JPH10125351A - Nickel-cadmium storage battery and its manufacture - Google Patents

Nickel-cadmium storage battery and its manufacture

Info

Publication number
JPH10125351A
JPH10125351A JP8283754A JP28375496A JPH10125351A JP H10125351 A JPH10125351 A JP H10125351A JP 8283754 A JP8283754 A JP 8283754A JP 28375496 A JP28375496 A JP 28375496A JP H10125351 A JPH10125351 A JP H10125351A
Authority
JP
Japan
Prior art keywords
cadmium
negative electrode
nickel
battery
alloy plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8283754A
Other languages
Japanese (ja)
Other versions
JP3695864B2 (en
Inventor
Yoshiyuki Fujimoto
義之 藤元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP28375496A priority Critical patent/JP3695864B2/en
Publication of JPH10125351A publication Critical patent/JPH10125351A/en
Application granted granted Critical
Publication of JP3695864B2 publication Critical patent/JP3695864B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a high-capacity, long-life nickel-cadmium storage battery in which an internal resistance rise, etc., due to the migration of cadmium or repeated charge and discharge is prevented. SOLUTION: In a contact current-collecting type nickel-cadmium storage battery, in which the outermost periphery of a spiral electrode is used as a cadmium negative electrode 10 and the outer surface of the outermost periphery of the cadmium electrode 10 is brought into contact with the inner surface of a battery outer can, the cadmium electrode 10 is used which is obtained by forming an alloy plating layer 3a, containing cadmium and indium over the outer surface of each negative active material layer formed on each side of a conducting core, and forming a conductive layer 4a, containing conductive powders, water-repellent powders, and a paste for sticking the powders together, over the entire surface of the alloy plating layer except the part (current- collecting part) 6 of the alloy-plating layer making contact with the inner surface of the outer can is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ペースト式カドミ
ウム負極を用いた巻回型接触集電方式のニッケル−カド
ミウム蓄電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel-cadmium storage battery of a wound contact current collecting type using a paste type cadmium negative electrode.

【0002】[0002]

【従来の技術】ニッケル−カドミウム蓄電池に用いる負
極としては、従来では焼結式負極板が使用されていた
が、今日では焼結式に比べて製造工程が簡単であり、高
エネルギー密度の得られるペースト式負極板が主流とな
っている。しかし、ペースト式負極板は、焼結式に比較
し電極の電子伝導性が劣るため、酸素ガスの吸収性能が
悪い。また、ペースト式負極板は、焼結式に比較し活物
質を支持する力が弱いため、充放電時に電解液に溶出し
たカドミウム中間体がセパレータに移動するいわゆるマ
イグレーション現象を生じ易く、このマイグレーション
が内部短絡の原因となるという課題を有している。
2. Description of the Related Art Conventionally, a sintered negative electrode plate has been used as a negative electrode for a nickel-cadmium storage battery. However, today, the manufacturing process is simpler than that of a sintered type, and a high energy density can be obtained. Paste-type negative electrode plates have become mainstream. However, the paste type negative electrode plate has poor electron conductivity of the electrode as compared with the sintered type, and thus has poor oxygen gas absorption performance. In addition, since the paste type negative electrode plate has a weaker force for supporting the active material than the sintering type, a so-called migration phenomenon in which the cadmium intermediate eluted in the electrolyte during charge / discharge moves to the separator easily occurs. There is a problem of causing an internal short circuit.

【0003】このため、上記課題を解消する手段とし
て、特開昭64−12461号公報では、負極活物質層
の表面に炭素粉末とフッ素樹脂粉末及び糊料とからなる
導電層を形成する技術が提案されている。この技術によ
ると、負極表面の導電性と酸素ガスの透過性が向上する
ので、負極の酸素ガス吸収能力が高まるとされる。他
方、特開平6−223823号公報では、負極活物質層
の表面にカドミウムとインジウムからなる合金メッキ層
を形成する技術が提案されており、この技術によると、
カドミウムのマイグレーションを抑制でき、マイグレー
ションに起因する内部短絡が防止できるとされる。
As a means for solving the above problem, Japanese Patent Application Laid-Open No. 64-12461 discloses a technique of forming a conductive layer made of carbon powder, fluororesin powder and paste on the surface of a negative electrode active material layer. Proposed. According to this technique, the conductivity of the negative electrode surface and the permeability of oxygen gas are improved, so that the oxygen gas absorbing capacity of the negative electrode is said to be increased. On the other hand, JP-A-6-223823 proposes a technique of forming an alloy plating layer made of cadmium and indium on the surface of a negative electrode active material layer. According to this technique,
It is said that migration of cadmium can be suppressed, and an internal short circuit caused by migration can be prevented.

【0004】ところで、巻回型のニッケル−カドミウム
蓄電池は、カドミウム負極板とニッケル正極板とをセパ
レータを介して巻回し渦巻電極体と成し、この渦巻電極
体と電解液を電池外装缶に挿入する方法により電池が構
成されるが、この種の電池の集電方式には、次の2つの
方式がある。 (1) 集電タブ方式 正負電極板にそれぞれ正負集電タブを付設し、これらの
正負電極板をセパレータを介して、セパレータが最外周
に位置し電極板を完全に覆うように巻回し、巻回終端近
傍でセパレータを巻取体にテープ止め又は熱溶着して渦
巻電極体と成す。この渦巻電極体を、前記正負集電タブ
をそれぞれの外部電極端子に溶接等した状態で、電池外
装缶内に収納する方式。 (2) 外周接触集電方式 カドミウム負極板と、正極集電タブの付設されたニッケ
ル正極板とを、セパレータを介して、カドミウム負極板
が最外周に位置するように巻回して渦巻電極体と成し、
正極集電タブを正極外部端子に溶接等すると共に、カド
ミウム負極の最外周外側面を負極外部端子を兼ねる電池
外装缶の内周面に接触させた状態で、前記渦巻電極体を
負極外部端子を兼ねる電池外装缶に収納する方式。
[0004] In a wound nickel-cadmium storage battery, a cadmium negative electrode plate and a nickel positive electrode plate are wound through a separator to form a spiral electrode body, and the spiral electrode body and the electrolyte are inserted into a battery outer can. The battery is configured by the above-described method. There are two types of current collection methods for this type of battery. (1) Current collecting tab method Positive and negative current collecting tabs are respectively attached to the positive and negative electrode plates, and these positive and negative electrode plates are wound via a separator so that the separator is located at the outermost periphery and completely covers the electrode plate. The separator is taped or thermally welded to the wound body near the end of the winding to form a spiral electrode body. A method in which the spiral electrode body is housed in a battery outer can with the positive and negative current collecting tabs welded to the respective external electrode terminals. (2) Circumferential contact current collection method Cadmium negative electrode plate, and a nickel positive electrode plate provided with a positive electrode current collector tab, through a separator, wound so that the cadmium negative electrode plate is located at the outermost periphery, and a spiral electrode body And
While the positive electrode current collecting tab is welded to the positive electrode external terminal, and the outermost outer surface of the cadmium negative electrode is brought into contact with the inner peripheral surface of the battery outer can also serving as the negative electrode external terminal, the spiral electrode body is connected to the negative electrode external terminal. A method of storing in a battery outer can that also serves as a battery.

