JP3504303B2 - Cylindrical alkaline secondary battery - Google Patents

Cylindrical alkaline secondary battery

Info

Publication number
JP3504303B2
JP3504303B2 JP27818593A JP27818593A JP3504303B2 JP 3504303 B2 JP3504303 B2 JP 3504303B2 JP 27818593 A JP27818593 A JP 27818593A JP 27818593 A JP27818593 A JP 27818593A JP 3504303 B2 JP3504303 B2 JP 3504303B2
Authority
JP
Japan
Prior art keywords
lead
positive electrode
secondary battery
dimension
tab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27818593A
Other languages
Japanese (ja)
Other versions
JPH07134981A (en
Inventor
誠 小林
勝幸 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP27818593A priority Critical patent/JP3504303B2/en
Publication of JPH07134981A publication Critical patent/JPH07134981A/en
Application granted granted Critical
Publication of JP3504303B2 publication Critical patent/JP3504303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明はペースト式正極を備えた
円筒形アルカリ二次電池に関するものである。 【0002】 【従来の技術】円筒形アルカリ二次電池の一例であるニ
ッケル水素二次電池は、例えば次のような方法により製
造されている。まず、正極活物質としての水酸化ニッケ
ルを主成分とするペーストを調製する。前記ペーストを
集電体としての例えば帯状のフェルト状金属繊維多孔体
の長手方向に沿う一方側の端部を除いて充填し、これを
乾燥、圧延することにより正極を作製する。次いで、図
7に示すように作製された前記正極21の前記ペースト
未充填の箇所、つまり前記金属繊維多孔体の長手方向に
沿う一方側の端部22にニッケル製のタブ23付きリー
ド24を溶接する。次いで、図示しない水素吸蔵合金負
極及び図示しないセパレータを作製する。ひきつづき、
前記正極21と前記負極との間に前記セパレータを挟ん
で前記負極が最外周になるように渦巻状に捲回して電極
群(図示せず)を作製する。前記電極群を前記リード2
4が取付けられた側を上にして負極端子を兼ねる円筒形
の容器内(図示せず)に収納し、更にアルカリ電解液を
注液する。次いで、前記タブ23の先端を正極端子を兼
ねる封口板(図示せず)の下面に接続した後、前記封口
板を前記容器の開口部に取り付けることにより図示しな
い二次電池を製造する。 【0003】前述した二次電池に用いられる前記フェル
ト状金属繊維多孔体は中空状金属繊維を三次元的に配列
して形成されている。このため、前記フェルト状金属繊
維多孔体は前記正極の特性のばらつきを小さくでき、前
記電極群を作製する際に必要とされる引っ張り強度、伸
び率などの機械的特性が優れている。しかしながら、前
記フェルト状金属繊維多孔体は前記中空状金属繊維同志
が接触しているだけの不連続な空間で形成されているた
めに内部抵抗が高く、集電効率が劣る。集電効率が低い
と前記正極の容量が低下する。このため、前述したよう
に前記タブ付きリードを前記金属繊維多孔体に取付ける
ことによりその内部抵抗を低下させて前記正極の集電効
率を向上させている。 【0004】しかしながら、前記タブ付きリードはニッ
ケルから形成されており、前記負極や前記セパレータよ
りも柔軟性が乏しいために前記リードを前記負極及び前
記セパレータに追従させて捲回することが困難であっ
た。その結果、前記正極及び負極をセパレータを介して
渦巻状に捲回して電極群を作製すると前記電極群の巻き
終り端部付近において捲回方向に直交する方向に前記正
極のリード側がずれて前記電極群からはみだす巻きずれ
を生じる。この状態の電極群を前記容器内に収納して前
記二次電池を組み立てると、はみだした前記リードが前
記容器の内壁と接触して内部短絡を生じるという問題点
があった。 【0005】 【発明が解決しようとする課題】本発明は従来の問題を
解決するためになされたもので、正極の集電効率を低下
させることなく、電極群を作製する際の正極の巻きずれ
に起因した内部短絡を防止することが可能な円筒形アル
カリ二次電池を提供しようとするものである。 【0006】 【課題を解決するための手段】本発明は、正極と負極と
をそれの間にセパレータを介して渦巻状に捲回した電極
群を備えた円筒形アルカリ二次電池において、前記正極
は、集電体と、前記集電体の長手方向に沿う一方側の端
部に取付けられたタブ付きリードと、前記集電体の前記
タブ付きリードが取付けられた箇所以外に充填された活
物質含有ペーストとを含み、前記リードは前記端部寸法
の5〜20%に相当する長さを有し、前記端部の巻き始
め端部から前記タブまでの距離は前記端部寸法の20%
〜80%に相当し、かつ前記端部の巻き終り端部から前
記リードの端面までの距離は前記端部寸法の76%〜
8.5%の範囲であることを特徴とする円筒形アルカリ
二次電池である。 【0007】以下、本発明のアルカリ二次電池の一例で
あるニッケル水素二次電池を図1を参照して詳細に説明
する。ニッケル正極1の集電体の長手方向に沿う一方側
の端部2には図2に示すようにタブ3a付きリード3b
が取付けられている。前記正極1は、水素吸蔵合金負極
4との間にセパレータ5を介在してスパイラル状に捲回
され、有底円筒状の容器6内に収納されている。前記負
極4は作製された電極群の最外周に配置されて前記容器
6と電気的に接触している。アルカリ電解液は、前記容
器6内に収容されている。中央に穴7を有する円形の封
口板8は、前記容器6の上部開口部に配置されている。
リング状の絶縁性ガスケット9は、前記封口板8の周縁
と前記容器6の上部開口部内面の間に配置され、前記上
部開口部を内側に縮径するカシメ加工により前記容器6
に前記封口板8を前記ガスケット9を介して気密に固定
している。前記封口板8の下面には前記タブ3aの先端
が接続されている。帽子形状をなす正極端子10は、前
記封口板8上に前記穴7を覆うように取り付けられてい
る。ゴム製の安全弁11は、前記封口板8と前記正極端
子10で囲まれた空間内に前記穴7を塞ぐように配置さ
れている。 【0008】前記正極1は活物質を含むペーストが充填
された集電体からなる。前記正極1は、前記活物質を導
電剤及び高分子結着剤と共に水の存在下で混練してペー
ストを調製し、前記ペーストを前記集電体の長手方向に
沿う一方側の端部2の前記リード3bの取付け箇所を除
いて充填し、これを乾燥、圧延することにより製造され
る。前記集電体としては、フェルト状金属繊維多孔体、
スポンジ状金属多孔体等を挙げることができる。また、
前記正極活物質としては、例えば水酸化ニッケルを挙げ
ることができる。 【0009】前記負極4としては、負極活物質を含むペ
ーストが充填された集電体や、負極活物質が含浸析出さ
れた集電体等を用いることができる。前記負極活物質と
しては、例えば酸化カドミウム、水素吸蔵合金等を挙げ
ることができる。 【0010】前記リード3bの長さは前記正極1の集電
体の長手方向に沿う一方側の端部2の寸法の5%〜20
%に相当する。前記タブ3a付きリード3bは、例えば
ニッケルなどから形成されることが望ましい。前記リー
ド3bの長さを前記端部2の寸法の前記範囲相当に限定
したのは次のような理由によるものである。前記リード
3bの長さを前記端部2の寸法の5%未満にすると、前
記正極1の集電効率が低下し、かつ前記リード3bの前
記集電体への取付け強度が低下するために前記電極群の
作製時に前記リード3bが前記集電体から外れる。前記
リード3bの長さが前記端部2の寸法の20%を越える
と、前記電極群の作製時に正極1の巻きずれが生じるた
め、内部短絡を生じる。 【0011】前記リード3bは前記正極1の集電体の長
手方向に沿う一方側の端部2にその両端部付近を除いて
取付けられている。具体的には、前記タブ3aが前記リ
ード3bの中央に形成されている場合、前記タブ3aが
前記端部2にその巻き始め端部から前記端部2の寸法の
20%〜80%の長さ分離れるように配置され、かつ前
記端部2の巻き終り端部からこれに近接するリード3b
の端面までの距離を前記端部2の寸法の76%〜8.5
%の範囲になるように前記リード3bを前記端部2に取
付けられることが望ましい。これは次のような理由によ
るものである。前記タブ3aが前記端部2にその巻き始
め端部から前記端部2の寸法の20%未満の長さ分離れ
るように配置され、かつ前記距離が前記端部2の寸法の
76%を越えると、前記電極群の中心付近の巻芯空間部
に電解液を注液することが困難になる恐れがあると共に
封口することが困難になる恐れがある。このため、前記
二次電池の歩留まりが低下する恐れがある。一方、前記
タブ3aが前記端部2にその巻き始め端部から前記端部
2の寸法の80%を越える長さ分離れるように配置さ
れ、かつ前記距離が前記端部2の寸法の8.5%未満に
なると、前記電極群の作製時に正極1の巻きずれが生じ
て内部短絡を生じる恐れがある。 【0012】 【作用】本発明によれば、正極集電体の長手方向に沿う
一方側の端部にその両端部付近を除いて取付けられ、か
つ長さが前記端部の寸法の5〜20%であるタブ付きリ
ードを用いることによって、正極を負極及びセパレータ
と共に追従させて捲回することができるため、前記正極
の巻きずれを防止することができる。その結果、高い集
電効率を維持したまま前記正極の巻きずれに起因した内
部短絡を防止することができる。 【0013】また、前記正極集電体の前記リードの取付
け箇所にはペーストが充填されない。従って、前記範囲
の長さのリードは、従来の前記端部の寸法と同じ長さの
リードよりも前記ペーストの充填量を増加させることが
できるため、前記正極の容量を向上することができる。 【0014】 【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。 実施例1 まず、水酸化ニッケル90重量%及びニッケル粉末10
重量%からなる混合粉末に、前記水酸化ニッケルに対し
てカルボキシメチルセルロース0.3重量%、ポリテト
ラフルオロエチレン0.5重量%を添加し、これらに純
水45重量%を添加して混練することによりペーストを
調製した。前記ペーストを帯状のフェルト状金属繊維多
孔体にその長手方向に沿う一方側の端部のタブ付きリー
ドの溶接部を除いて充填した。これを乾燥し、ローラプ
レスで圧延することにより前記ペースト層の厚さが20
μm、全体の厚さが0.6mmで、単位面積当たりの容
量が650mAH/ccの正極を製造した。 【0015】次いで、幅が前記端部の寸法の3%である
タブを中央に有し、長さが前記端部の寸法に対して3、
5、10、20、30、50、100%であるニッケル
製のリードを7種類作製した。前記7種類のリードをそ
れぞれ前記端部に前記タブの幅の中心が前記端部にその
巻き始め端部から前記端部寸法の50%に相当する長さ
分離れるように溶接した。 【0016】次いで、前記7種類の正極と水素吸蔵合金
負極との間にセパレータを介して渦巻状に捲回して電極
群を作製した。前記電極群をAAサイズの円筒形容器に
収納し、7規定のKOH及び1規定のLiOHからなる
電解液を注入し、封口してKR−AAサイズの前述した
図1に示す構造の二次電池を50個ずつ組み立てた。 【0017】前記7種類の二次電池それぞれについて、
0.2CAの電流で150%充電を行った後、1CA〜
5CAそれぞれの放電レートで1.0Vまで放電した際
の放電容量から理論容量に対する利用率を求め、その結
果を図に示す。 【0018】図から明らかなように、前記タブの幅の
中心が前記端部にその巻き始め端部から前記端部寸法の
50%に相当する長さ分離れて配置されるように前記リ
ードを前記端部に溶接した場合、その長さが前記端部寸
法に対して5〜50%であるリードを用いた二次電池
は、長さが前記端部寸法に対して100%である従来の
リードを用いた二次電池と同様に高い利用率を維持する
