetermined intensity relationship.

【図面の簡単な説明】[Brief explanation of the drawing]

第図はMOS型むメヌゞセンサの原理説明
図、第図はCCD型むメヌゞセンサの原理説明
図、第図は衚面照射型及び裏面照射型の぀の
型のCCD型むメヌゞセンサの原理説明図、第
図はむメヌゞセンサの出力OP.Amp.の構成、第
図は本発明の䞀実斜䟋で、第図はセル郚分
の断面構造図、第図はセル郚分の回路衚
瀺、第図は動䜜モヌドの䞀䟋を瀺す図、第
図はこの動䜜モヌドでの光入力ずデヌタ出力の
関係を説明するための図、第図は光照射時間
での光入力のサンプリングを説明するための図、
第図及びは本発明の実斜䟋をマトリツクス
状の゚リアむメヌゞセンサシステムずしお組んだ
䟋、第図及びは本発明のむメヌゞセンサセ
ル郚分の他の実斜䟋の断面構造及び回路的衚珟、
第図及びは本発明のむメヌゞセンサセル郚
分の曎に他の実斜䟋の断面構造及び回路的衚珟、
第図は局内でのキダリアの広がりがドリフト
電界がかか぀おいるずきどの皋床に抑えられるか
を説明するための図である。
Figure 1 is a diagram explaining the principle of a MOS image sensor, Figure 2 is a diagram explaining the principle of a CCD image sensor, and Figure 3 is a diagram explaining the principle of two types of CCD image sensors: front-illuminated and back-illuminated. , 4th
The figure shows the configuration of the output OP.Amp. of the image sensor, FIG. 5 shows an embodiment of the present invention, FIG. Figure 5c is a diagram showing an example of the operation mode.
Figure 5d is a diagram for explaining the relationship between optical input and data output in this operation mode, Figure 5e is a diagram for explaining sampling of optical input during light irradiation time,
6a and 6b show an example in which the embodiment of the present invention is assembled as a matrix area image sensor system, and FIGS. 7a and 7b show the cross-sectional structure and circuit structure of another embodiment of the image sensor cell portion of the present invention. Expression,
FIGS. 8a and 8b are cross-sectional structures and circuit representations of still another embodiment of the image sensor cell portion of the present invention,
FIG. 9 is a diagram for explaining to what extent the spread of carriers in the i-layer is suppressed when a drift electric field is applied.

Claims (1)

【特蚱請求の範囲】  半導䜓基板の第䞀䞻衚面に読み出し甚トラン
ゞスタずリフレツシナ甚トランゞスタを隣接しお
蚭け、前蚘半導䜓基板の第二䞻衚面に光怜出郚を
蚭け、前蚘読み出し甚トランゞスタず前蚘リフレ
ツシナ甚トランゞスタず前蚘光怜出郚ずより成る
セルを耇数個有する半導䜓撮像装眮においお、前
蚘光怜出郚は実質的に光を怜出する高抵抗領域ず
前蚘高抵抗領域に隣接しお半導䜓基板の内郚に蚭
けられ浮遊領域ずされた高䞍玔物密床領域ず前蚘
高䞍玔物密床領域に隣接しお蚭けられ浮遊領域ず
された反察導電型高䞍玔物密床領域ずにより構成
されたフツク構造を有し、前蚘高䞍玔物密床領域
を前蚘リフレツシナ甚トランゞスタの䞀䞻電極領
域ずなし前蚘反察導電型高䞍玔物密床領域を前蚘
読み出し甚トランゞスタの䞀䞻電極領域ずなした
こずを特城ずする半導䜓撮像装眮。  前蚘高抵抗領域の半導䜓基板の第二䞻衚面偎
に所定の厚さの高䞍玔物密床領域を蚭け、か぀該
高䞍玔物密床領域ず電気的に接觊しお透明電極を
蚭けたこずを特城ずする前蚘特蚱請求の範囲第
項蚘茉の半導䜓撮像装眮。  前蚘高抵抗領域の半導䜓基板の第二䞻衚面偎
に前蚘高抵抗領域ず電気的に接觊しお透明電極を
蚭け、前蚘高抵抗領域ず前蚘透明電極をシペツト
キ接合ずなしたこずを特城ずする前蚘特蚱請求の
範囲第項蚘茉の半導䜓撮像装眮。  前蚘高抵抗領域に隣接しお半導䜓基板内郚に
蚭けられた前蚘高䞍玔物密床領域の䞍玔物密床を
略々×1018cm-3皋床以䞊ずなしたこずを特城ず
する前蚘特蚱請求の範囲第項乃至第項のいず
れかに蚘茉の半導䜓撮像装眮。  前蚘高抵抗領域に隣接しお半導䜓基板内郚に
蚭けられた前蚘高䞍玔物密床領域の厚さが略々
Ό皋床以䞊になされたこずを特城ずする前蚘特
蚱請求の範囲第項乃至第項のいずれかに蚘茉
の半導䜓撮像装眮。  前蚘光怜出郚ずなる前蚘半導䜓基板の前蚘第
二䞻衚面偎の受光面が、略々平坊になされおいる
こずを特城ずする前蚘特蚱請求の範囲第項乃至
第項のいずれかに蚘茉の半導䜓撮像装眮。  前蚘高抵抗領域の半導䜓基板の第二䞻衚面偎
に、前蚘半導䜓基板の犁制垯幅ず異なる犁制垯幅
を有する所定の厚さの半導䜓領域を蚭けたこずを
特城ずする前蚘特蚱請求の範囲第項蚘茉の半導
䜓撮像装眮。  前蚘透明電極に印加される電圧により、前蚘
高抵抗領域が空乏化し、か぀前蚘高抵抗領域を走
行する光励磁キダリアが略々飜和速床で走行する
ように、前蚘高抵抗領域の厚さ及び䞍玔物密床を
遞定したこずを特城ずする前蚘特蚱請求の範囲第
項又は第項に蚘茉の半導䜓撮像装眮。  半導䜓基板の第䞀䞻衚面に読み出し甚トラン
ゞスタずリフレツシナ甚トランゞスタを隣接しお
蚭け、前蚘半導䜓基板の第二䞻衚面に光怜出郚を
蚭け、前蚘読み出し甚トランゞスタず前蚘リフレ
ツシナ甚トランゞスタず前蚘光怜出郚ずより成る
セルを耇数個有する半導䜓撮像装眮においお、前
蚘光怜出郚は実質的に光を怜出する高抵抗領域ず
前蚘高抵抗領域に隣接しお半導䜓基板の内郚に蚭
けられ浮遊領域ずされた高䞍玔物密床領域ず前蚘
高䞍玔物密床領域に隣接しお蚭けられ浮遊領域ず
された反察導電型高䞍玔物密床領域ずにより構成
されたフツク構造を有し、前蚘高䞍玔物密床領域
を前蚘リフレツシナ甚トランゞスタの䞀䞻電極領
域ずなし前蚘反察導電型高䞍玔物密床領域を前蚘
読み出し甚トランゞスタの䞀䞻電極領域ずなし、
前蚘読み出し甚トランゞスタのゲヌトをワヌド線
に、前蚘リフレツシナ甚トランゞスタのゲヌトを
リフレツシナ線に、か぀前蚘読み出し甚トランゞ
スタの゜ヌスをビツト線に接続したこずを特城ず
する半導䜓撮像装眮。  前蚘ワヌド線を走査回路に、前蚘リフレツ
シナ線をリフレツシナ信号発生回路に、前蚘ビツ
ト線をオペアンプに接続したこずを特城ずする前
蚘特蚱請求の範囲第項蚘茉の半導䜓撮像装眮。  前蚘ワヌド線を、䞀個のリフレツシナ信号
呚期の間に耇数個の読み出し信号を発生する走査
回路に接続したこずを特城ずする前蚘特蚱請求の
範囲第項蚘茉の半導䜓撮像装眮。
[Scope of Claims] 1. A readout transistor and a refresh transistor are provided adjacent to each other on a first main surface of a semiconductor substrate, a photodetector is provided on a second main surface of the semiconductor substrate, and a readout transistor and a refresh transistor are provided on a second main surface of the semiconductor substrate, and In a semiconductor imaging device having a plurality of cells each including a transistor and a photodetection section, the photodetection section is provided inside a semiconductor substrate adjacent to a high-resistance region that substantially detects light and the high-resistance region. and a high impurity density region of opposite conductivity type provided adjacent to the high impurity density region and used as a floating region, and the high impurity density region A semiconductor imaging device characterized in that: is a main electrode region of the refresh transistor, and the opposite conductivity type high impurity density region is a main electrode region of the read transistor. 2. A high impurity density region of a predetermined thickness is provided on the second main surface side of the semiconductor substrate in the high resistance region, and a transparent electrode is provided in electrical contact with the high impurity density region. Said claim 1
The semiconductor imaging device described in . 3. A transparent electrode is provided on the second main surface side of the semiconductor substrate in the high resistance region in electrical contact with the high resistance region, and the high resistance region and the transparent electrode are formed by a shot junction. A semiconductor imaging device according to claim 1. 4. The impurity density of the high impurity density region provided in the semiconductor substrate adjacent to the high resistance region is approximately 1×10 18 cm -3 or more. The semiconductor imaging device according to any one of items 1 to 3. 5. The thickness of the high impurity density region provided inside the semiconductor substrate adjacent to the high resistance region is approximately 3.
A semiconductor imaging device according to any one of claims 1 to 4, characterized in that the semiconductor imaging device is formed to be approximately ÎŒm or more. 6. According to any one of claims 1 to 5, wherein the light-receiving surface on the second main surface side of the semiconductor substrate, which becomes the photodetector, is substantially flat. The semiconductor imaging device described. 7. Claims characterized in that a semiconductor region having a predetermined thickness and having a forbidden band width different from that of the semiconductor substrate is provided on the second main surface side of the semiconductor substrate in the high resistance region. 2. The semiconductor imaging device according to item 1. 8. The thickness and impurities of the high resistance region are adjusted such that the high resistance region is depleted by the voltage applied to the transparent electrode and the optically excited carrier traveling in the high resistance region travels at approximately a saturation speed. The semiconductor imaging device according to claim 2 or 3, characterized in that the density is selected. 9 A readout transistor and a refresh transistor are provided adjacent to each other on a first main surface of a semiconductor substrate, a photodetector is provided on a second main surface of the semiconductor substrate, and the readout transistor, the refreshment transistor, and the photodetector are provided on a second main surface of the semiconductor substrate. In a semiconductor imaging device having a plurality of cells consisting of a portion, the photodetecting portion is a high resistance region that substantially detects light, and a floating region provided inside a semiconductor substrate adjacent to the high resistance region. It has a hook structure composed of a high impurity density region and a high impurity density region of an opposite conductivity type provided adjacent to the high impurity density region and used as a floating region, and the high impurity density region is connected to the refresh transistor. one main electrode region and the opposite conductivity type high impurity density region as one main electrode region of the read transistor;
A semiconductor imaging device characterized in that the gate of the read transistor is connected to a word line, the gate of the refresh transistor is connected to a refresh line, and the source of the read transistor is connected to a bit line. 10. The semiconductor imaging device according to claim 9, wherein the word line is connected to a scanning circuit, the refresh line is connected to a refresh signal generation circuit, and the bit line is connected to an operational amplifier. 11. The semiconductor imaging device according to claim 10, wherein the word line is connected to a scanning circuit that generates a plurality of read signals during one refresh signal period.
JP5400180A 1980-04-22 1980-04-22 Semiconductor image pickup device Granted JPS56150878A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5400180A JPS56150878A (en) 1980-04-22 1980-04-22 Semiconductor image pickup device
EP81301732A EP0038697B1 (en) 1980-04-22 1981-04-21 Semiconductor image sensor
DE8181301732T DE3167682D1 (en) 1980-04-22 1981-04-21 Semiconductor image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5400180A JPS56150878A (en) 1980-04-22 1980-04-22 Semiconductor image pickup device