【0005】上記外周接触集電方式を採用した場合、渦
巻電極体の最外周電極面をセパレータで覆う必要がな
く、また負極板に集電タブを取り付ける工程や負極外部
端子を兼ねる電池外装缶に集電タブを溶接する工程が不
要となる。したがって、外周接触集電方式では、集電タ
ブ方式に比較し、電池製造工程の簡素化が図れるととも
に、有効発電面積(電極板の面積)を大きくできるとい
う長所がある一方、電気的接続が不安定であり、接触抵
抗等により集電効率の低下を来すという本質的課題を有
している。
When the above-mentioned outer peripheral contact current collecting method is adopted, it is not necessary to cover the outermost peripheral electrode surface of the spiral electrode body with a separator, and a step of attaching a current collecting tab to a negative electrode plate or a battery outer can also serving as a negative electrode external terminal. The step of welding the current collecting tab is not required. Therefore, the outer peripheral contact current collecting method has advantages in that the battery manufacturing process can be simplified and the effective power generation area (the area of the electrode plate) can be increased as compared with the current collecting tab method. It is stable and has an essential problem of lowering the current collection efficiency due to contact resistance and the like.

【0006】特に、負極表面に撥水成分や糊料を含む導
電層を配した前記特開昭64−12461号公報の技術
に外周接触集電方式を適用した場合、これらの成分が接
触抵抗を増大させるように作用するとともに、充放電サ
イクルの進行にともなう糊料の膨潤等により、集電効率
が顕著に低下するという問題がある。また、負極表面に
合金メッキ層を配した前記特開平6−223823号公
報の技術に外周接触集電方式を適用した場合において
は、集電効率の低下が少ないものの、この技術は未だマ
イグレーションの抑制および酸素ガス吸収性能の改善程
度が十分でない。よって、更なる改良が望まれている。
In particular, when the outer peripheral contact current collecting method is applied to the technique of Japanese Patent Application Laid-Open No. Sho 64-12461 in which a conductive layer containing a water repellent component and a paste is disposed on the negative electrode surface, these components reduce the contact resistance. In addition to acting to increase the current, there is a problem that the current collection efficiency is significantly reduced due to swelling of the paste as the charge / discharge cycle proceeds. Further, in the case where the outer peripheral contact current collecting method is applied to the technique of JP-A-6-223823 in which an alloy plating layer is provided on the negative electrode surface, although the reduction of the current collecting efficiency is small, this technique still suppresses migration. And the degree of improvement in oxygen gas absorption performance is not sufficient. Therefore, further improvement is desired.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記に鑑み
なされたものであり、外周接触集電方式のニッケル−カ
ドミウム蓄電池において、カドミウムのマイグレーショ
ンを一層効果的に抑制でき、充放電の繰り返しによって
も集電効率等の低下のない、高容量かつ長寿命な電池を
提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above, and in a nickel-cadmium storage battery of an outer peripheral contact current collecting type, migration of cadmium can be more effectively suppressed, and by repeating charge and discharge. It is another object of the present invention to provide a high-capacity and long-life battery without lowering the current collection efficiency.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記課題を
解決するために鋭意研究した結果、前記両技術(特開平
6−223823号公報および特開昭64−12461
号公報の技術)を好適に組み合わせ、かつこれに新たな
要素を付加することにより、電池生産性の向上、高容量
化、集電効率の向上等を図れることを見いだし、下記構
成の本発明を完成させた。
The inventor of the present invention has made intensive studies to solve the above-mentioned problems, and as a result, the above-mentioned technologies (Japanese Patent Application Laid-Open Nos. 6-223823 and 64-12461).
Of the present invention, and by adding a new element thereto, it is possible to improve battery productivity, increase capacity, improve current collection efficiency, and the like. Completed.

【0009】請求項1記載の発明は、カドミウム負極と
ニッケル正極とをセパレータを介しカドミウム負極が最
外周に位置するように巻回してなる渦巻電極体が、前記
最外周の外側面が電池外装缶の内周面に接触した状態
で、電池外装缶内に収納されてなるニッケル−カドミウ
ム蓄電池において、前記カドミウム負極として、導電芯
体の両面に塗着された両負極活物質層の表面に、カドミ
ウムとインジウムとを含む合金メッキ層が形成され、更
に前記電池外装缶の内周面に接触する最外周外側面を除
く当該合金メッキ層の両表面に、導電性粉末と撥水性粉
末と糊料とを含む導電層が形成された構造のカドミウム
負極を用い、導電層の形成されていない前記カドミウム
負極の最外周外側面(即ち、合金メッキ層)を集電部と
して電池外装缶の内側面に接触させたことを特徴とす
る。
According to a first aspect of the present invention, there is provided a spirally wound electrode body formed by winding a cadmium negative electrode and a nickel positive electrode with a separator interposed therebetween so that the cadmium negative electrode is located at the outermost periphery. In a nickel-cadmium storage battery that is housed in a battery outer can while being in contact with the inner peripheral surface of the cadmium negative electrode, the cadmium negative electrode has cadmium on the surface of both negative electrode active material layers coated on both surfaces of a conductive core. And an alloy plating layer containing indium is formed, furthermore, on both surfaces of the alloy plating layer except for the outermost outer surface in contact with the inner peripheral surface of the battery outer can, conductive powder, water-repellent powder, glue and A cadmium negative electrode having a structure in which a conductive layer containing is formed is used, and the outermost peripheral surface of the cadmium negative electrode in which the conductive layer is not formed (that is, an alloy plating layer) is used as a current collecting portion to form a battery inside the battery outer can. Characterized in that in contact with the surface.

【0010】この構成であると、活物質層の表面に形成
された合金メッキ層が、マイグレーションの原因となる
可溶性中間体の電解液中への拡散を抑制する。また、こ
の合金メッキ層の上に形成された導電性層が、負極の酸
素ガス吸収性能を向上するように機能する。より具体的
には、導電層に含まれる導電性粉末が、負極表面のカド
ミウム活物質の優先充電に寄与し、撥水性粉末が優先充
電されたカドミウム活物質と酸素ガス(正極で発生)と
の接触を容易にするように作用する。したがって、負極
の酸素ガスの吸収性能が向上する。しかも、この導電層
は糊料によって合金メッキ層に強力に固着されているの
で、活物質であるカドミウムの可溶性中間体の電解液へ
の拡散を抑制する効果もある。このように、合金メッキ
層と導電層が作用する結果、マイグレーションの抑制効
果と酸素ガス吸収能力が一層高まる。
With this configuration, the alloy plating layer formed on the surface of the active material layer suppresses diffusion of the soluble intermediate, which causes migration, into the electrolytic solution. Further, the conductive layer formed on the alloy plating layer functions to improve the oxygen gas absorbing performance of the negative electrode. More specifically, the conductive powder contained in the conductive layer contributes to preferential charging of the cadmium active material on the negative electrode surface, and the water-repellent powder forms the preferentially charged cadmium active material and oxygen gas (generated at the positive electrode). Acts to facilitate contact. Therefore, the oxygen gas absorption performance of the negative electrode is improved. In addition, since this conductive layer is strongly fixed to the alloy plating layer by the paste, there is also an effect of suppressing the diffusion of the soluble intermediate of cadmium as an active material into the electrolytic solution. Thus, as a result of the action of the alloy plating layer and the conductive layer, the effect of suppressing migration and the ability to absorb oxygen gas are further enhanced.