ことができることがわかる。これに対し、長さが前記端
部寸法に対して3%であるリードを用いた二次電池は、
利用率が低くなることがわかる。 【0019】また、前記7種類の二次電池それぞれにつ
いて、内部短絡を生じた電池の個数から短絡率を求め、
その結果を図に示した。図から明らかなように、前
記タブの幅の中心が前記端部にその巻き始め端部から前
記端部寸法の50%に相当する長さ分離れて配置される
ように前記リードを前記端部に溶接した場合、その長さ
が前記端部寸法に対して3〜20%であるリードを用い
た二次電池は、電極群を作製する際に生じる正極の巻き
ずれに起因した内部短絡を防止できることがわかる。こ
れに対し、長さが前記端部寸法に対して30〜100%
であるリードを用いた二次電池は、前記内部短絡を生じ
ることがわかる。一方、長さが前記端部寸法に対して3
%であるリードを用いた二次電池はそのうちのおよそ3
2%が電極群を作製する際に前記集電体から前記リード
が外れる不良が生じた。 【0020】これらの実験から前記タブの幅の中心が前
記端部にその巻き始め端部から前記端部寸法の50%に
相当する長さ分離れて配置されるように前記リードを前
記端部に溶接した場合、長さが前記端部寸法に対して5
〜20%であるリードを用いた二次電池は、高い利用率
を維持しながら前記正極の巻きずれに起因した内部短絡
を防止できることがわかる。 実施例2 長さが前記端部寸法に対して10%であるリードを用
い、前記タブが前記端部にその巻き始め端部から前記端
部寸法の3.5,10,20,30,40,50,6
0,70,80,90,93.5%の長さ分離れるよう
に配置され、かつ前記端部の巻き終り端部からこれに近
接するリードの端面までの距離を前記端部寸法の90,
83.5,73.5,63.5,53.5,43.5,
33.5,23.5,13.5,3.5,0%になるよ
うに前記リードを前記端部に溶接したこと以外、実施例
1と同様な二次電池を50個ずつ組み立てた。 【0021】11種類の二次電池それぞれについて、
0.2CAの電流で150%充電を行った後、1CA及
び3CAそれぞれの放電レートで1.0Vまで放電した
際の放電容量から理論容量に対する利用率を求め、その
結果を図に示す。 【0022】図から明らかなように、リードの長さが
前記端部寸法に対して10%である場合、前記タブが前
記端部にその巻き始め端部から前記端部寸法の20〜8
0%の長さ分離れるように配置され、かつ前記端部の巻
き終り端部からこれに近接するリードの端面までの距離
を前記端部寸法の73.5〜13.5%の範囲になるよ
うに前記端部に取付けられたリードを備えた二次電池
は、高い利用率を維持できることがわかる。これに対
し、前記タブが前記端部にその巻き始め端部から前記端
部寸法の3.5,10,90,93.5%の長さ分離れ
るように配置され、かつ前記端部の巻き終り端部からこ
れに近接するリードの端面までの距離が前記端部寸法の
90,83.5,3.5,0%になるように前記端部に
取付けられたリードを備えた二次電池は、利用率が著し
く低下することがわかる。 【0023】また、前記11種類の二次電池それぞれに
ついて、内部短絡を生じた電池の個数から短絡率を求
め、その結果を図に示す。図から明らかなように、
リードの長さが前記端部寸法に対して10%である場
合、前記タブが前記端部にその巻き始め端部から前記端
部寸法の3.5〜80%の長さ分離れるように配置さ
れ、かつ前記端部の巻き終り端部からこれに近接するリ
ードの端面までの距離を前記端部寸法の90〜13.5
%の範囲になるように前記端部に取付けられたリードを
備えた二次電池は、電極群作製時に生じる正極の巻きず
れに起因した内部短絡を防止できることがわかる。これ
に対し、前記タブが前記端部にその巻き始め端部から前
記端部寸法の90,93.5%の長さ分離れるように配
置され、かつ前記端部の巻き終り端部からこれに近接す
るリードの端面までの距離を前記端部寸法の3.5,0
%の範囲になるように前記端部に取付けられたリードを
備えた二次電池は、前記正極の巻きずれに起因した内部
短絡率が20%以上と著しく高いことがわかる。一方、
前記タブが前記端部にその巻き始め端部から前記端部寸
法の3.5,10%の長さ分離れた位置に配置され、か
つ前記端部の巻き終り端部からこれに近接するリードの
端面までの距離それぞれを前記端部寸法の90,83.
5%になるように前記端部に取付けられたリードを備え
た二次電池は、それぞれそのうちの32%,14%が電
解液の注液不良や封口不良を生じた。 【0024】これらの実験から長さが前記端部寸法に対
して10%で、幅が前記端部寸法に対して3%であるリ
ードを用いた場合、前記タブが前記端部にその巻き始め
端部から前記端部寸法の20〜80%の長さ分離れるよ
うに配置され、かつ前記端部の巻き終り端部からこれに
近接するリードの端面までの距離を前記端部寸法の7
3.5〜13.5%の範囲になるように前記端部に取付
けられたリードを備えた二次電池は、高い利用率を維持
しながら内部短絡を防止できることがわかる。 【0025】従って、中央にタブが形成され、長さが前
記金属繊維多孔体の長手方向に沿う一方側の端部の寸法
の5〜20%であるリードを用い、前記タブが前記端部
にその巻き始め端部から前記端部の寸法の20〜80%
の長さ分離れるように配置され、かつ前記端部の巻き終
り端部からこれに近接するリードの端面までの距離を前
記端部の寸法の76〜8.5%の範囲になるように前記
リードを前記端部に取付けることによって、高い集電効
率を維持したまま前記電極群を作製する際の正極の巻き
ずれに起因した内部短絡を防止することができる。 【0026】 【発明の効果】以上詳述したように本発明によれば、正
極の集電効率を低下させることなく電極群を作製する際
の正極の巻きずれに起因した内部短絡を防止することが
でき、かつ前記正極の容量を向上することが可能な円筒
形アルカリ二次電池を提供することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylindrical alkaline secondary battery having a paste-type positive electrode. 2. Description of the Related Art A nickel-metal hydride secondary battery, which is an example of a cylindrical alkaline secondary battery, is manufactured by, for example, the following method. First, a paste mainly containing nickel hydroxide as a positive electrode active material is prepared. The paste is filled with the paste except for one end along the longitudinal direction of, for example, a belt-like felt-like porous metal fiber body as a current collector, and dried and rolled to produce a positive electrode. Next, a lead 24 with a nickel tab 23 is welded to the unfilled portion of the paste of the positive electrode 21 manufactured as shown in FIG. 7, that is, one end 22 along the longitudinal direction of the porous metal fiber body. I do. Next, a hydrogen storage alloy negative electrode (not shown) and a separator (not shown) are prepared. Continued,
An electrode group (not shown) is formed by spirally winding the negative electrode at the outermost periphery with the separator interposed between the positive electrode 21 and the negative electrode. The electrode group is connected to the lead 2
4 is housed in a cylindrical container (not shown) also serving as a negative electrode terminal, with the side on which it is attached facing up, and an alkaline electrolyte is further injected. Next, after connecting the tip of the tab 23 to the lower surface of a sealing plate (not shown) also serving as a positive electrode terminal, the sealing plate is attached to the opening of the container to manufacture a secondary battery (not shown). The felt-like metal fiber porous material used in the above-mentioned secondary battery is formed by arranging hollow metal fibers three-dimensionally. For this reason, the felt-like metal fiber porous body can reduce the variation in the characteristics of the positive electrode, and is excellent in mechanical properties such as tensile strength and elongation required when producing the electrode group. However, since the felt-like metal fiber porous body is formed in a discontinuous space where the hollow metal fibers are in contact only with each other, the internal resistance is high and the current collection efficiency is poor. If the current collection efficiency is low, the capacity of the positive electrode decreases. Therefore, as described above, by attaching the tab-attached lead to the metal fiber porous body, the internal resistance is reduced, and the current collection efficiency of the positive electrode is improved. [0004] However, since the tabbed lead is formed of nickel and has less flexibility than the negative electrode and the separator, it is difficult to wind the lead following the negative electrode and the separator. Was. As a result, when the positive electrode and the negative electrode are spirally wound through a separator to form an electrode