Publications (2)

Publication Number Publication Date
JPS56150878A JPS56150878A (en) 1981-11-21
JPS6117150B2 true JPS6117150B2 (en) 1986-05-06

Family

ID=12958354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5400180A Granted JPS56150878A (en) 1980-04-22 1980-04-22 Semiconductor image pickup device

Country Status (1)

Country Link
JP (1) JPS56150878A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945781A (en) * 1982-09-09 1984-03-14 Fuji Photo Film Co Ltd Semiconductor image pickup device
US4686554A (en) 1983-07-02 1987-08-11 Canon Kabushiki Kaisha Photoelectric converter
US4731665A (en) * 1984-12-28 1988-03-15 Canon Kabushiki Kaisha Image sensing apparatus with read-out of selected combinations of lines
JPH0646655B2 (en) * 1985-04-01 1994-06-15 キダノン株匏䌚瀟 Solid-state imaging device
EP1284021A4 (en) 2000-04-20 2008-08-13 Digirad Corp Fabrication of low leakage-current backside illuminated photodiodes
US20040164321A1 (en) * 2003-02-26 2004-08-26 Dialog Semiconductor Vertical charge transfer active pixel sensor

Also Published As

Publication number Publication date
JPS56150878A (en) 1981-11-21

Similar Documents

Publication Publication Date Title
JPH0312510B2 (en)
US6512547B1 (en) Solid-state imaging device and method of detecting optical signals using the same
US6555842B1 (en) Active pixel sensor with intra-pixel charge transfer
JP4183789B2 (en) Detection device for physical and / or chemical phenomena
US20070145503A1 (en) Pixel structure with improved charge transfer
JPH11307756A (en) Photoelectric converter and radiation beam reader
JPH0444465B2 (en)
US5306931A (en) CCD image sensor with improved antiblooming characteristics
US4589003A (en) Solid state image sensor comprising photoelectric converting film and reading-out transistor
JP3311004B2 (en) Solid-state imaging device
JPH0454987B2 (en)
JPH0562869B2 (en)
US4684968A (en) JFET imager having light sensing inversion layer induced by insulator charge
JP2692218B2 (en) Solid-state imaging device
JPS6117150B2 (en)
US4672412A (en) High fill-factor ac-coupled x-y addressable Schottky photodiode array
JPH0582746B2 (en)
JPS6153765A (en) Solid-state impage pick-up device
EP0038697B1 (en) Semiconductor image sensor
US4644402A (en) Solid state image sensor
US4429330A (en) Infrared matrix using transfer gates
JP3590158B2 (en) MOS amplification type imaging device
JPH06296036A (en) Photosensor
JP2000156491A (en) Infrared solid state image sensor
JP3246062B2 (en) Photo sensor system