【0011】ここで、合金メッキ層および導電層の上述
の作用からして、導電層は負極の最表面に位置させる必
要があるが、導電層を負極の最表面に位置させた場合、
導電層の成分である撥水性粉末は接触抵抗を増大するよ
うに作用し、また導電層の成分である糊料が親水性糊料
のような電解液により膨潤する性質を持つ場合には、一
層接触抵抗を増大するように作用する。したがって、充
放電の繰り返しにより次第に接触抵抗が大きくなる。
Here, the conductive layer needs to be located on the outermost surface of the negative electrode due to the above-described actions of the alloy plating layer and the conductive layer.
The water-repellent powder, which is a component of the conductive layer, acts to increase the contact resistance. It acts to increase the contact resistance. Therefore, the contact resistance gradually increases as charge and discharge are repeated.

【0012】このため、本発明では、渦巻電極体の最外
周に位置するカドミウム負極の外側面には、導電層を形
成しないようにして合金メッキ層を負極表面に露出させ
る構造にしてある。そして、この合金メッキ層の露出面
を集電部とし、この集電部が電池外装缶の内周面には接
触するように構成する一方、正極と対向する負極面には
全て導電層を形成した構造にしてある。このような構成
であると、外周接触集電方式の前記短所を改善できるの
で、外周接触集電方式の長所を活用し得た低コスト且つ
高容量、長寿命のニッケル−カドミウム蓄電池が得られ
る。
For this reason, the present invention has a structure in which the conductive layer is not formed on the outer surface of the cadmium negative electrode located at the outermost periphery of the spiral electrode body, and the alloy plating layer is exposed on the negative electrode surface. The exposed surface of the alloy plating layer is used as a current collector, and the current collector is configured to be in contact with the inner peripheral surface of the battery outer can. On the other hand, a conductive layer is formed on the negative electrode surface facing the positive electrode. It has a structured structure. With such a configuration, the disadvantages of the peripheral contact current collecting system can be improved, and a low cost, high capacity, long life nickel-cadmium storage battery that can utilize the advantages of the peripheral contact current collecting system can be obtained.

【0013】請求項2記載の発明は、請求項1記載の発
明の構成において、前記カドミウム負極の最外周外側面
の巻回方向長を、前記外装缶の内側面の周長と略同等と
したことを特徴とする。この構成であると、外装缶の内
側面と接触する負極表面には導電層が存在せず、合金メ
ッキ層が電池外装缶に接触することになるので、接触抵
抗をより小さくできる。
According to a second aspect of the present invention, in the configuration of the first aspect, a winding direction length of an outermost outer peripheral surface of the cadmium negative electrode is substantially equal to a circumferential length of an inner peripheral surface of the outer can. It is characterized by the following. With this configuration, the conductive layer does not exist on the negative electrode surface in contact with the inner surface of the outer can, and the alloy plating layer comes into contact with the battery outer can, so that the contact resistance can be further reduced.

【0014】請求項3記載の発明は、導電芯体の両面に
負極活物質層を形成した後、両負極活物質層の表面にカ
ドミウムとインジウムとを含む合金メッキ層を形成して
極板を構成し、この合金メッキ層の形成された極板の一
方面の長手方向端部近傍を集電部とし、当該集電部を除
き、前記合金メッキ層の両表面に導電性粉末と撥水性粉
末と糊料とを含む導電層を形成するカドミウム負極作製
工程と、前記集電部が、最外周の外側に位置するように
前記カドミウム負極とニッケル正極とをセパレータを介
して渦巻き状に巻回して、渦巻電極体と成す電極巻回工
程と、前記集電部が、電池外装缶内周面に接触する状態
で、前記渦巻電極体を電池外装缶内に収納する渦巻電極
体収納工程とを備えることを特徴とする。
According to a third aspect of the present invention, an electrode plate is formed by forming an anode active material layer on both surfaces of a conductive core and then forming an alloy plating layer containing cadmium and indium on the surfaces of both anode active material layers. The vicinity of one end in the longitudinal direction of one side of the electrode plate on which the alloy plating layer is formed is defined as a current collecting portion. Except for the current collecting portion, both surfaces of the alloy plating layer have conductive powder and water repellent powder. A cadmium negative electrode forming step of forming a conductive layer including a paste and a paste, and the current collector is spirally wound through a separator so that the cadmium negative electrode and the nickel positive electrode are positioned outside the outermost periphery. An electrode winding step of forming a spiral electrode body, and a spiral electrode body housing step of housing the spiral electrode body in the battery outer can in a state where the current collector contacts the inner peripheral surface of the battery outer can. It is characterized by the following.

【0015】この製造方法によると、前記請求項1記載
のニッケル−カドミウム蓄電池が確実に製造できる。
According to this manufacturing method, the nickel-cadmium storage battery according to claim 1 can be manufactured reliably.

【0016】また請求項4記載の発明は、請求項3記載
の発明の構成において、前記集電部の巻回方向の長さ
が、前記電池外装缶の内側面の周長と略同等となるよう
に構成されていることを特徴とする。この製造方法によ
ると、前記請求項2記載のニッケル−カドミウム蓄電池
が確実に製造できる。
According to a fourth aspect of the present invention, in the configuration of the third aspect, a length of the current collecting portion in a winding direction is substantially equal to a circumferential length of an inner surface of the battery outer can. It is characterized by having such a configuration. According to this manufacturing method, the nickel-cadmium storage battery according to claim 2 can be manufactured reliably.

【0017】[0017]

【発明の実施の形態】本発明の実施の形態を、図1〜図
4に基づいて、以下に説明する。図1は渦巻き状に巻回
する前のカドミウム負極における一方の面(巻回後は外
側に位置する面)の正面図、図2は図1のA−A線矢視
断面図、図3は渦巻き状に巻回する前のカドミウム負極
における他方の面(巻回後は内側に位置する面)の正面
図、図4はカドミウム負極をニッケル正極及びセパレー
タと共に渦巻き状に巻回した渦巻電極体の斜視図であ
る。なお、図2は作図上の都合から、厚み方向を拡大し
て描いてある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a front view of one surface (a surface located outside after winding) of the cadmium negative electrode before spirally winding, FIG. 2 is a cross-sectional view taken along line AA of FIG. 1, and FIG. FIG. 4 is a front view of the other surface of the cadmium negative electrode before being spirally wound (the surface located inside after being wound). FIG. 4 shows a spiral electrode body in which the cadmium negative electrode is spirally wound together with a nickel positive electrode and a separator. It is a perspective view. Note that FIG. 2 is drawn by enlarging the thickness direction for the convenience of drawing.