group, the lead side of the positive electrode is shifted in a direction orthogonal to the winding direction near the winding end end of the electrode group, so that the electrode is Winding deviation from the group occurs. When the secondary battery is assembled by storing the electrode group in this state in the container, there is a problem that the protruding lead contacts an inner wall of the container to cause an internal short circuit. SUMMARY OF THE INVENTION The present invention has been made to solve the conventional problems, and it has been found that the winding deviation of the positive electrode during the production of the electrode group can be made without reducing the current collecting efficiency of the positive electrode. An object of the present invention is to provide a cylindrical alkaline secondary battery capable of preventing an internal short circuit caused by the above. [0006] The present invention relates to a cylindrical alkaline secondary battery comprising an electrode group in which a positive electrode and a negative electrode are spirally wound with a separator interposed therebetween.
Is a current collector and one end along the longitudinal direction of the current collector
A lead with a tab attached to the part,
Filled areas other than where tabbed leads are attached
A material-containing paste, wherein the leads have the end dimensions
Having a length corresponding to 5 to 20% of the
The distance from the end to the tab is 20% of the end size
~ 80%, and from the end of the end of the winding to the end
The distance to the end face of the lead is 76% or less of the end size.
A cylindrical alkaline secondary battery having a range of 8.5% . Hereinafter, a nickel-metal hydride secondary battery, which is an example of the alkaline secondary battery of the present invention, will be described in detail with reference to FIG. As shown in FIG. 2, a lead 3b with a tab 3a is provided on one end 2 of the nickel positive electrode 1 along the longitudinal direction of the current collector.
Is installed. The positive electrode 1 is spirally wound with a separator 5 interposed between the positive electrode 1 and a hydrogen storage alloy negative electrode 4 and housed in a bottomed cylindrical container 6. The negative electrode 4 is arranged at the outermost periphery of the prepared electrode group and is in electrical contact with the container 6. The alkaline electrolyte is contained in the container 6. A circular sealing plate 8 having a hole 7 in the center is arranged at the upper opening of the container 6.
The ring-shaped insulating gasket 9 is disposed between the peripheral edge of the sealing plate 8 and the inner surface of the upper opening of the container 6, and the container 6 is formed by caulking to reduce the diameter of the upper opening inward.
The sealing plate 8 is hermetically fixed via the gasket 9. The tip of the tab 3a is connected to the lower surface of the sealing plate 8. The positive electrode terminal 10 having a hat shape is attached on the sealing plate 8 so as to cover the hole 7. A rubber safety valve 11 is arranged so as to close the hole 7 in a space surrounded by the sealing plate 8 and the positive electrode terminal 10. The positive electrode 1 comprises a current collector filled with a paste containing an active material. The positive electrode 1 is prepared by kneading the active material together with a conductive agent and a polymer binder in the presence of water to prepare a paste, and applying the paste to an end 2 on one side along the longitudinal direction of the current collector. It is manufactured by filling and excluding the portion where the lead 3b is attached, followed by drying and rolling. As the current collector, a felt-like metal fiber porous body,
A sponge-like porous metal body or the like can be given. Also,
Examples of the positive electrode active material include nickel hydroxide. As the negative electrode 4, a current collector filled with a paste containing a negative electrode active material, a current collector impregnated with a negative electrode active material and the like can be used. Examples of the negative electrode active material include cadmium oxide and a hydrogen storage alloy. The length of the lead 3b is 5% to 20% of the dimension of one end 2 along the longitudinal direction of the current collector of the positive electrode 1.
%. The lead 3b with the tab 3a is desirably formed of, for example, nickel. The length of the lead 3b is limited to the range of the dimension of the end 2 for the following reason. When the length of the lead 3b is less than 5% of the dimension of the end portion 2, the current collection efficiency of the positive electrode 1 is reduced, and the mounting strength of the lead 3b to the current collector is reduced. The lead 3b comes off from the current collector when the electrode group is manufactured. If the length of the lead 3b exceeds 20% of the dimension of the end 2, the winding of the positive electrode 1 will be displaced during the production of the electrode group, causing an internal short circuit. The lead 3b is attached to one end 2 of the positive electrode 1 along the longitudinal direction of the current collector except for the vicinity of both ends. More specifically, when the tab 3a is formed at the center of the lead 3b, the tab 3a is wound around the end 2 by 20% to 80% of the dimension of the end 2 from the winding start end. A lead 3b disposed so as to be separated from the end 2 and being close to the end 2
The distance to the end face is 76% to 8.5 of the dimension of the end 2.
% Of the lead 3b is desirably attached to the end portion 2. This is due to the following reasons. The tab 3a is arranged at the end 2 so as to be separated from its winding start end by a length of less than 20% of the dimension of the end 2 and the distance exceeds 76% of the dimension of the end 2 In this case, it may be difficult to inject the electrolyte into the core space near the center of the electrode group, and it may be difficult to seal the electrolyte. For this reason, the yield of the secondary battery may be reduced. On the other hand, the tab 3a is arranged on the end 2 so as to be separated from the winding start end by a length exceeding 80% of the dimension of the end 2 and the distance is 8. If it is less than 5%, the winding of the positive electrode 1 may be displaced during the production of the electrode group, causing an internal short circuit. According to the present invention, the positive electrode current collector is attached to one end along the longitudinal direction except for the vicinity of both ends, and has a length of 5 to 20 times the size of the end. By using the tabbed lead having a% value, the positive electrode can be wound along with the negative electrode and the separator, and thus the winding deviation of the positive electrode can be prevented. As a result, it is possible to prevent an internal short circuit due to the winding deviation of the positive electrode while maintaining high current collection efficiency. [0013] In addition, the paste is not filled in the mounting position of the lead of the positive electrode current collector. Therefore, the lead having the length in the above range can increase the filling amount of the paste compared to the conventional lead having the same length as the dimension of the end portion, so that the capacity of the positive electrode can be improved. Embodiments of the present invention will be described below in detail with reference to the drawings. Example 1 First, nickel hydroxide 90% by weight and nickel powder 10
0.3% by weight of carboxymethylcellulose and 0.5% by weight of polytetrafluoroethylene with respect to the nickel hydroxide are added to the mixed powder of 5% by weight, and 45% by weight of pure water is added thereto and kneaded. To prepare a paste. The paste was filled in a strip-shaped felt-like porous metal fiber body except for a welded portion of a tabbed lead at one end along the longitudinal direction. This is dried and rolled by a roller press to reduce the thickness of the paste layer to 20.
A positive electrode having a thickness of 0.6 μm, an overall thickness of 0.6 mm, and a capacity per unit area of 650 mAH / cc was produced. Next, a tab having a width of 3% of the dimension of the end portion is provided at the center, and the length of the tab is 3 to the dimension of the end portion.
Seven kinds of nickel leads of 5, 10, 20, 30, 50, and 100% were produced. Each of the seven types of leads was welded to the end such that the center of the width of the tab was separated from the end by a length corresponding to 50% of the size of the end from the winding start end. Next, an electrode group was produced by spirally winding the seven kinds of positive electrodes and the hydrogen storage alloy negative electrode with a separator interposed therebetween. The electrode group is housed in a cylindrical container of AA size, an electrolytic solution comprising 7N KOH and 1N LiOH is injected, sealed, and the secondary battery of the KR-AA size having the structure shown in FIG. Were assembled 50 by 50. For each of the seven types of secondary batteries,
After performing 150% charging with a current of 0.2 CA, 1 CA to
Calculated utilization from 5CA discharge capacity when discharged to 1.0V at each discharge rate to the theoretical capacity, and the results are shown in Figure 3. As is apparent from FIG. 3 , the lead is arranged such that the center of the width of the tab is separated from the end of the tab by a length corresponding to 50% of the size of the end from the end where the tab is wound. Is welded to the end portion, a secondary battery using a lead having a length of 5 to 50% of the end portion size has a conventional length of 100% to the end portion size. It can be seen that a high utilization rate can be maintained as in the case of the secondary battery using the lead. On the other hand, a secondary battery using a lead having a length of 3% with respect to the end portion size,
It can be seen that the utilization rate decreases. Further, for each of the seven types of secondary batteries, the short-circuit rate is determined from the number of batteries having an internal short-circuit,
The results are shown in Figure 4. As is evident from FIG. 4, the leads are arranged such that the center of the width of the tab is arranged at the end at a distance corresponding to 50% of the end dimension from the winding start end thereof. In the case of welding to a part, a secondary battery using a lead having a length of 3 to 20% with respect to the above-described end portion has an internal short circuit caused by a winding displacement of a positive electrode generated when an electrode group is produced. It can be seen that it can be prevented. On the other hand, the length is 30 to 100% of the end dimension.
It can be seen that the secondary battery using the lead which causes the internal short circuit described above. On the other hand, the length is 3
% Of rechargeable batteries using lead