【0018】図2に示すように、カドミウム負極10
は、導電芯体1の両面にカドミウム活物質層2a・2b
が形成され、このカドミウム活物質層の両面には、カド
ミウムとインジウムからなる合金メッキ層3a、3bが
それぞれ形成されている。更に、合金メッキ層3bの全
面には、導電性粉末、撥水性粉末および糊料からなる導
電層4bが形成されている(図3参照)。他方、合金メ
ッキ層3aの表面には、図1、図2に示すように、負極
の巻取り開始端部5から長さt1 の部分だけに導電層が
形成され、残りの部分は合金メッキ層3aが露出する構
造とし、この合金メッキ層3aの露出部分を集電部6と
してある。
As shown in FIG. 2, the cadmium negative electrode 10
Are the cadmium active material layers 2a and 2b on both surfaces of the conductive core 1.
Are formed, and alloy plating layers 3a and 3b made of cadmium and indium are formed on both surfaces of the cadmium active material layer, respectively. Further, a conductive layer 4b made of a conductive powder, a water-repellent powder, and a paste is formed on the entire surface of the alloy plating layer 3b (see FIG. 3). On the other hand, the surface of the alloy plating layer 3a, as shown in FIGS. 1 and 2, a conductive layer is formed only on the portion of the length t 1 from the winding start end portion 5 of the negative electrode, the remainder of the alloy plating The structure is such that the layer 3a is exposed, and the exposed portion of the alloy plating layer 3a is used as a current collector 6.

【0019】このような構造のカドミウム負極10を、
導電層4b面にセパレータ12と、ニッケル正極11と
を重ね合わせ、前記開始端部5を巻回始端とし、かつニ
ッケル正極11を内側にして巻回し、図4に示すような
渦巻電極体13を作製する。この渦巻電極体13は、合
金メッキ層の露出した面(集電部6)が、電極体の最外
周の外側(外側面14)に位置する一方、ニッケル正極
11と対向するカドミウム負極の表面には、全て導電層
4aが形成された構造をしている。よって、この渦巻電
極体13を、負極外部端子を兼ねる電池外装缶(図示せ
ず)内に収納した場合、渦巻電極体13は外側に向かっ
て広がろうとするので、前記集電部6が外装缶の内周面
に接触し、カドミウム負極と負極外部端子を兼ねる電池
外装缶とが電気的に接続される。
The cadmium negative electrode 10 having such a structure is
The separator 12 and the nickel positive electrode 11 are overlapped on the surface of the conductive layer 4b, and the spirally wound electrode body 13 as shown in FIG. Make it. In the spiral electrode body 13, the exposed surface of the alloy plating layer (the current collector 6) is located on the outermost periphery (outside surface 14) of the electrode body, while the surface of the cadmium anode facing the nickel cathode 11 is located on the surface of the cadmium anode. Have a structure in which the conductive layer 4a is formed. Therefore, when the spiral electrode body 13 is housed in a battery outer can (not shown) also serving as a negative electrode external terminal, the spiral electrode body 13 tends to spread outward, so that the current collecting portion 6 becomes The inner peripheral surface of the can is brought into contact, and the cadmium negative electrode and the battery outer can also serving as the negative electrode external terminal are electrically connected.

【0020】上記構造のニッケル−カドミウム蓄電池
は、以下のようにして作製される。ニッケル活物質と、
有機繊維、水和防止剤等を含む糊料溶液とを混練して活
物質ペーストを調製し、この活物質ペーストを導電芯体
1の両面に塗着、乾燥して、導電芯体の両面にカドミウ
ム活物質層2a・2bを形成した後、活物質層の形成さ
れた導電芯体に対し、カドミウムとインジウムを含む合
金被膜を施し、合金メッキ層3a、3bを形成する。
The nickel-cadmium storage battery having the above structure is manufactured as follows. Nickel active material,
An active material paste is prepared by kneading an organic fiber, a paste solution containing a hydration inhibitor and the like, and the active material paste is applied to both surfaces of the conductive core 1 and dried, and the active material paste is applied to both surfaces of the conductive core. After forming the cadmium active material layers 2a and 2b, an alloy coating containing cadmium and indium is applied to the conductive core on which the active material layers are formed, to form alloy plating layers 3a and 3b.

【0021】次いで、糊料を含む水溶液に導電性粉末と
撥水性粉末とを加え、混合して導電スラリーと成し、こ
のスラリーを前記合金メッキ層3a・3bの表面にコー
ティングする。この際、これら合金メッキ層3a・3b
のうち合金メッキ層3aの表面には、負極の巻取り開始
端部5から長さt1 の部分だけにスラリーをコーティン
グし、他方、合金メッキ層3bには、その全面にスラリ
ーをコーティングする。この後、コーティングした導電
スラリーを乾燥することにより、本発明にかかるカドミ
ウム負極板10が作製できる。
Next, the conductive powder and the water-repellent powder are added to the aqueous solution containing the paste and mixed to form a conductive slurry, and the slurry is coated on the surfaces of the alloy plating layers 3a and 3b. At this time, these alloy plating layers 3a and 3b
On the surface of the alloy plating layer 3a of, only the coating slurry of the length t 1 from the winding start end portion 5 of the negative electrode, while the alloy plating layer 3b, coating the slurry on the entire surface thereof. Thereafter, the cadmium negative electrode plate 10 according to the present invention can be manufactured by drying the coated conductive slurry.

【0022】上記カドミウム負極板10と公知のニッケ
ル正極11とをセパレータ12を介して、カドミウム負
極板10の合金メッキ層露出部分(集電部6)が渦巻電
極体の最外周外側面に位置するように巻回し、渦巻電極
体13を作製する。この渦巻電極体13を外装缶の開口
部(図示せず)から挿入し、電解液を注入した後、外装
缶の開口部を封口蓋で封口する。これにより、本発明に
かかるニッケル−カドミウム蓄電池(密閉型)が作製で
きる。
With the cadmium negative electrode plate 10 and the known nickel positive electrode 11 interposed therebetween, the exposed portion of the alloy plating layer (current collector 6) of the cadmium negative electrode plate 10 is located on the outermost outer peripheral surface of the spiral electrode body. And the spiral electrode body 13 is manufactured. After inserting the spiral electrode body 13 through an opening (not shown) of the outer can and injecting the electrolytic solution, the opening of the outer can is sealed with a sealing lid. Thereby, the nickel-cadmium storage battery (sealed type) according to the present invention can be manufactured.