When 2% produced the electrode group, there was a defect that the lead was detached from the current collector. According to these experiments, the lead was placed at the end so that the center of the width of the tab was placed at the end at a distance corresponding to 50% of the end dimension from the winding start end. When welded, the length is 5
It can be seen that a secondary battery using a lead of about 20% can prevent an internal short circuit caused by the winding deviation of the positive electrode while maintaining a high utilization factor. Example 2 A lead having a length of 10% with respect to the end dimension is used, and the tab is wound around the end from the winding start end to the end dimension of 3.5, 10, 20, 30, 40. , 50,6
0, 70, 80, 90, 93.5% separated from each other by a length, and the distance from the end-of-winding end of the end to the end surface of the lead adjacent thereto is 90, of the end dimension.
83.5, 73.5, 63.5, 53.5, 43.5,
Fifty secondary batteries were assembled in the same manner as in Example 1 except that the leads were welded to the ends so as to be 33.5, 23.5, 13.5, 3.5, and 0%. For each of the 11 types of secondary batteries,
After the 150% charging was conducted at 0.2CA current, it obtains a utilization rate with respect to the theoretical capacity from the discharge capacity when discharged to 1.0V at each discharge rate 1CA and 3CA, and the results are shown in FIG. As is apparent from FIG. 5 , when the length of the lead is 10% of the end dimension, the tab is attached to the end by 20 to 8 of the end dimension from its winding start end.
The distance from the end-of-winding end of the end to the end face of the lead adjacent to the end is in the range of 73.5 to 13.5% of the end dimension. As described above, it can be seen that the secondary battery having the leads attached to the ends can maintain a high utilization rate. On the other hand, said tab is arranged at said end so as to be separated from said winding start end by a length of 3.5, 10, 90, 93.5% of said end dimension, and said end winding is provided. A secondary battery having a lead attached to an end so that the distance from the end to the end of the lead adjacent to the end is 90, 83.5, 3.5, 0% of the end. It can be seen that the utilization rate significantly decreases. Further, for each of the 11 types of secondary battery, determine the short-circuit rate from the number of cells produced an internal short circuit, and the results are shown in Figure 6. As apparent from FIG. 6,
If the length of the lead is 10% of the end dimension, the tab is arranged at the end such that the tab is separated from the winding start end by a length of 3.5 to 80% of the end dimension. And the distance from the winding end of the end to the end face of the lead adjacent to the end is 90 to 13.5 of the end dimension.
%, It can be seen that the secondary battery provided with the leads attached to the end portions can prevent an internal short circuit due to the winding deviation of the positive electrode that occurs during the production of the electrode group. On the other hand, the tab is arranged at the end so as to be separated from the start end by 90,93.5% of the end dimension and from the end end of the end to the end. The distance to the end face of the adjacent lead is set to 3.5, 0 of the end dimension.
% Of the secondary battery provided with the leads attached to the ends so as to be in the range of 20%, the internal short-circuit rate due to the winding deviation of the positive electrode is as high as 20% or more. on the other hand,
A lead disposed on the end at a distance of 3.5% and 10% of the end dimension from the start end of the winding and adjacent the end of the end at the end of the winding; The distances to the end faces are respectively 90, 83.
In the secondary batteries having the leads attached to the ends so as to have a concentration of 5%, 32% and 14% of the rechargeable batteries had poor electrolyte injection and poor sealing, respectively. According to these experiments, when a lead having a length of 10% with respect to the end size and a width of 3% with respect to the end size is used, the tab starts winding around the end. The distance from the end to the end face of the lead that is arranged so as to be separated from the end by 20 to 80% of the end dimension, and is equal to 7 mm of the end dimension.
It can be seen that the secondary battery having the leads attached to the ends so as to be in the range of 3.5 to 13.5% can prevent the internal short circuit while maintaining a high utilization factor. Therefore, a lead having a tab formed at the center and having a length of 5 to 20% of the size of one end along the longitudinal direction of the porous metal fiber body is used, and the tab is attached to the end. 20 to 80% of the size of the end from the winding start end
And the distance from the winding end of the end to the end face of the lead adjacent thereto is in the range of 76 to 8.5% of the dimension of the end. By attaching the lead to the end portion, it is possible to prevent an internal short circuit due to a winding deviation of the positive electrode when producing the electrode group while maintaining high current collection efficiency. As described above in detail, according to the present invention, it is possible to prevent an internal short-circuit caused by a winding displacement of a positive electrode when manufacturing an electrode group without lowering the current collecting efficiency of the positive electrode. And a cylindrical alkaline secondary battery capable of improving the capacity of the positive electrode.

【図面の簡単な説明】 【図1】本発明の円筒形アルカリ二次電池の一例である
円筒形ニッケル水素二次電池を示す斜視図。 【図2】図1の正極の平面図。 【図3】リードの長さを変化させた際の利用率の変化を
示す線図。 【図4】リードの長さを変化させた際の内部短絡率の変
化を示す線図。 【図5】リードの位置を変化させた際の利用率の変化を
示す線図。 【図6】リードの位置を変化させた際の内部短絡率の変
化を示す線図。 【図7】従来のペースト式正極を示す平面図。 【符号の説明】 1…ペースト式正極、2…端部、3a…タブ、3b…リ
ード、4…負極、5…セパレータ、6…有底円筒状容
器、8…封口板、9…絶縁ガスケット。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing a cylindrical nickel-metal hydride secondary battery which is an example of the cylindrical alkaline secondary battery of the present invention. FIG. 2 is a plan view of the positive electrode of FIG. FIG. 3 is a diagram showing a change in utilization when the length of a lead is changed. FIG. 4 is a diagram showing a change in an internal short-circuit rate when a length of a lead is changed. FIG. 5 is a diagram showing a change in utilization when the position of a lead is changed. FIG. 6 is a diagram showing a change in an internal short-circuit rate when a position of a lead is changed. FIG. 7 is a plan view showing a conventional paste-type positive electrode. DESCRIPTION OF REFERENCE NUMERALS 1: paste type positive electrode, 2: end, 3a ... tab, 3b ... lead, 4 ... negative electrode, 5 ... separator, 6 ... bottomed cylindrical container, 8 ... sealing plate, 9 ... insulating gasket.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 2/26 H01M 10/28 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 2/26 H01M 10/28