【0023】ここで、上記における導電性粉末として
は、例えば炭素粉末、黒鉛粉末、アセチレンブラック、
ケッチェンブラックなどが使用できる。また、撥水性粉
末としては、フッ素樹脂、ポリエチレン、ケイ素樹脂な
どが使用でき、好ましくは撥水性と分散性の点でフッ素
樹脂を使用するのがよい。更に、糊料としては、例えば
ポリビニルアルコール、カルボキシメチルセルロース、
メチルセルロース、ヒロドキシプロピルセルロースなど
の親水性糊料が好適に使用できるが、ポリ酢酸ビニル、
ポリエステル樹脂などの疎水性樹脂を使用してもよい。
また、合金被膜を施す方法としては、電気メッキ法、無
電解メッキ法などが使用でき、例えば電気メッキ法によ
り容易に好適な合金被膜を形成できる。
Here, as the conductive powder in the above, for example, carbon powder, graphite powder, acetylene black,
Ketjen Black can be used. As the water-repellent powder, a fluororesin, polyethylene, silicon resin or the like can be used, and it is preferable to use a fluororesin in terms of water repellency and dispersibility. Further, as a paste, for example, polyvinyl alcohol, carboxymethyl cellulose,
Methylcellulose, hydrophilic paste such as hydroxypropylcellulose can be preferably used, polyvinyl acetate,
A hydrophobic resin such as a polyester resin may be used.
In addition, as a method of applying an alloy film, an electroplating method, an electroless plating method, or the like can be used. For example, a suitable alloy film can be easily formed by an electroplating method.

【0024】[0024]

【実施例】本発明の内容を本発明例および比較例に基づ
いて更に具体的に説明する。なお、電池の構造は上記実
施の形態に示す構造と同一である。 (本発明例)酸化カドミウム及び金属カドミウムから成
る負極活物質と、ナイロン繊維、リン酸ナトリウム(水
和防止剤)を含む糊料溶液とを混練して活物質ペースト
とし、これをパンチングメタルよりなる導電芯体(全長
2 =95mm)の両面に塗着し、乾燥した。この活物
質層の形成された芯体をカソードとし、Cd2+1.0g
dm-3、In2+20gdm-3、H2NSO3H50gdm
-3、膠0.2gdm-3を含む電解メッキ浴に浸漬し、3
00mAdm-2 の電流で陰電解メッキを行なった。こ
の操作により、芯体活物質層表面にカドミウムとインジ
ウムからなる合金メッキ層(厚み約2μm)が形成され
る。
EXAMPLES The contents of the present invention will be described more specifically based on examples of the present invention and comparative examples. Note that the structure of the battery is the same as the structure described in the above embodiment. (Example of the present invention) A negative electrode active material composed of cadmium oxide and metal cadmium, and a paste solution containing nylon fiber and sodium phosphate (hydration inhibitor) are kneaded to form an active material paste, which is made of a punching metal. It was applied to both sides of a conductive core (total length t 2 = 95 mm) and dried. The core having the active material layer formed thereon was used as a cathode, and Cd 2+ 1.0 g
dm -3 , In 2+ 20 gdm -3 , H 2 NSO 3 H50 gdm
-3 , dipped in an electrolytic plating bath containing 0.2 gdm -3
Negative electrolytic plating was performed at a current of 00 mAdm- 2 . By this operation, an alloy plating layer (about 2 μm thick) made of cadmium and indium is formed on the surface of the core active material layer.

【0025】次に、導電性粉末としての炭素粉末10重
量部と、親水性糊料としてのポリビニルピロリドン10
重量部と、撥水性粉末としてのテフロンディスパージョ
ン30−J(三井デュポンフロロケミカル(株)製)を
10重量%の割合で含む水溶液100重量部とを混合し
て導電スラリーと成し、この導電スラリーを前記合金メ
ッキ層の一方面の全面にコーティングするとともに、他
方面には巻取り開始端部5(図1参照)から長さ65m
m(t1 )の位置までコーティング(厚み約10μm)
した。この後、この極板を乾燥し、本発明にかかるカド
ミウム負極板と成した。このカドミウム負極板の全表面
のうち、導電層を形成しなかった部分(合金メッキ層が
露出した部分)を集電部とする。
Next, 10 parts by weight of carbon powder as a conductive powder and polyvinylpyrrolidone 10 as a hydrophilic paste
Parts by weight and 100 parts by weight of an aqueous solution containing 10% by weight of Teflon Dispersion 30-J (manufactured by Du Pont-Mitsui Fluorochemicals Co., Ltd.) as a water-repellent powder to form a conductive slurry. The slurry is coated on one entire surface of the alloy plating layer, and the other surface is 65 m long from the winding start end 5 (see FIG. 1).
Coating to the position of m (t 1 ) (thickness: about 10μm)
did. Thereafter, this electrode plate was dried to form a cadmium negative electrode plate according to the present invention. A portion of the entire surface of the cadmium negative electrode plate where no conductive layer was formed (a portion where the alloy plating layer was exposed) was used as a current collector.

【0026】集電部が最外周の外側面に位置するよう
に、上記カドミウム負極板(全長約95mm)と、正極
集電タブを付設した公知のニッケル正極板(全長約65
mm)との間にセパレータ(全長約160mm)を介挿
し、前記正負極板の巻回始端を揃えて巻回して渦巻電極
体を作成した。正極集電タブを正極外部端子を兼ねる電
池キャップ(図示せず)に電気的に接続するとともに、
前記集電部が電池外装缶の内側面に接触するようにし
て、前記渦巻電極体を電池外装缶内に挿入した。この後
電解液を注入し電池外装缶の開口部を封口した。このよ
うにして、公称容量900mAHの本発明例にかかるニ
ッケル−カドミウム蓄電池を作製した。
The cadmium negative electrode plate (total length of about 95 mm) and a known nickel positive electrode plate (total length of about 65 mm) provided with a positive electrode current collecting tab so that the current collecting portion is located on the outermost peripheral surface.
mm), a separator (total length of about 160 mm) was inserted, and the winding start ends of the positive and negative electrode plates were aligned to form a spiral electrode body. While electrically connecting the positive electrode current collecting tab to a battery cap (not shown) also serving as a positive electrode external terminal,
The spiral electrode body was inserted into the battery outer can so that the current collector contacted the inner surface of the battery outer can. Thereafter, an electrolytic solution was injected and the opening of the battery outer can was sealed. Thus, the nickel-cadmium storage battery according to the example of the present invention having a nominal capacity of 900 mAH was manufactured.

【0027】〔比較例1〕合金メッキ層を全く形成する
ことなく、カドミウム活物質層の両面に直接、前記導電
スラリーをコーティングしたこと以外は、上記発明例と
同様にして、比較例1にかかるニッケル−カドミウム蓄
電池を作製した。この比較例1のカドミウム負極板は、
合金メッキ層を全く有せず、また最表層面が導電層で完
全に覆われている点で、本発明例と異なる。この比較例
1電池では、導電層が集電部となるとともに、導電層が
ニッケル正極の対向面となる。
Comparative Example 1 Comparative Example 1 was carried out in the same manner as in the above-mentioned invention example, except that the conductive slurry was coated directly on both surfaces of the cadmium active material layer without forming any alloy plating layer. A nickel-cadmium storage battery was made. The cadmium negative electrode plate of Comparative Example 1
It differs from the present invention in that it has no alloy plating layer and the outermost surface is completely covered with a conductive layer. In the battery of Comparative Example 1, the conductive layer serves as a current collector, and the conductive layer serves as a surface facing the nickel positive electrode.

【0028】〔比較例2〕前記導電スラリーを全くコー
ティングしなかったこと以外は、上記発明例と同様にし
て、比較例2にかかるニッケル−カドミウム蓄電池を作
製した。この比較例2のカドミウム負極板は、導電層を
有せず、最表層面(露出面)が全て合金メッキ層である
点で、本発明例と異なる。この比較例2電池では、合金
メッキ層が集電部となるとともに、合金メッキ層がニッ
ケル正極の対向面となる。
Comparative Example 2 A nickel-cadmium storage battery according to Comparative Example 2 was produced in the same manner as in the above-mentioned invention example except that the conductive slurry was not coated at all. The cadmium negative electrode plate of Comparative Example 2 differs from the present invention example in that the cadmium negative electrode plate has no conductive layer and the outermost surface (exposed surface) is entirely an alloy plating layer. In the battery of Comparative Example 2, the alloy plating layer serves as a current collector, and the alloy plating layer serves as a surface facing the nickel positive electrode.

【0029】〔比較例3〕前記導電スラリーを両合金メ
ッキ層の全面にコーティングしたこと以外は、上記発明
例と同様にして、比較例3にかかるニッケル−カドミウ
ム蓄電池を作製した。この比較例3のカドミウム負極板
は、最表層の全表面が導電層であり、合金メッキ層が露
出した部分がない点で、本発明例と異なる。この比較例
3電池では、導電層が集電部となるとともに、導電層が
ニッケル正極の対向面となる。
Comparative Example 3 A nickel-cadmium storage battery according to Comparative Example 3 was produced in the same manner as in the above-mentioned invention example except that the conductive slurry was coated on the entire surfaces of both alloy plating layers. The cadmium negative electrode plate of Comparative Example 3 is different from the present invention in that the entire surface of the outermost layer is a conductive layer and there is no portion where the alloy plating layer is exposed. In the battery of Comparative Example 3, the conductive layer serves as a current collector, and the conductive layer serves as a surface facing the nickel positive electrode.

【0030】〔実験〕本発明例電池と比較例1〜3の電
池について、充放電サイクルを繰り返した時の電池容量
と内部抵抗との推移を調べた。この結果をそれぞれ図
5、図6に示す。尚、充放電サイクルは、1Cの電流で
満充電状態となるまで充電した後、1時間休止し、1C
の電流で放電終止電圧1.0Vまで放電し、さらに1時
間休止するというサイクルを繰り返す条件で行った。
[Experiment] The battery of the present invention and the batteries of Comparative Examples 1 to 3 were examined for changes in battery capacity and internal resistance when the charge / discharge cycle was repeated. The results are shown in FIGS. 5 and 6, respectively. In the charge / discharge cycle, the battery was charged at a current of 1 C until the battery was fully charged, and then stopped for 1 hour.
Under the conditions of repeating the cycle of discharging to a discharge end voltage of 1.0 V with a current of and then resting for another hour.

【0031】図5から明らかなように、合金メッキ層を
電池外装缶内周面に接触する面(集電部)とした本発明
例および比較例2では、導電層を集電部とした比較例1
および比較例3に比べ、サイクルの進行に伴う内部抵抗
の上昇が小さかった。そして、合金メッキ層を有さない
比較例1の内部抵抗が特に大きかった。このことから、
少なくとも集電効率の面からは、外装缶に接触する面を
合金メッキ層とするのが良いことが判る。
As is apparent from FIG. 5, in the present invention example and the comparative example 2 in which the alloy plating layer is in contact with the inner peripheral surface of the battery outer can (current collecting portion), the conductive layer is compared with the current collecting portion. Example 1
And, as compared with Comparative Example 3, the increase in the internal resistance with the progress of the cycle was small. The internal resistance of Comparative Example 1 having no alloy plating layer was particularly large. From this,
At least from the viewpoint of current collection efficiency, it can be seen that it is better to make the surface in contact with the outer can an alloy plating layer.

【0032】他方、図6において、各々のサイクル特性
は良いもの順に、本発明例>比較例3>比較例2>比較
例1であった。より具体的には、カドミウム負極表面に
導電層と合金メッキ層の双方を形成し、かつ集電部を合
金メッキ層とした本発明例は特にサイクル特性に優れて
いた。また、導電層と合金メッキ層の双方を形成した
が、集電部を導電メッキ層とした比較例3は、本発明例
よりやや劣るサイクル特性であった。更に、導電層のみ
を形成した比較例1及び合金メッキ層のみを形成した比
較例2は、本発明例および比較例3に比べてサイクル特
性が劣っていた。
On the other hand, in FIG. 6, the cycle characteristics of the present invention> comparative example 3> comparative example 2> comparative example 1 are in the order of good cycle characteristics. More specifically, the example of the present invention in which both the conductive layer and the alloy plating layer were formed on the surface of the cadmium negative electrode and the current collector was formed of the alloy plating layer was particularly excellent in cycle characteristics. In addition, although both the conductive layer and the alloy plating layer were formed, Comparative Example 3 in which the current collector was a conductive plating layer had cycle characteristics slightly inferior to those of the present invention. Furthermore, Comparative Example 1 in which only the conductive layer was formed and Comparative Example 2 in which only the alloy plating layer was formed had inferior cycle characteristics as compared with the present invention and Comparative Example 3.

【0033】図5、6における導電層を有さない比較例
2の結果から、合金メッキ層を集電部とすれば接触抵抗
の上昇を抑制できるものの、この構成のみでは十分なサ
イクル特性を得られないことが裏付けられた。また、図
5、6の結果により、カドミウム活物質層の表面に合金
メッキ層と導電層とを順次形成し、かつ集電部のみを合
金メッキ層が露出した面とするカドミウム負極構造(本
発明例)が、最もサイクル特性に優れることが実証され
た。
From the results of Comparative Example 2 having no conductive layer in FIGS. 5 and 6, although the increase in contact resistance can be suppressed by using an alloy plating layer as a current collector, sufficient cycle characteristics can be obtained with this configuration alone. It was confirmed that it could not be done. According to the results of FIGS. 5 and 6, a cadmium negative electrode structure in which an alloy plating layer and a conductive layer are sequentially formed on the surface of the cadmium active material layer, and only the current collector is a surface where the alloy plating layer is exposed (the present invention) Example) was proved to have the best cycle characteristics.

【0034】[0034]

【発明の効果】本発明にかかるカドミウム負極では、導
電芯体の上にカドミウム活物質、合金メッキ層、導電層
の3つの層を順次形成したので、合金メッキ層及び導電
層が共働してカドミウムのマイグレーションを抑制し、
また主に導電層が酸素ガスの吸収性を高めるので、負極
の酸素ガス吸収性能が顕著に向上する。
In the cadmium negative electrode according to the present invention, since the three layers of the cadmium active material, the alloy plating layer, and the conductive layer are sequentially formed on the conductive core, the alloy plating layer and the conductive layer cooperate. Suppresses cadmium migration,
In addition, since the conductive layer mainly increases the oxygen gas absorbability, the oxygen gas absorption performance of the negative electrode is significantly improved.

【0035】更に、本発明にかかるカドミウム負極で
は、電子導電性に優れる合金メッキ層の一部を露出さ
せ、この露出面を集電部として負極外部端子を兼ねる電
池外装缶の内周面に接触させる構造にした。これによ
り、製造工程の簡略化や高容量化を図り易いという外周
接触集電方式の長所が活用でき、かつ外周接触集電方式
の短所であるサイクルの進行による集電効率の低下が抑
制できる。
Further, in the cadmium negative electrode according to the present invention, a part of the alloy plating layer having excellent electronic conductivity is exposed, and the exposed surface is used as a current collecting portion to contact the inner peripheral surface of the battery outer can also serving as a negative electrode external terminal. It was made the structure to make it. This makes it possible to utilize the advantages of the peripheral contact current collecting method, which is easy to simplify the manufacturing process and increase the capacity, and to suppress a decrease in current collecting efficiency due to the progress of the cycle, which is a disadvantage of the peripheral contact current collecting method.

【0036】以上から、本発明によれば、高性能かつ長
寿命のニッケル−カドミウム蓄電池が提供できる。
As described above, according to the present invention, a nickel-cadmium storage battery having high performance and long life can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】渦巻き状に巻回する前のカドミウム負極板にお
ける一方の面(巻回後は外側に位置する面)の正面図で
ある。
FIG. 1 is a front view of one surface (a surface located outside after winding) of a cadmium negative electrode plate before being spirally wound.

【図2】図1のA−A線矢視断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】渦巻き状に巻回する前のカドミウム負極におけ
る他方の面(巻回後は内側に位置する面)の正面図であ
る。
FIG. 3 is a front view of the other surface of the cadmium negative electrode before being spirally wound (a surface located inside after being wound).

【図4】負極と正極とをセパレータを介して渦巻き状に
巻回した渦巻電極体の斜視図である。
FIG. 4 is a perspective view of a spiral electrode body in which a negative electrode and a positive electrode are spirally wound via a separator.

【図5】本発明例と比較例におけるサイクル回数と内部
抵抗の関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the number of cycles and the internal resistance in the inventive example and the comparative example.

【図6】本発明例と比較例におけるサイクル特性を示す
グラフである。
FIG. 6 is a graph showing cycle characteristics in the present invention example and a comparative example.

【符号の説明】[Explanation of symbols]

1 :導電芯体 2a:カドミウム活物質層 2b:カドミウム活物質層 3a:合金メッキ層 3b:合金メッキ層 4a:導電層 4b:導電層 5 :巻取り開始端部 6 :集電部 10:カドミウム負極 11:ニッケル正極 12:セパレータ 13:渦巻電極体 14:渦巻電極体の最外周外側面 1: conductive core 2a: cadmium active material layer 2b: cadmium active material layer 3a: alloy plating layer 3b: alloy plating layer 4a: conductive layer 4b: conductive layer 5: winding start end 6: current collector 10: cadmium Negative electrode 11: Nickel positive electrode 12: Separator 13: Spiral electrode body 14: Outermost outer peripheral surface of spiral electrode body

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年12月25日[Submission date] December 25, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0020】上記構造のニッケル−カドミウム蓄電池
は、以下のようにして作製される。カドミウム活物質
と、有機繊維、水和防止剤等を含む糊料溶液とを混練し
て活物質ペーストを調製し、この活物質ペーストを導電
芯体1の両面に塗着、乾燥して、導電芯体の両面にカド
ミウム活物質層2a・2bを形成した後、活物質層の形
成された導電芯体に対し、カドミウムとインジウムを含
む合金被膜を施し、合金メッキ層3a、3bを形成す
る。
The nickel-cadmium storage battery having the above structure is manufactured as follows. An active material paste is prepared by kneading a cadmium active material and a paste solution containing an organic fiber, a hydration inhibitor and the like, and the active material paste is applied to both surfaces of the conductive core 1 and dried to obtain a conductive material. After the cadmium active material layers 2a and 2b are formed on both surfaces of the core, an alloy coating containing cadmium and indium is applied to the conductive core on which the active material layers are formed to form alloy plating layers 3a and 3b.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Correction target item name] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0023】ここで、上記における導電性粉末として
は、例えば炭素粉末、黒鉛粉末、アセチレンブラック、
ケッチェンブラックなどが使用できる。また、撥水性粉
末としては、フッ素樹脂、ポリエチレン、ケイ素樹脂な
どが使用でき、好ましくは撥水性と分散性の点でフッ素
樹脂を使用するのがよい。更に、糊料としては、例えば
ポリビニルピロリドン、ポリビニルアルコール、カルボ
キシメチルセルロース、メチルセルロース、ヒロドキシ
プロピルセルロースなどの親水性糊料が好適に使用でき
るが、ポリ酢酸ビニル、ポリエステル樹脂などの疎水性
樹脂を使用してもよい。また、合金被膜を施す方法とし
ては、電気メッキ法、無電解メッキ法などが使用でき、
例えば電気メッキ法により容易に好適な合金被膜を形成
できる。
Here, as the conductive powder in the above, for example, carbon powder, graphite powder, acetylene black,
Ketjen Black can be used. As the water-repellent powder, a fluororesin, polyethylene, silicon resin or the like can be used, and it is preferable to use a fluororesin in terms of water repellency and dispersibility. Further, as a paste, for example,
Although hydrophilic pastes such as polyvinylpyrrolidone, polyvinyl alcohol, carboxymethylcellulose, methylcellulose, and hydroxypropylcellulose can be suitably used, hydrophobic resins such as polyvinyl acetate and polyester resins may be used. In addition, as a method of applying an alloy film, an electroplating method, an electroless plating method, or the like can be used,
For example, a suitable alloy film can be easily formed by electroplating.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0032[Correction target item name] 0032

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0032】他方、図6において、各々のサイクル特性
は良いもの順に、本発明例>比較例3>比較例2>比較
例1であった。より具体的には、カドミウム負極表面に
導電層と合金メッキ層の双方を形成し、かつ集電部を合
金メッキ層とした本発明例は特にサイクル特性に優れて
いた。また、導電層と合金メッキ層の双方を形成した
が、集電部を導電層とした比較例3は、本発明例よりや
や劣るサイクル特性であった。更に、導電層のみを形成
した比較例1及び合金メッキ層のみを形成した比較例2
は、本発明例および比較例3に比べてサイクル特性が劣
っていた。
On the other hand, in FIG. 6, the cycle characteristics of the present invention> comparative example 3> comparative example 2> comparative example 1 are in the order of good cycle characteristics. More specifically, the example of the present invention in which both the conductive layer and the alloy plating layer were formed on the surface of the cadmium negative electrode and the current collector was formed of the alloy plating layer was particularly excellent in cycle characteristics. In addition, although both the conductive layer and the alloy plating layer were formed, Comparative Example 3 in which the current collector was a conductive layer had cycle characteristics slightly inferior to those of the present invention. Further, Comparative Example 1 in which only the conductive layer was formed and Comparative Example 2 in which only the alloy plating layer was formed
Was inferior in cycle characteristics as compared with the present invention example and comparative example 3.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 カドミウム負極とニッケル正極とをセパ
レータを介しカドミウム負極が最外周に位置するように
巻回してなる渦巻電極体が、前記最外周の外側面が電池
外装缶の内周面に接触した状態で、電池外装缶内に収納
されてなるニッケル−カドミウム蓄電池において、 前記カドミウム負極は、導電芯体の両面に塗着された両
負極活物質層の表面に、カドミウムとインジウムとを含
む合金メッキ層が形成され、更に前記電池外装缶の内周
面に接触する最外周外側面を除く当該合金メッキ層の両
表面には、導電性粉末と撥水性粉末と糊料とを含む導電
層が形成された構造である、ことを特徴とするニッケル
−カドミウム蓄電池。
1. A spiral electrode body formed by winding a cadmium negative electrode and a nickel positive electrode with a separator interposed therebetween so that the cadmium negative electrode is located at the outermost periphery, wherein the outermost peripheral surface is in contact with the inner peripheral surface of the battery outer can. In the nickel-cadmium storage battery housed in the battery outer can in this state, the cadmium negative electrode contains cadmium and indium on the surfaces of both negative electrode active material layers coated on both surfaces of the conductive core. A gold-plated layer is formed, and a conductive layer containing a conductive powder, a water-repellent powder, and a paste is provided on both surfaces of the alloy-plated layer except for the outermost outer surface in contact with the inner peripheral surface of the battery outer can. A nickel-cadmium storage battery having a formed structure.
【請求項2】 前記カドミウム負極の最外周外側面の巻
回方向長が、前記電池外装缶の内側面の周長と略同等で
ある、請求項1記載のニッケル−カドミウム蓄電池。
2. The nickel-cadmium storage battery according to claim 1, wherein a winding direction length of an outermost peripheral outer surface of the cadmium negative electrode is substantially equal to a peripheral length of an inner surface of the battery outer can.
【請求項3】 導電芯体の両面に負極活物質層を形成し
た後、両負極活物質層の表面にカドミウムとインジウム
とを含む合金メッキ層を形成して極板を構成し、この合
金メッキ層の形成された極板の一方面の長手方向端部近
傍を集電部とし、当該集電部を除き、前記合金メッキ層
の両表面に導電性粉末と撥水性粉末と糊料とを含む導電
層を形成するカドミウム負極作製工程と、 前記集電部が、最外周の外側に位置するように前記カド
ミウム負極とニッケル正極とをセパレータを介して渦巻
き状に巻回して、渦巻電極体と成す電極巻回工程と、 前記集電部が、電池外装缶内周面に接触する状態で、前
記渦巻電極体を電池外装缶内に収納する渦巻電極体収納
工程と、を備えるニッケル−カドミウム蓄電池の製造方
法。
3. A negative electrode active material layer is formed on both surfaces of the conductive core, and an alloy plating layer containing cadmium and indium is formed on the surfaces of both negative electrode active material layers to form an electrode plate. The vicinity of the longitudinal end of one surface of the electrode plate on which the layer is formed is a current collecting portion, and except for the current collecting portion, both surfaces of the alloy plating layer include a conductive powder, a water-repellent powder, and a paste. A cadmium negative electrode forming step of forming a conductive layer, and the current collecting portion spirally winds the cadmium negative electrode and the nickel positive electrode via a separator so as to be located on the outermost periphery, thereby forming a spiral electrode body. An electrode winding step, and a spiral electrode body housing step of housing the spiral electrode body in the battery housing in a state where the current collector contacts the inner peripheral surface of the battery housing. Production method.
【請求項4】 前記集電部の巻回方向の長さが、前記電
池外装缶の内側面の周長と略同等となるように構成す
る、請求項3記載のニッケル−カドミウム蓄電池の製造
方法。
4. The method for producing a nickel-cadmium storage battery according to claim 3, wherein a length of the current collector in the winding direction is substantially equal to a circumferential length of an inner surface of the battery outer can. .
JP28375496A 1996-10-25 1996-10-25 Nickel-cadmium storage battery and manufacturing method thereof Expired - Fee Related JP3695864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28375496A JP3695864B2 (en) 1996-10-25 1996-10-25 Nickel-cadmium storage battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28375496A JP3695864B2 (en) 1996-10-25 1996-10-25 Nickel-cadmium storage battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10125351A true JPH10125351A (en) 1998-05-15
JP3695864B2 JP3695864B2 (en) 2005-09-14

Family

ID=17669687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28375496A Expired - Fee Related JP3695864B2 (en) 1996-10-25 1996-10-25 Nickel-cadmium storage battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3695864B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2369239A (en) * 2000-11-17 2002-05-22 Univ Hong Kong Polytechnic Nickel oxyhydroxide and cadmium electrodes for storage cells
CN100334754C (en) * 2005-01-27 2007-08-29 广州市鹏辉电池有限公司 Steel-tape nickel cathode and assemblied battery
JP2013191472A (en) * 2012-03-15 2013-09-26 Sanyo Electric Co Ltd Alkali storage battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2369239A (en) * 2000-11-17 2002-05-22 Univ Hong Kong Polytechnic Nickel oxyhydroxide and cadmium electrodes for storage cells
CN100334754C (en) * 2005-01-27 2007-08-29 广州市鹏辉电池有限公司 Steel-tape nickel cathode and assemblied battery
JP2013191472A (en) * 2012-03-15 2013-09-26 Sanyo Electric Co Ltd Alkali storage battery

Also Published As

Publication number Publication date
JP3695864B2 (en) 2005-09-14

Similar Documents

Publication Publication Date Title
JP2000277154A (en) Nonaqueous electrolyte secondary battery
JP3324372B2 (en) Cylindrical battery
JP3019094B2 (en) Method for producing electrode for alkaline storage battery
CN1212686C (en) Closed battery
JP3695864B2 (en) Nickel-cadmium storage battery and manufacturing method thereof
JP3316225B2 (en) Manufacturing method of lithium ion secondary battery
JPH07130389A (en) Nonaqueous electrolyte secondary battery
JPH1126021A (en) Lithium ion secondary battery
JP3588268B2 (en) Sintered cadmium negative electrode for alkaline storage battery and method for producing the same
JPH11176420A (en) Nonaqueous electrolyte secondary battery
JPH09306537A (en) Alkaline storage battery and manufacture thereof
JPH05283071A (en) Activation of metal hydride storage battery
JP3504303B2 (en) Cylindrical alkaline secondary battery
JP3113534B2 (en) Non-sintered nickel electrode and method for producing the same
JP3043775B2 (en) Cadmium negative electrode for alkaline storage batteries
JPS6063875A (en) Paste type cadmium anode plate for sealed alkaline storage battery
JPH10275619A (en) Paste type cadmium electrode
JP3241441B2 (en) Cadmium negative electrode for alkaline storage batteries
JPH043403Y2 (en)
JPH0251874A (en) Alkaline zinc lead-acid battery
JP3627433B2 (en) Sealed nickel-cadmium storage battery
JP2692795B2 (en) Paste type cadmium cathode for alkaline storage battery
JP2840270B2 (en) Paste type cadmium electrode for alkaline storage battery and method for producing the same
JPH04169058A (en) Alkali storage battery
JP2689598B2 (en) Cylindrical sealed nickel-cadmium storage battery and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050628

LAPS Cancellation because of no payment of annual fees