Claims (1)

(57)【特許請求の範囲】 【請求項1】 正極と負極とをそれの間にセパレータを
介して渦巻状に捲回した電極群を備えた円筒形アルカリ
二次電池において、前記正極は、集電体と、前記集電体の長手方向に沿う一
方側の端部に取付けられたタブ付きリードと、前記集電
体の前記タブ付きリードが取付けられた箇所以外に充填
された活物質含有ペーストとを含み、 前記リードは前記端部寸法の5〜20%に相当する長さ
を有し、前記端部の巻き始め端部から前記タブまでの距
離は前記端部寸法の20%〜80%に相当し、かつ前記
端部の巻き終り端部から前記リードの端面までの距離は
前記端部寸法の76%〜8.5%の範囲である ことを特
徴とする円筒形アルカリ二次電池。
(57) Claims 1. In a cylindrical alkaline secondary battery provided with an electrode group in which a positive electrode and a negative electrode are spirally wound with a separator interposed therebetween, the positive electrode includes: A current collector; and a current collector along a longitudinal direction of the current collector.
A tabbed lead attached to the other end and
Filling the body other than where the tabbed lead is attached
And a length corresponding to 5 to 20% of the end dimension.
And a distance from the winding start end of the end to the tab.
The separation corresponds to 20% to 80% of the end dimension, and
The distance from the winding end of the end to the end face of the lead is
A cylindrical alkaline secondary battery characterized by being in a range of 76% to 8.5% of the end dimension .
JP27818593A 1993-11-08 1993-11-08 Cylindrical alkaline secondary battery Expired - Fee Related JP3504303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27818593A JP3504303B2 (en) 1993-11-08 1993-11-08 Cylindrical alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27818593A JP3504303B2 (en) 1993-11-08 1993-11-08 Cylindrical alkaline secondary battery

Publications (2)

Publication Number Publication Date
JPH07134981A JPH07134981A (en) 1995-05-23
JP3504303B2 true JP3504303B2 (en) 2004-03-08

Family

ID=17593777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27818593A Expired - Fee Related JP3504303B2 (en) 1993-11-08 1993-11-08 Cylindrical alkaline secondary battery

Country Status (1)

Country Link
JP (1) JP3504303B2 (en)

Also Published As

Publication number Publication date
JPH07134981A (en) 1995-05-23

Similar Documents

Publication Publication Date Title
CA2009026C (en) Rectangular sealed alkaline storage battery with negative electrode comprising hydrogen storage alloy
EP1958278B1 (en) Rechargeable alkaline manganese cell having reduced capacity fade and improved cycle life
JPS6157661B2 (en)
JP2003526877A (en) Rechargeable nickel zinc battery
JPH06181069A (en) Nonaqueous electrolyte secondary battery
JP3324372B2 (en) Cylindrical battery
EP0301647B1 (en) Electrochemical cell
JP2002503873A (en) Prismatic electrochemical cell
EP1498977A1 (en) Alkaline storage battery
JP3056521B2 (en) Alkaline storage battery
JP3515286B2 (en) Electrodes for secondary batteries
JP3504303B2 (en) Cylindrical alkaline secondary battery
JP4747391B2 (en) Cylindrical secondary battery
JP2002025604A (en) Alkaline secondary battery
JP3309463B2 (en) Cylindrical nickel-metal hydride storage battery
JP3653410B2 (en) Sealed alkaline zinc storage battery
JP2730641B2 (en) Lithium secondary battery
JPS636987B2 (en)
JP2989877B2 (en) Nickel hydride rechargeable battery
JP4017212B2 (en) Alkaline secondary battery having a wound structure electrode body
JP2001143712A5 (en)
JP2775754B2 (en) Non-aqueous electrolyte secondary battery
JP4940491B2 (en) Secondary battery
JP3706166B2 (en) Manufacturing method of nickel metal hydride secondary battery
JPH0935718A (en) Alkaline secondary battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031210

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees