JPH10114853A - Resin-sealed semiconductor device and its production - Google Patents

Resin-sealed semiconductor device and its production

Info

Publication number
JPH10114853A
JPH10114853A JP9225987A JP22598797A JPH10114853A JP H10114853 A JPH10114853 A JP H10114853A JP 9225987 A JP9225987 A JP 9225987A JP 22598797 A JP22598797 A JP 22598797A JP H10114853 A JPH10114853 A JP H10114853A
Authority
JP
Japan
Prior art keywords
organic compound
resin
resin composition
semiconductor device
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9225987A
Other languages
Japanese (ja)
Other versions
JP3440775B2 (en
Inventor
Kuniyuki Eguchi
州志 江口
Yasuhide Sugawara
泰英 菅原
Toshiaki Ishii
利昭 石井
Hiroyoshi Kokado
博義 小角
Akira Nagai
永井  晃
Akira Mogi
亮 茂木
Masahiko Ogino
雅彦 荻野
Masanori Segawa
正則 瀬川
Enjiyou Tsuyuno
円丈 露野
Takumi Ueno
巧 上野
Atsushi Nakamura
篤 中村
Asao Nishimura
朝雄 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22598797A priority Critical patent/JP3440775B2/en
Publication of JPH10114853A publication Critical patent/JPH10114853A/en
Application granted granted Critical
Publication of JP3440775B2 publication Critical patent/JP3440775B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a resin-sealed semiconductor device improved in various types of reliability such as high-temperature standing properties and humidity resistance without detriment to moldability and flame retardancy by sealing a semiconductor element with a thermoplastic resin composition having a specified composition. SOLUTION: This device is prepared by sealing a semiconductor element with a resin composition comprising an epoxy resin composition containing at least one organic compound selected from among organic bromine compounds, organic phosphorus compounds and organic nitrogen compounds and a metal borate. It is desirable that the organic compound has a content of at least one element selected from among bromine, phosphorus and nitrogen of 0.35-10wt.% based on the total resin amount except the metal borate and the inorganic filler and that the metal borate is used in an amount of 1.5-15wt.% based on the total resin composition including the metal borate and the inorganic filler. The metal borate has the effect of inhibiting the formation of releasable components such as halogen, phosphorus or the like or of trapping them if formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、臭素系有機化合
物,リン系有機化合物及び窒素系有機化合物の中の少な
くとも1種類からなる有機化合物並びにホウ酸金属塩を
含有する熱硬化性樹脂組成物によって封止することによ
り、成形性を低下させないで高温放置信頼性及び耐湿信
頼性を大幅に改良した樹脂封止型半導体装置とその製造
方法に関する。
The present invention relates to a thermosetting resin composition containing at least one of a bromine organic compound, a phosphorus organic compound and a nitrogen organic compound, and a metal borate. The present invention relates to a resin-encapsulated semiconductor device having significantly improved high-temperature storage reliability and moisture resistance reliability without lowering moldability by sealing, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】トランジスタ,IC,LSI等の半導体
装置は、量産性の点からプラスチックパッケージを用い
た樹脂封止が主流となっている。半導体封止材料として
は特にエポキシ樹脂とフェノール樹脂硬化剤を配合した
組成物が、成形性,吸湿特性及び接着性の点でバランス
がとれ、信頼性に優れるため用いられている。この半導
体封止材料には難燃性を付与するため、一般に臭素化エ
ポキシ樹脂または臭素化フェノール樹脂等の臭素化有機
化合物と、難燃助剤としてアンチモン化合物が配合され
ている。
2. Description of the Related Art For semiconductor devices such as transistors, ICs, and LSIs, resin encapsulation using a plastic package is mainly used from the viewpoint of mass productivity. As a semiconductor encapsulating material, a composition in which an epoxy resin and a phenolic resin curing agent are blended is used because the composition is balanced in terms of moldability, moisture absorbing properties and adhesiveness, and is excellent in reliability. In order to impart flame retardancy to this semiconductor encapsulating material, a brominated organic compound such as a brominated epoxy resin or a brominated phenol resin is generally blended with an antimony compound as a flame retardant aid.

【0003】封止材料に含まれる臭素化有機化合物とア
ンチモン化合物は従来から半導体装置の各種信頼性に悪
影響を与えることが知られている。半導体素子のアルミ
配線パッドと金ワイヤとの接合部分は高温下において、
臭素系有機化合物中の臭素の脱離によって腐食が促進さ
れ、断線に至る問題がある。特に、自動車のエンジンル
ーム内や高温雰囲気下で用いる電気機器内の半導体装置
ではこの問題が顕著である。また、脱離臭素は塩素ほど
顕著ではないものの、半導体素子のアルミニウム配線の
腐食を促進させるため、半導体装置の耐湿信頼性低下の
原因にもなる。これらの問題は、臭素系有機化合物だけ
に起因するものではなく、難燃助剤であるアンチモンも
誘発原因である。アンチモン化合物は臭素化アンチモン
ガスの発生により、臭素の脱離を促進させる働きがある
ためである。このような理由から、半導体装置の難燃性
と各種信頼性を同時に満足できる半導体封止材料が強く
望まれていた。
It has been known that a brominated organic compound and an antimony compound contained in a sealing material have a bad influence on various reliability of a semiconductor device. The junction between the aluminum wiring pad of the semiconductor element and the gold wire is
There is a problem that corrosion is promoted by the elimination of bromine in the bromine-based organic compound, leading to disconnection. In particular, this problem is remarkable in a semiconductor device in an electric room used in an engine room of an automobile or in a high-temperature atmosphere. Further, although the desorbed bromine is not as remarkable as chlorine, it promotes corrosion of the aluminum wiring of the semiconductor element, and thus causes deterioration of the humidity resistance of the semiconductor device. These problems are not caused only by brominated organic compounds, but also by antimony which is a flame retardant aid. This is because the antimony compound has a function of accelerating the elimination of bromine by generating antimony bromide gas. For these reasons, there has been a strong demand for a semiconductor encapsulating material that can simultaneously satisfy the flame retardancy and various reliability of a semiconductor device.

【0004】半導体装置の信頼性を向上させるには、こ
れまで高温高湿下での臭素の脱離を極力抑えること、脱
離臭素をトラップすること、非ハロゲン系難燃化手法の
採用が提案されてきた。
In order to improve the reliability of semiconductor devices, it has been proposed to minimize the desorption of bromine under high temperature and high humidity, to trap the desorbed bromine, and to adopt a non-halogen flame retardant method. It has been.

【0005】高温高湿下での臭素の脱離を抑える方法と
しては、熱安定性の高い臭素化エポキシ樹脂が提案され
ており、特開平5−320319 号にはメタ位に臭素が配位し
た臭素化ビスフェノールA型エポキシ樹脂を有する封止
材が記載されている。また、特開平4−48759号や特開平
6−53789号に記載されているような無機ハイドロタルサ
イト系のイオントラッパー剤の配合が行われている。非
ハロゲン系難燃化手法としては、特開平7−157542号と
特開平7−173372号に記載されている赤リン系難燃剤単
独や特開平6−107914 号記載のホウ素化合物単独の配合
が開示されている。さらに、特開平7−331033号と特開
平8−151505号にはフェノール樹脂,リンまたは赤リ
ン,窒素,ホウ素化合物,金属水和物から選ばれたノン
ハロゲン系難燃剤の2種以上の併用系が記載されてい
る。
As a method for suppressing the elimination of bromine under high temperature and high humidity, a brominated epoxy resin having high heat stability has been proposed, and JP-A-5-320319 discloses that bromine is coordinated at the meta position. An encapsulant having a brominated bisphenol A type epoxy resin is described. Also, JP-A-4-48759 and JP-A-Hei.
An inorganic hydrotalcite-based ion trapping agent as described in JP-A-6-53789 has been incorporated. As the non-halogen flame retarding method, the compounding of a red phosphorus flame retardant alone described in JP-A-7-157542 and JP-A-7-173372 or a boron compound alone described in JP-A-6-107914 is disclosed. Have been. Further, JP-A-7-331033 and JP-A-8-151505 disclose a combined system of two or more non-halogen flame retardants selected from phenolic resins, phosphorus or red phosphorus, nitrogen, boron compounds, and metal hydrates. Have been described.

【0006】[0006]

【発明が解決しようとする課題】上記従来技術は半導体
装置の信頼性向上に対して若干の効果はあるものの、種
々の点でまだ改良すべき点がある。熱安定性の高い臭素
化エポキシ樹脂は樹脂単独では熱分解温度が高くなる
が、封止材料に配合すると特性が他材料に影響されるた
め、熱分解温度の向上がほとんど期待できない。そのた
め、信頼性向上の効果がほとんど現われてこない。イオ
ントラッパー剤の配合は臭素補足能力として種々の点で
限界がある。イオントラッパー剤の配合量を多くするこ
とは、臭素補足効果を上げるどころか、逆に低下させる
結果になる。さらに、封止材料の成形性の低下や吸湿率
の大幅な増加の原因ともなる。非ハロゲン系難燃剤によ
り難燃性規格を満たすためには、この難燃剤の配合量を
従来の臭素/アンチモン系と比べ、はるかに多くする必
要がある。これは、封止材料の成形性及び接着性低下と
吸湿率増加を招き、半導体装置の信頼性向上に対しては
逆効果となる。また、前記の非ハロゲン系難燃剤の2種
以上の併用系を有する樹脂組成物においても非ハロゲン
系難燃剤の配合量を多くしなければならず、半導体装置
用として必要な特性である低熱膨張性,低吸湿性、並び
に高接着性を達成することが困難である。そのため、現
状では積層板や電気部品の絶縁材料に用途が限定されて
いるか、あるいは適用樹脂がシリコーン樹脂に限られて
いる。難燃剤として赤リンを用いる場合は、その配合量
を他の難燃剤より少なくできるが、材料混練時の発火の
恐れや封止材料の吸湿が大きくなる。そのため、赤リン
の無機材料による被覆などが行われているが、これらの
問題はまだ完全に改善されていない。
Although the above prior art has a slight effect on the improvement of the reliability of a semiconductor device, there are still some points to be improved in various points. A brominated epoxy resin having high thermal stability has a high thermal decomposition temperature when used alone, but when mixed with a sealing material, the characteristics are affected by other materials, and therefore, improvement in the thermal decomposition temperature can hardly be expected. Therefore, the effect of improving the reliability hardly appears. The blending of the ion trapper agent has a limit in various points as the bromine supplementing ability. Increasing the compounding amount of the ion trapper agent results in lowering the bromine supplementation effect, rather than increasing it. Furthermore, it causes a reduction in the moldability of the sealing material and a significant increase in the moisture absorption rate. In order to satisfy the flame retardancy standard with a non-halogen flame retardant, the blending amount of the flame retardant needs to be much larger than that of the conventional bromine / antimony system. This leads to a decrease in the moldability and adhesiveness of the sealing material and an increase in the moisture absorption rate, which has an adverse effect on improving the reliability of the semiconductor device. Further, even in a resin composition having a combination of two or more of the above-mentioned non-halogen flame retardants, the blending amount of the non-halogen flame retardant must be increased, and low thermal expansion, which is a characteristic required for semiconductor devices, is required. It is difficult to achieve the properties, low hygroscopicity and high adhesiveness. Therefore, at present, applications are limited to insulating materials for laminated boards and electric components, or applicable resins are limited to silicone resins. When red phosphorus is used as the flame retardant, the compounding amount thereof can be smaller than that of other flame retardants, but the risk of ignition at the time of material kneading and the moisture absorption of the sealing material increase. Therefore, red phosphorus is coated with an inorganic material or the like, but these problems have not been completely solved yet.

【0007】以上の理由から、半導体装置の高温放置信
頼性と耐湿信頼性を上げる方法は従来から示されている
が、大きな効果をあげるには至っていない。
[0007] For the above reasons, a method of improving the reliability of a semiconductor device left at high temperatures and the reliability of moisture resistance has been conventionally shown, but has not been able to produce a great effect.

【0008】本発明はこのような状況にかんがみてなさ
れたものであり、その目的とするところは、成形性と難
燃性を従来通り維持させながら、かつ高温放置特性並び
に耐湿性等の各種信頼性において優れた特性を有する樹
脂封止型半導体装置とその製造方法を提供することにあ
る。
The present invention has been made in view of such circumstances, and has as its object to maintain various properties such as high-temperature storage characteristics and moisture resistance while maintaining moldability and flame retardancy as before. It is an object of the present invention to provide a resin-encapsulated semiconductor device having excellent characteristics in terms of performance and a method for manufacturing the same.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明者等は、難燃化剤として臭素系有機化合物,
リン系有機化合物及び窒素系有機化合物の中の少なくと
も1種類からなる有機化合物並びにホウ酸金属塩を用い
ることにより、半導体装置の各種信頼性を大幅に向上で
きることを見い出し本発明に至った。本発明は、有機化
合物系難燃剤単独が有する欠点とホウ酸金属塩単独が有
する欠点をそれぞれ相補うために、これらを併用するこ
とが特徴である。臭素系有機化合物,リン系有機化合
物,窒素系有機化合物の中の少なくとも1種類からなる
有機化合物単独系は難燃性を付与できるものの、高温高
湿下でアルミニウム配線や金ワイヤとアルミ配線パッド
の接合部分の腐食を促進させる脱離低分子成分、例えば
臭素やリンの影響が大きくなる。ホウ酸金属塩単独系で
は難燃性を付与するために、配合量が多くなることが避
けられず、封止材料の成形性と吸湿特性の大幅な低下が
ある。本発明では、ホウ酸金属塩が有害性が少なく難燃
効果を有するだけではなく、封止材の熱分解による低分
子成分の脱離を抑制するという新しい特徴を有すること
が分かった。そのため、ホウ酸金属塩は難燃剤としてだ
けではなく、封止材の熱分解を抑制する役割も果たすこ
とができる。
In order to achieve the above object, the present inventors have proposed a brominated organic compound as a flame retardant,
The present inventors have found that various reliability of a semiconductor device can be greatly improved by using an organic compound composed of at least one of a phosphorus-based organic compound and a nitrogen-based organic compound and a metal borate, and have reached the present invention. The present invention is characterized in that these compounds are used in combination to complement the disadvantages of the organic compound-based flame retardant alone and the disadvantages of the metal borate alone. A single organic compound of at least one of a bromine organic compound, a phosphorus organic compound, and a nitrogen organic compound can impart flame retardancy, but can be used for forming aluminum wiring or gold wire and aluminum wiring pad under high temperature and high humidity. The effect of the desorbed low-molecular components, such as bromine and phosphorus, which promotes the corrosion of the joint is increased. In the case of a metal borate salt alone, the flame retardancy is imparted, so that the compounding amount is inevitably increased, and the moldability and moisture absorption properties of the sealing material are significantly reduced. In the present invention, it has been found that the metal borate salt has not only a low harmful property but also a flame-retardant effect, but also has a new feature of suppressing elimination of low molecular components due to thermal decomposition of the sealing material. For this reason, the metal borate salt can play a role not only as a flame retardant but also to suppress the thermal decomposition of the sealing material.

【0010】すなわち、本発明の樹脂封止型半導体装置
は、臭素系有機化合物,リン系有機化合物及び窒素系有
機化合物の中の少なくとも1種類からなる有機化合物並
びにホウ酸金属塩を含有したことを特徴とする熱硬化性
樹脂組成物によって半導体素子を封止したものである。
さらに該有機化合物は熱硬化性樹脂と均一に相溶し、該
ホウ酸金属塩は熱硬化性樹脂組成物に粒子として均一分
散している。本発明の樹脂封止型半導体装置を封止する
熱硬化性樹脂組成物の硬化物は、線膨張係数が0.6〜
2.5×10-5、ガラス転移温度が110℃以上、飽和
吸湿率が85℃85%RHの条件で0.8wt% 以下及
び難燃性がUL−94規格のV−0の特性を有する。
That is, the resin-encapsulated semiconductor device of the present invention contains an organic compound comprising at least one of a bromine organic compound, a phosphorus organic compound and a nitrogen organic compound, and a metal borate. A semiconductor element is sealed with a characteristic thermosetting resin composition.
Further, the organic compound is uniformly compatible with the thermosetting resin, and the metal borate is uniformly dispersed as particles in the thermosetting resin composition. The cured product of the thermosetting resin composition for encapsulating the resin-encapsulated semiconductor device of the present invention has a linear expansion coefficient of 0.6 to 0.6.
2.5 × 10 -5 , glass transition temperature of 110 ° C. or higher, saturation moisture absorption of 0.8 wt% or less under conditions of 85 ° C. and 85% RH, and flame retardancy of UL-94 standard V-0 .

【0011】さらに、本発明は前記熱硬化性樹脂組成物
の中でも、特性,信頼性及び取扱い易さの点から特にエ
ポキシ樹脂組成物が好適であり、少なくとも(A)エポ
キシ樹脂,(B)フェノール樹脂硬化剤,(C)硬化促
進剤,(D)臭素系有機化合物,リン系有機化合物及び
窒素系有機化合物の中の少なくとも1種類からなる有機
化合物,(E)ホウ酸金属塩,(F)無機充填剤を含む
エポキシ樹脂組成物が好ましい。
Furthermore, the present invention is particularly preferred from the viewpoint of properties, reliability and ease of handling among the above-mentioned thermosetting resin compositions, wherein at least (A) an epoxy resin and (B) phenol Resin curing agent, (C) curing accelerator, (D) organic compound comprising at least one of bromine-based organic compound, phosphorus-based organic compound and nitrogen-based organic compound, (E) metal borate, (F) Epoxy resin compositions containing inorganic fillers are preferred.

【0012】本発明において用いる有機化合物系難燃化
剤としては、臭素系有機化合物,リン系有機化合物及び
窒素系有機化合物の中から選ばれるものであり、これら
を単独または2種以上を併用して用いることができる。
臭素系有機化合物としては、耐熱性と安全性の点から、
臭素化ビスフェノールA型エポキシ樹脂,臭素化ノボラ
ックフェノール型エポキシ樹脂等の臭素化エポキシ樹脂
並びに臭素化ノボラック型フェノール樹脂等のフェノー
ル樹脂硬化剤が好適である。
The organic compound-based flame retardant used in the present invention is selected from bromine-based organic compounds, phosphorus-based organic compounds and nitrogen-based organic compounds. These may be used alone or in combination of two or more. Can be used.
As bromine organic compounds, from the viewpoint of heat resistance and safety,
Preferred are brominated epoxy resins such as brominated bisphenol A type epoxy resin and brominated novolak phenol type epoxy resin, and phenol resin curing agents such as brominated novolak phenol resin.

【0013】リン系有機化合物としては、熱安定性と難
燃性の点から、下記(1)の構造及び芳香環を有するも
のが好適であり、
As the phosphorus-based organic compound, those having the following structure (1) and an aromatic ring are preferable from the viewpoint of thermal stability and flame retardancy.

【0014】トリフェニルホスフィンオキサイド,リン
酸エステル,リン含有エポキシ樹脂、フェノール性水酸
基を有するリン化合物,ホスファゼンの中の少なくとも
1種類を用いることができる。
At least one of triphenylphosphine oxide, a phosphoric ester, a phosphorus-containing epoxy resin, a phosphorus compound having a phenolic hydroxyl group, and phosphazene can be used.

【0015】窒素系有機化合物としては、窒素原子を有
するヘテロ環またはベンゼン環などの芳香環を含有する
化合物が熱安定性と難燃性の効果を大きくできることか
ら好ましく、メラミン樹脂,窒素原子とベンゼン環を含
有するエポキシ樹脂,熱硬化性のポリイミド樹脂等の少
なくとも1種類を用いることができる。この中で、熱硬
化性のポリイミド樹脂は耐熱性に優れるため、エポキシ
樹脂組成物に配合すれば耐熱性付与成分としての効果も
期待できる。これらの難燃剤は配合量を極力低減できる
ように、エポキシ樹脂と完全に相溶し、分子レベルで均
一に配合できることが特徴である。本発明においては、
臭素化有機化合物,リン系有機化合物及び窒素系有機化
合物の中で、臭素化エポキシ樹脂と臭素化フェノール樹
脂が従来の半導体用封止材料としての成形性と信頼性に
おいて使用実績があるため、特に好適であるが、リン系
有機化合物または窒素系有機化合物においても、本発明
のエポキシ樹脂と反応できる官能基を有するリンまたは
窒素含有エポキシ樹脂やメラミンを用いることによっ
て、成形時の硬化性と熱安定性の点で優れ、封止材料と
しての特性を十分満足できる組成物を得ることができ
る。
As the nitrogen-based organic compound, a compound containing an aromatic ring such as a hetero ring or a benzene ring having a nitrogen atom is preferable because it can increase the effects of heat stability and flame retardancy. At least one of a ring-containing epoxy resin and a thermosetting polyimide resin can be used. Among them, a thermosetting polyimide resin is excellent in heat resistance, and therefore, when blended in an epoxy resin composition, an effect as a heat resistance imparting component can be expected. These flame retardants are characterized in that they are completely compatible with the epoxy resin and can be uniformly blended at the molecular level so that the blending amount can be reduced as much as possible. In the present invention,
Among brominated organic compounds, phosphorus-based organic compounds and nitrogen-based organic compounds, brominated epoxy resins and brominated phenol resins have been used in molding properties and reliability as conventional semiconductor encapsulating materials. Although preferable, even in the case of a phosphorus-based organic compound or a nitrogen-based organic compound, by using a phosphorus- or nitrogen-containing epoxy resin having a functional group capable of reacting with the epoxy resin of the present invention or melamine, the curability and heat stability during molding can be improved. Thus, it is possible to obtain a composition which is excellent in properties and sufficiently satisfies the properties as a sealing material.

【0016】本発明において用いる前記の臭素系有機化
合物,リン系有機化合物及び窒素系有機化合物の中の少
なくとも1種類からなる有機化合物は、臭素,リン及び
窒素の少なくとも1種類の元素含有量がホウ酸金属塩及
び無機充填剤を除く全樹脂量に対して0.35〜10重
量%、より好ましくは0.4〜7重量%になるように配
合する。前記有機化合物は樹脂中に均一に分散すること
により難燃性を付与するものである。さらに、樹脂組成
物の難燃性は樹脂中に含まれる臭素,リン及び窒素の少
なくとも1種類の元素の含有量によって決まるため、こ
れら各元素の配合量をホウ酸金属塩及び無機充填剤を除
く全樹脂量に対して規定することに本発明の特徴があ
る。前記有機化合物を用いる場合、臭素,リン及び窒素
の少なくとも1種類の元素含有量がホウ酸金属塩及び無
機充填剤を除く全樹脂量に対して0.35重量%未満では、
難燃性の規格UL−94のV−0を達成できなくなる。
全樹脂組成物量に対して10重量%を超えるとホウ酸金
属塩を併用しても、高温高湿下での低分子量成分発生の
抑制効果が不十分となり、特性の向上が困難になる。こ
れらはすべて、半導体装置の信頼性低下の原因となる。
The organic compound comprising at least one of the above-mentioned bromine-based organic compounds, phosphorus-based organic compounds and nitrogen-based organic compounds used in the present invention has a content of at least one element selected from bromine, phosphorus and nitrogen. The compounding amount is 0.35 to 10% by weight, more preferably 0.4 to 7% by weight, based on the total amount of the resin except for the acid metal salt and the inorganic filler. The organic compound imparts flame retardancy by being uniformly dispersed in the resin. Furthermore, since the flame retardancy of the resin composition is determined by the content of at least one element of bromine, phosphorus and nitrogen contained in the resin, the compounding amount of each of these elements excludes the metal borate and the inorganic filler. There is a feature of the present invention in that the amount is defined with respect to the total resin amount. When the organic compound is used, if the content of at least one element of bromine, phosphorus and nitrogen is less than 0.35% by weight based on the total resin amount excluding the metal borate and the inorganic filler,
The flame retardant standard UL-94 V-0 cannot be achieved.
If the amount exceeds 10% by weight based on the total amount of the resin composition, even if a metal borate is used in combination, the effect of suppressing the generation of low molecular weight components under high temperature and high humidity becomes insufficient, and it becomes difficult to improve the characteristics. All of these cause a reduction in the reliability of the semiconductor device.

【0017】本発明において、前記有機化合物と併用す
るホウ酸金属塩は、180℃以上温度で結晶水を放出す
るか、熱分解によって水を放出するものであればよく、
例えば、ホウ砂、またはホウ酸亜鉛,ホウ酸アルミニウ
ム,ホウ酸マグネシウム等のホウ酸金属塩等が挙げられ
る。これらの中では、結晶水の放出温度が200℃以上
であり、かつ低分子ガスの補足能力のあるホウ酸亜鉛が
特に好適である。結晶水の放出温度が200℃以上であ
れば、封止材料の成形温度(160℃〜200℃)でボ
イド発生の恐れがなくなるためである。または、これら
ホウ酸金属塩は単独でまたは、結晶水放出温度の異なる
ものを2種以上併用することもできる。ホウ素化合物の
粒子径は、平均粒径が20μm以下、最大粒径が100
μm以下が好ましく、特に平均粒径が10μm以下、最
大粒径が50μm以下が好適である。ここで、平均粒径
とは累積重量で50重量%における粒径のことを意味す
る。
In the present invention, the metal borate used in combination with the organic compound may be one that releases water of crystallization at a temperature of 180 ° C. or higher or releases water by thermal decomposition.
For example, borax or metal borate salts such as zinc borate, aluminum borate, magnesium borate and the like can be mentioned. Among these, zinc borate, which has a crystallization water release temperature of 200 ° C. or higher and has a capability of capturing low molecular gas, is particularly preferable. This is because if the crystallization water discharge temperature is 200 ° C. or higher, there is no possibility of generating voids at the molding temperature of the sealing material (160 ° C. to 200 ° C.). Alternatively, these metal borate salts may be used alone or in combination of two or more having different crystallization water release temperatures. The boron compound has an average particle diameter of 20 μm or less and a maximum particle diameter of 100 μm.
The average particle diameter is preferably 10 μm or less, and the maximum particle diameter is particularly preferably 50 μm or less. Here, the average particle size means the particle size at 50% by weight in terms of cumulative weight.

【0018】本発明において用いる前記のホウ酸金属塩
は、封止材の成形性,信頼性,難燃性などの全ての特性
のバランスを考慮して、前記臭素系有機化合物,リン系
有機化合物及び窒素系有機化合物の中の少なくとも1種
類からなる有機化合物中に含まれる臭素,リン及び窒素
の少なくとも1種類の元素含有量に応じてその配合量を
決めることができる。配合量としては無機充填剤を含む
全樹脂組成物量に対して1.5 〜15重量%が好まし
い。ホウ酸金属塩の配合量が全樹脂組成物量に対して
1.5 重量%未満では半導体装置の信頼性向上に対して
ほとんど効果がない。さらに、難燃性付与のために前期
の有機化合物の配合量を多くする必要があるため、かえ
って半導体装置の信頼性低下を招く。一方、前期ホウ酸
金属塩の配合量が全樹脂組成物量に対して15重量%を
超えると、封止材料としての成形性の低下及び接着力低
下並びに吸湿率増加が顕著になり好ましくない。本発明
のホウ酸金属塩は、難燃効果と熱分解時の低分子成分発
生抑制効果の両者を最大限に発揮させるため、封止用エ
ポキシ樹脂組成物の加熱硬化物において、他の無機充填
剤と同様に粒子として均一に分散することが特徴であ
る。
In the present invention, the above-mentioned metal borate is used in consideration of the balance of all properties such as moldability, reliability and flame retardancy of the sealing material. The compounding amount can be determined according to the content of at least one element of bromine, phosphorus, and nitrogen contained in at least one of organic compounds composed of nitrogen and nitrogen-based organic compounds. The blending amount is preferably 1.5 to 15% by weight based on the total amount of the resin composition including the inorganic filler. When the amount of the metal borate is less than 1.5% by weight based on the total amount of the resin composition, there is almost no effect on the improvement of the reliability of the semiconductor device. Further, since it is necessary to increase the compounding amount of the organic compound in the previous period for imparting flame retardancy, the reliability of the semiconductor device is rather lowered. On the other hand, if the amount of the metal borate exceeds 15% by weight based on the total amount of the resin composition, the moldability as a sealing material, the adhesive strength, and the moisture absorption rate become remarkable, which is not preferable. The metal borate of the present invention is used in a heat-cured epoxy resin composition for encapsulation in order to maximize both the flame retardant effect and the effect of suppressing the generation of low molecular components during thermal decomposition. It is characterized in that it is uniformly dispersed as particles like the agent.

【0019】本発明においては、臭素系有機化合物,リ
ン系有機化合物及び窒素系有機化合物の中の少なくとも
1種類からなる有機化合物並びにホウ酸金属塩を含むエ
ポキシ樹脂組成物の抽出液特性が半導体装置の耐湿性向
上に寄与しており、特にアルミ配線の腐食及び孔食に対
して大きな抑制効果を有する。前記エポキシ樹脂組成物
の抽出液特性は、エポキシ樹脂組成物を10倍量の純水
で希釈し、120℃で40時間放置した後の抽出液の電
気伝導度とpHである。電気伝導度はエポキシ樹脂組成
物の純度を表わす尺度であり、従来の半導体装置用封止
材の抽出液と同様に前記の抽出条件において150μS
/cm以下であることが必要である。本発明においては、
抽出液のpHが従来のエポキシ樹脂組成物系封止材の抽
出液pHと比べて、より中性側となっており、5.0〜
7.5の範囲にあることが特徴である。これらのpH領
域がアルミパッド並びにアルミ配線の腐食,孔触に対し
て従来よりも大きな抑制効果を有する。
In the present invention, the characteristics of the extract of an epoxy resin composition containing at least one of a bromine-based organic compound, a phosphorus-based organic compound, and a nitrogen-based organic compound and a metal borate salt are measured in a semiconductor device. And has a great effect of suppressing corrosion and pitting of aluminum wiring. The extract properties of the epoxy resin composition are the electrical conductivity and pH of the extract after diluting the epoxy resin composition with 10 times the volume of pure water and leaving it at 120 ° C. for 40 hours. The electric conductivity is a measure of the purity of the epoxy resin composition, and is 150 μS under the above-mentioned extraction conditions as in the case of the conventional extract for semiconductor device sealing materials.
/ Cm or less. In the present invention,
The pH of the extract is more neutral than the extract pH of the conventional epoxy resin composition-based sealing material, and is 5.0 to 5.0.
It is characterized by being in the range of 7.5. These pH regions have a greater effect of suppressing corrosion and hole contact of the aluminum pad and aluminum wiring than before.

【0020】本発明における半導体装置用エポキシ樹脂
組成物では、成形性と信頼性の点から(A)エポキシ樹
脂,(B)フェノール樹脂硬化剤,(C)硬化促進剤、
(D)臭素系有機化合物,リン系有機化合物及び窒素系有
機化合物の中の少なくとも1種類からなる有機化合物,
(E)ホウ酸金属塩及び(F)無機充填剤は必須である
が、この他に可とう化剤,カップリング剤,離型剤,着
色剤などの各種添加剤から構成される。
In the epoxy resin composition for a semiconductor device according to the present invention, (A) an epoxy resin, (B) a phenol resin curing agent, (C) a curing accelerator,
(D) an organic compound comprising at least one of a bromine organic compound, a phosphorus organic compound and a nitrogen organic compound;
The (E) metal borate and the (F) inorganic filler are indispensable, but are composed of various additives such as a flexible agent, a coupling agent, a release agent, and a coloring agent.

【0021】本発明で用いるエポキシ樹脂としては半導
体封止材料で通常使用されているエポキシ樹脂、例え
ば、フェノールノボラック型エポキシ樹脂,クレゾール
ノボラック型エポキシ樹脂やビスフェノールA,ビスフ
ェノールF、及びビスフェノールS型エポキシ樹脂等の
ビスフェノール型エポキシ樹脂,フェノールまたはクレ
ゾールベースの3官能以上の多官能エポキシ樹脂,ビフ
ェニル骨格,ナフタレン骨格、またはジシクロペンタジ
エン骨格を有する2官能または3官能以上のエポキシ樹
脂等が挙げられるが、これらのエポキシ樹脂を単独また
は2種以上併用して用いることができる。
The epoxy resin used in the present invention is an epoxy resin usually used in semiconductor encapsulation materials, for example, phenol novolak type epoxy resin, cresol novolak type epoxy resin, bisphenol A, bisphenol F, and bisphenol S type epoxy resin. Bisphenol type epoxy resin, phenol or cresol-based trifunctional or higher polyfunctional epoxy resin, biphenyl skeleton, naphthalene skeleton, or dicyclopentadiene skeleton bifunctional or trifunctional or higher functional epoxy resin. Can be used alone or in combination of two or more.

【0022】フェノール樹脂硬化剤においても半導体封
止材料で通常用いられている樹脂硬化剤、例えば、フェ
ノールノボラック樹脂,クレゾールノボラック樹脂,フ
ェノールまたはクレゾールベースの3官能型樹脂硬化
剤,フェノールとアラルキルエーテル重縮合物による樹
脂硬化剤,ナフタレン骨格、またはジシクロペンタジエ
ン骨格を有するフェノール樹脂硬化剤を単独または2種
以上併用して用いることができる。
The phenolic resin curing agent is also generally used in semiconductor encapsulating materials, for example, phenol novolak resin, cresol novolak resin, phenol or cresol-based trifunctional resin curing agent, phenol and aralkyl ether polymer. A resin curing agent based on a condensate, a phenol resin curing agent having a naphthalene skeleton or a dicyclopentadiene skeleton can be used alone or in combination of two or more.

【0023】硬化促進剤としては、トリフェニルホスフ
ィン,アルキル基またはアルコキシ基核置換トリフェニ
ルホスフィン,テトラフェニルホスフィンテトラフェニ
ルボレート等の含リン有機塩基性化合物またはこれらの
テトラ置換ボロン塩,トリエチレンジアミン,ベンジル
メチルアミンなどの3級アミン、1,8−ジアザビシク
ロ(5,4,0)ーウンデセン,イミダゾール等の少な
くとも1種類が挙げられる。
Examples of the curing accelerator include phosphorus-containing organic basic compounds such as triphenylphosphine, alkyl- or alkoxy-group-substituted triphenylphosphine, tetraphenylphosphine-tetraphenylborate, and tetra-substituted boron salts thereof, triethylenediamine, and benzyl. Examples include at least one of tertiary amines such as methylamine, 1,8-diazabicyclo (5,4,0) -undecene, imidazole and the like.

【0024】本発明の半導体封止用として用いる樹脂組
成物において、フェノール樹脂硬化剤の配合はエポキシ
樹脂に対して0.5〜1.5当量が望ましい。硬化剤の配
合量がエポキシ樹脂に対して0.5 当量未満であると、
エポキシ樹脂の硬化が完全に行われないため、硬化物の
耐熱性,耐湿性並びに電気特性が劣り、1.5 当量を超
えると、逆に樹脂硬化後も硬化剤が有する水酸基が多量
に残るために電気特性並びに耐湿性が低下する。
In the resin composition used for semiconductor encapsulation of the present invention, the blending amount of the phenolic resin curing agent is preferably 0.5 to 1.5 equivalents to the epoxy resin. If the amount of the curing agent is less than 0.5 equivalent to the epoxy resin,
Since the epoxy resin is not completely cured, the heat resistance, moisture resistance and electrical properties of the cured product are inferior. If it exceeds 1.5 equivalents, a large amount of hydroxyl groups of the curing agent will remain even after the resin is cured. In addition, electrical characteristics and moisture resistance are lowered.

【0025】本発明において樹脂封止型半導体装置用と
して用いる樹脂組成物には、無機充填剤を配合する。無
機充填剤は硬化物の熱膨張係数や熱伝導率等の改良を目
的に添加するものである。無機充填剤としては種々の化
合物が挙げられるが、電子部品には熱化学的に安定な充
填剤を用いることが重要であり、具体的には溶融シリ
カ,結晶性シリカ,アルミナ,アルミニウムナイトライ
ド及びシリコンナイトライドから選ばれる少なくとも1
種の無機粒子が望ましい。これらの充填剤の平均粒径は
1〜30μmの範囲が望ましく、平均粒径が1μm未満
では樹脂組成物の粘度が上昇して流動性が著しく低下
し、30μmを超えると成形時に樹脂成分と充填剤の分
離が起きやすく硬化物が不均一になるため硬化物物性に
ばらつきが生じたり、狭い隙間への充填性が悪くなる。
無機充填剤の形状としては球形または角形があるが、そ
れらを単独でまたは併用して用いることができる。
In the present invention, the resin composition used for the resin-encapsulated semiconductor device contains an inorganic filler. The inorganic filler is added for the purpose of improving the thermal expansion coefficient and the thermal conductivity of the cured product. Various compounds can be used as the inorganic filler. It is important to use a thermochemically stable filler for electronic components. Specifically, fused silica, crystalline silica, alumina, aluminum nitride and At least one selected from silicon nitride
Seed inorganic particles are desirable. The average particle size of these fillers is desirably in the range of 1 to 30 μm. If the average particle size is less than 1 μm, the viscosity of the resin composition increases and the fluidity significantly decreases. The separation of the agents is likely to occur, and the cured product becomes non-uniform, resulting in variations in the physical properties of the cured product and poor filling of narrow gaps.
The shape of the inorganic filler is spherical or square, and these can be used alone or in combination.

【0026】さらに、本発明ではこの他必要に応じて、
樹脂組成物として硬化物の強靭性化や低弾性率化のため
の可とう化剤を用いることができる。可とう化剤の配合
量は全樹脂組成物に対して2〜20重量%であることが
好ましい。可とう化剤の配合量が2重量%未満では硬化
物の強靭性化や低弾性率化に対してほとんど効果がな
く、20重量%を超えると樹脂組成物の流動性が極端に
悪くなったり、可とう化剤が成形時に樹脂組成物表面に
浮き出ることによって、成形金型の汚れが顕著になる。
可とう化剤としてはエポキシ樹脂組成物と非相溶のもの
がガラス転移温度を下げずに硬化物の低弾性率化ができ
ることから、ブタジエン・アクリロニトリル系共重合体
やそれらの末端または側鎖アミノ基,エポキシ基,カル
ボキシル基変性共重合体やアクリロニトリル・ブタジエ
ン・スチレン共重合体等のブタジエン系可とう化剤や末
端または側鎖アミノ基,水酸基,エポキシ基,カルボキ
シル基変性シリコーン系可とう化剤等が用いられるが、
耐熱性,耐湿性並びに高純の点から、シリコーン系可と
う化剤が特に有用である。
Further, according to the present invention, if necessary,
A flexible agent for increasing the toughness or lowering the elastic modulus of the cured product can be used as the resin composition. The amount of the plasticizer is preferably 2 to 20% by weight based on the whole resin composition. If the amount of the flexibilizer is less than 2% by weight, there is almost no effect on the toughness and low elasticity of the cured product, and if it exceeds 20% by weight, the fluidity of the resin composition becomes extremely poor. In addition, since the flexible agent floats on the surface of the resin composition at the time of molding, the stain on the molding die becomes remarkable.
As a solubilizing agent, one that is incompatible with the epoxy resin composition can reduce the elastic modulus of the cured product without lowering the glass transition temperature. Therefore, the butadiene-acrylonitrile copolymer or their terminal or side chain amino groups can be used. And epoxy groups, carboxyl group-modified copolymers, acrylonitrile-butadiene-styrene copolymers and other butadiene-based plasticizers, and terminal or side chain amino groups, hydroxyl groups, epoxy groups, carboxyl group-modified silicone-based plasticizers Etc. are used,
From the viewpoints of heat resistance, moisture resistance and high purity, silicone-based flexible agents are particularly useful.

【0027】本発明の樹脂封止型半導体装置に用いる樹
脂組成物にはこの他必要に応じ、樹脂組成物と充填剤の
接着性を高めるためのエポキシシラン,アミノシランな
どのカップリング剤,着色のための染料や顔料,硬化物
の金型からの離型性を改良するための離型剤等の各種添
加剤を発明の目的を損なわない範囲において用いること
ができる。
The resin composition used in the resin-encapsulated semiconductor device of the present invention may further include, if necessary, a coupling agent such as epoxysilane or aminosilane, and a coloring agent for improving the adhesion between the resin composition and the filler. Various additives such as dyes and pigments for improving the releasability of the cured product from the mold can be used as long as the object of the invention is not impaired.

【0028】以上のような原材料を用いて半導体封止材
料を作成する一般的な方法としては、所定配合量の原材
料混合物を十分混合した後、熱ロールや押し出し機等に
よって混練し、冷却,粉砕することによって封止材料を
得ることができる。このようにして得られた封止材料を
用いて半導体素子を封止する方法としては、低圧トラン
スファ成形法が通常用いられるが、場合によっては、イ
ンジェクション成形,圧縮成形,注型等の方法によって
も可能である。
As a general method for preparing a semiconductor encapsulating material using the above-described raw materials, a raw material mixture having a predetermined compounding amount is sufficiently mixed, then kneaded by a hot roll, an extruder, or the like, and cooled and pulverized. By doing so, a sealing material can be obtained. As a method for sealing a semiconductor element using the sealing material thus obtained, a low-pressure transfer molding method is usually used, but in some cases, a method such as injection molding, compression molding, or casting is also used. It is possible.

【0029】本発明の臭素系有機化合物,リン系有機化
合物及び窒素系有機化合物の中の少なくとも1種類から
なる有機化合物並びにホウ酸金属塩からなるエポキシ樹
脂組成物で封止された半導体装置は、難燃性並びに温度
サイクル性(−55℃⇔150℃、1サイクル条件で10
00サイクル以上),耐湿性(65℃/95%RHで1
00時間以上),耐はんだリフロー性(85℃/85%
RH/48時間以上放置でクラック無し)、高温放置
(少なくとも175℃2000時間以上、特に200℃
1000時間以上で導通不良無し)などの各種信頼性の
目標を満足させるため、樹脂硬化物の特性として線膨張
係数が0.6〜2.5×10-5、ガラス転移温度が110
℃以上、飽和吸湿率が85℃85%RHの条件で0.8
wt% 以下及び難燃性がUL−94規格のV−0の特
性を有することを特徴とする。
The semiconductor device encapsulated with the epoxy resin composition of the present invention comprising at least one of a bromine-based organic compound, a phosphorus-based organic compound and a nitrogen-based organic compound, and a metal borate salt, Flame retardancy and temperature cycling (-55 ° C⇔150 ° C, 10 cycles per cycle)
00 cycles or more), moisture resistance (1 at 65 ° C / 95% RH)
00 hours or more), solder reflow resistance (85 ° C / 85%)
RH / Leave for 48 hours or more, no cracks), High temperature (at least 175 ° C for 2000 hours or more, especially 200 ° C)
In order to satisfy various reliability targets such as 1000 hours or more, there is no conduction failure). As the characteristics of the cured resin, the coefficient of linear expansion is 0.6 to 2.5 × 10 −5 and the glass transition temperature is 110.
0.8 ° C. or more and a saturated moisture absorption of 85 ° C. and 85% RH.
It is characterized in that it has the characteristics of V-0 of wt-% or less and flame retardancy of UL-94 standard.

【0030】本発明の半導体装置は、封止材中にホウ酸
金属塩を含有するため、特に高温放置特性が優れてお
り、空気中200℃で1ボルトの低電圧を印下したまま
1000時間放置した時に、アルミパッド/金ワイヤ接合部
の腐食によってリードまたは半田ボールなどの外部端子
の電気的導通がとれなくなるという不良率が0.1% 未
満であることを特徴とする。この条件は従来の半導体装
置の高温動作保証温度である150℃は言うに及ばず、
自動車用途としても対応できる175℃の保証が可能と
なる。
The semiconductor device of the present invention is particularly excellent in high-temperature storage characteristics because it contains a metal borate in the encapsulant, and a low voltage of 1 volt is applied at 200 ° C. in air.
It is characterized in that, when left for 1000 hours, the failure rate that electrical conduction of external terminals such as leads or solder balls cannot be established due to corrosion of the aluminum pad / gold wire joint is less than 0.1%. This condition is not limited to 150 ° C., which is a high temperature operation guarantee temperature of the conventional semiconductor device,
It is possible to guarantee a temperature of 175 ° C that can be used for automobiles.

【0031】次に本発明の前記有機化合物とホウ酸金属
塩を含有するエポキシ樹脂組成物によって封止して得ら
れる各種の樹脂封止型半導体装置の製造方法を説明す
る。本発明の第1の製造方法に基づく工程は図1に示す
ように、(a)半導体素子をリードフレームのダイパッ
ド上にAg入りエポキシ接着剤や接着フィルム等の有機
接着剤または鉛/錫はんだを用いて加熱硬化または溶融
させて半導体素子を搭載する工程,(b)金線ワイヤで
半導体素子とインナーリードを接合する工程,(c)金
型を挿入して前記臭素系有機化合物,リン系有機化合物
及び窒素系有機化合物の中の少なくとも1種類からなる
有機化合物並びにホウ酸金属塩を含有するエポキシ樹脂
組成物を用いてトランスファ成形機で175℃90秒間
加圧成形によってモールド後、175℃5時間で後硬化
を行う工程、(d)バリ取り工程,外装工程を経た後、
リードフレームのトリミング工程とフォーミング工程を
含む。このように、(a)〜(d)の工程を通過して樹
脂封止型半導体装置を得る。
Next, methods of manufacturing various resin-sealed semiconductor devices obtained by sealing with the epoxy resin composition containing the organic compound and the metal borate of the present invention will be described. As shown in FIG. 1, the steps based on the first manufacturing method of the present invention are as follows. (A) A semiconductor element is prepared by applying an organic adhesive such as an epoxy adhesive containing Ag or an adhesive film or a lead / tin solder on a die pad of a lead frame. Mounting the semiconductor element by heat curing or melting using the same; (b) bonding the semiconductor element and the inner lead with a gold wire; (c) inserting a mold to insert the bromine-based organic compound and the phosphorus-based organic compound. Using an epoxy resin composition containing at least one compound selected from a compound and a nitrogen-based organic compound and a metal borate salt, molding at 175 ° C for 90 seconds by press molding with a transfer molding machine, and then 175 ° C for 5 hours. After the post-curing step, (d) the deburring step and the exterior step,
It includes a lead frame trimming step and a forming step. Thus, the resin-encapsulated semiconductor device is obtained through the steps (a) to (d).

【0032】本発明の第2の製造方法に基づく工程は図
2に示すようにリードオンチップ方式の樹脂封止型半導
体装置を得るためのものである。(a)有機フィルム接
着剤をあらかじめ貼り合わせたリードフレームを用い
て、半導体素子と加熱溶融硬化して接着する工程,
(b)金線ワイヤで半導体素子の電極とインナーリード
を接合する工程,(c)金型に挿入して前記臭素系有機
化合物,リン系有機化合物及び窒素系有機化合物の中の
少なくとも1種類からなる有機化合物とホウ酸金属塩を
含有するエポキシ樹脂組成物を用いてトランスファ成形
機で175℃90秒間加圧成形によってモールド後、1
75℃5時間で後硬化を行う工程を含む。封止,後硬化
後の半導体装置は図1の製造方法で説明した同じ(d)
の工程を経て樹脂封止型半導体装置を得ることができ
る。
The steps based on the second manufacturing method of the present invention are for obtaining a lead-on-chip type resin-encapsulated semiconductor device as shown in FIG. (A) using a lead frame to which an organic film adhesive has been bonded in advance, and bonding the semiconductor element to the semiconductor element by heating and melting;
(B) a step of joining the electrode of the semiconductor element and the inner lead with a gold wire; and (c) inserting at least one of the bromine-based organic compound, the phosphorus-based organic compound and the nitrogen-based organic compound by inserting into a mold. After molding by press molding at 175 ° C. for 90 seconds using a transfer molding machine using an epoxy resin composition containing the organic compound and a metal borate,
A step of performing post-curing at 75 ° C. for 5 hours is included. The semiconductor device after sealing and post-curing is the same as that described in the manufacturing method of FIG.
Through these steps, a resin-sealed semiconductor device can be obtained.

【0033】本発明の第3の製造方法に基づく工程は図
3に示すようにボールグリッドアレイの樹脂封止型半導
体装置を得るためのものである。(a)単層または多層
プリント配線基板の片側に半導体素子の搭載面を形成
し、その裏側にハンダボールグリッドアレイ等の外部端
子用実層面を形成する工程,(b)回路パターンを有す
る樹脂基板の上面に半導体素子の非能動面をエポキシ樹
脂接着剤を用いて接着して半導体素子を搭載する工程,
(c)半導体素子の能動面上の電極を樹脂基板の配線パ
ターンとワイヤボンデイングして電気的な接続をとる工
程,(d)前記半導体素子を前記臭素系有機化合物,リ
ン系有機化合物及び窒素系有機化合物の中の少なくとも
1種類からなる有機化合物並びにホウ酸金属塩を含有す
るエポキシ樹脂組成物を用いてトランスファ成形機で1
75℃90秒間加圧成形によって基板上面のモールドと
175℃5時間の後硬化を行う工程,(e)樹脂基板の
底面に外部端子を設ける工程から成る。
The steps based on the third manufacturing method of the present invention are for obtaining a resin-sealed semiconductor device of a ball grid array as shown in FIG. (A) a step of forming a mounting surface of a semiconductor element on one side of a single-layer or multilayer printed wiring board and forming a real layer surface for external terminals such as a solder ball grid array on the back side; (b) a resin substrate having a circuit pattern Mounting the semiconductor device by bonding the non-active surface of the semiconductor device to the upper surface of the device using an epoxy resin adhesive,
(C) bonding the electrodes on the active surface of the semiconductor element to the wiring pattern of the resin substrate by wire bonding to make electrical connection; and (d) connecting the semiconductor element to the bromine-based organic compound, the phosphorus-based organic compound, and the nitrogen-based compound. Using an epoxy resin composition containing at least one organic compound among organic compounds and a metal borate, a transfer molding machine is used.
It comprises a step of molding the upper surface of the substrate by pressure molding at 75 ° C. for 90 seconds and post-curing for 5 hours at 175 ° C., and (e) a step of providing external terminals on the bottom surface of the resin substrate.

【0034】本発明の第4の製造方法に基づく工程は図
4に示すようにチップサイズの樹脂封止型半導体装置を
得るためのものである。(a)ポリイミド配線テープの
上面に半導体素子の非能動面を絶縁性の低弾性接着剤ま
たはフィルムを用いて接着して搭載する工程,(b)半
導体素子の能動面上の電極をポリイミド配線テープの配
線パターンとワイヤボンデイングして電気的な接続をと
る工程,(c)前記半導体素子を前記臭素系有機化合物,
リン系有機化合物及び窒素系有機化合物の中の少なくと
も1種類からなる有機化合物並びにホウ酸金属塩を含有
するエポキシ樹脂組成物を用いてトランスファ成形機で
175℃90秒間加圧成形によってポリイミド配線テー
プ上面のモールドと175℃5時間の後硬化を行う工
程,(d)ポリイミド配線テープの底面に半田ボールな
どの外部端子を設ける工程を含む。本発明の樹脂封止型
半導体装置は臭素系有機化合物,リン系有機化合物及び
窒素系有機化合物の中の少なくとも1種類からなる有機
化合物並びにホウ酸金属塩を同時に含有する封止材で半
導体素子を封止したもので、封止材の成形性,接着性,
吸湿性等の諸特性を低下させずに難燃性を維持し、しか
も信頼性に影響を与える低分子ガス成分やイオン成分の
発生の低減または補足ができるため、耐湿性並びに高温
放置特性などの各種の信頼性が向上する。これは、ホウ
酸金属塩が難燃剤としてだけでなく、低分子ガス成分や
イオン成分の発生の低減剤または補足剤として有効に働
くためである。
The steps based on the fourth manufacturing method of the present invention are for obtaining a chip-sized resin-sealed semiconductor device as shown in FIG. (A) a step of bonding the non-active surface of the semiconductor element to the upper surface of the polyimide wiring tape using an insulating low-elasticity adhesive or film, and (b) mounting the electrodes on the active surface of the semiconductor element to the polyimide wiring tape. (C) bonding the semiconductor element with the bromine-based organic compound,
Using an epoxy resin composition containing at least one of a phosphorus-based organic compound and a nitrogen-based organic compound and a metal borate salt, press molding at 175 ° C. for 90 seconds using a transfer molding machine to form an upper surface of the polyimide wiring tape. And post-curing for 5 hours at 175 ° C. and (d) providing external terminals such as solder balls on the bottom surface of the polyimide wiring tape. The resin-encapsulated semiconductor device of the present invention comprises a semiconductor element formed of a sealing material containing at least one of a bromine-based organic compound, a phosphorus-based organic compound and a nitrogen-based organic compound, and a metal borate. It is sealed, and the moldability, adhesiveness,
It maintains flame retardancy without deteriorating various properties such as moisture absorption, and can reduce or supplement the generation of low molecular gas components and ionic components that affect reliability. Various reliability is improved. This is because the metal borate salt effectively works not only as a flame retardant, but also as a reducing agent or a supplement for generating low molecular gas components and ionic components.

【0035】本発明によるエポキシ樹脂組成物で封止し
た樹脂封止型半導体装置は難燃剤としてアンチモン化合
物の代わりにホウ酸金属塩を含むため、火災時の耐発煙
性が優れるとともに毒性ガス発生の問題もなく、半導体
装置としての信頼性向上の他に、取扱性と安全性におい
ても優れるという特徴を有する。
The resin-encapsulated semiconductor device sealed with the epoxy resin composition according to the present invention contains a metal borate instead of an antimony compound as a flame retardant, so that it has excellent smoke resistance at the time of fire and generates toxic gas. There is no problem, and in addition to the improvement of the reliability as a semiconductor device, the semiconductor device is excellent in handleability and safety.

【0036】[0036]

【発明の実施の形態】以下、本発明について実施例に従
い具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described specifically with reference to embodiments.

【0037】実施例1〜12,比較例1〜7 下記に示すエポキシ樹脂,フェノール樹脂硬化剤,有機
化合物系難燃剤,ホウ酸金属塩,シリコーン可とう化
剤、並びに無機充填剤として平均粒径5μmの角形また
は球形の溶融シリカと平均粒径30μmの球形の溶融シ
リカの30/70の混合品,カップリング剤としてエポ
キシシラン,離型剤としてモンタン酸エステルロウ,着
色剤としてカーボンブラックを用い、表1に示す配合割
合で成形材料を作成した。なお、参考例1では難燃剤と
して臭素化エポキシ樹脂と難燃助剤として三酸化アンチ
モンを用いた。各素材の混練には直径20インチの二軸
ロールを用い、ロール表面温度約55〜90℃で約10
分間の混練を行った。
Examples 1 to 12 and Comparative Examples 1 to 7 Epoxy resins, phenolic resin curing agents, organic compound-based flame retardants, metal borate salts, silicone passivating agents, and average particle diameters as inorganic fillers 30/70 mixture of 5 μm square or spherical fused silica and spherical fused silica having an average particle diameter of 30 μm, epoxysilane as a coupling agent, montanic acid ester wax as a release agent, carbon black as a coloring agent, Molding materials were prepared in the proportions shown in Table 1. In Reference Example 1, a brominated epoxy resin was used as a flame retardant, and antimony trioxide was used as a flame retardant auxiliary. A 20-inch diameter biaxial roll is used for kneading each material, and the roll surface temperature is about 55 to 90 ° C. and about 10
Kneading for a minute was performed.

【0038】 エポキシ樹脂 エポキシ当量 軟化点(℃) (A)オルソクレゾールノボラック型 195 65 エポキシ樹脂Epoxy Resin Epoxy Equivalent Softening Point (° C.) (A) Orthocresol Novolac Type 195 65 Epoxy Resin

【0039】[0039]

【化1】 Embedded image

【0040】 (B)ビフェニル型エポキシ樹脂 195 107(B) Biphenyl type epoxy resin 195 107

【0041】[0041]

【化2】 Embedded image

【0042】 (C)ジシクロペンタジエン骨格含有 264 62 エポキシ樹脂(C) Dicyclopentadiene skeleton-containing 264 62 epoxy resin

【0043】[0043]

【化3】 Embedded image

【0044】 フェノール樹脂硬化剤 OH当量 (A)フェノールノボラック樹脂 106Phenolic resin curing agent OH equivalent (A) Phenol novolak resin 106

【0045】[0045]

【化4】 Embedded image

【0046】 (B)フェノールアラルキル樹脂 172(B) Phenol aralkyl resin 172

【0047】[0047]

【化5】 Embedded image

【0048】 (C)ジシクロペンタジエン骨格含有フェノール樹脂 161(C) Dicyclopentadiene skeleton-containing phenol resin 161

【0049】[0049]

【化6】 Embedded image

【0050】 有機化合物系難燃剤 (A)臭素化ビスフェノールA型 エポキシ当量 軟化点(℃) エポキシ樹脂 375 68Organic Compound Flame Retardant (A) Brominated Bisphenol A Type Epoxy Equivalent Softening Point (° C.) Epoxy Resin 375 68

【0051】[0051]

【化7】 Embedded image

【0052】 (B)トリフェニルホスフィンオキシド(TPPO) (C)リン酸エステル(融点95℃) (D)ジフェニルホスフィニルヒドロ エポキシ当量 軟化点(℃) キノンとエピクロルヒドリンとの 214 135 反応によるエポキシ樹脂(B) Triphenylphosphine oxide (TPPO) (C) Phosphoric acid ester (melting point 95 ° C.) (D) Diphenylphosphinylhydro epoxy equivalent Softening point (° C.) Epoxy resin by 214 135 reaction between quinone and epichlorohydrin

【0053】[0053]

【化8】 Embedded image

【0054】 (E)メラミン樹脂 (F)トリグリシジルイソシアネート エポキシ当量 軟化点(℃) 105 約120℃(E) Melamine resin (F) Triglycidyl isocyanate Epoxy equivalent Softening point (° C.) 105 about 120 ° C.

【0055】[0055]

【化9】 Embedded image

【0056】 (G)2,2−ビス(4−(4−マレイミド 軟化点(℃) フェノキシ)フェニル)プロパン 約95℃ シリコーン可とう化剤 側鎖変性シリコーン樹脂(分子量73600,エポキシ
当量3900) 硬化促進剤 DBU;1,8−ビアザビシクロ(5,4,0)−ウン
デセン TPP;トリフェニルホスフィン 2MZ;2−メチルイミダゾール 表中の各種特性は以下により測定した。
(G) 2,2-bis (4- (4-maleimide softening point (° C.) phenoxy) phenyl) propane About 95 ° C. Silicone plasticizer Side-chain modified silicone resin (molecular weight 73600, epoxy equivalent 3900) Accelerator DBU; 1,8-biazabicyclo (5,4,0) -undecene TPP; triphenylphosphine 2MZ; 2-methylimidazole Various properties in the table were measured as follows.

【0057】1.スパイラルフロー:EMMI規格に準
じた金型を用い、180℃,70Kg/cm2 の条件で測定
した。
1. Spiral flow: Measured at 180 ° C. and 70 kg / cm 2 using a mold conforming to the EMMI standard.

【0058】2.ガラス転移温度並びに線膨張係数:熱
機械測定装置(Thermo MechanicalAnalyzer:TMA)
を用い、昇温速度2℃/分で測定した。
2. Glass transition temperature and coefficient of linear expansion: Thermomechanical analyzer (TMA)
Was measured at a heating rate of 2 ° C./min.

【0059】3.吸湿率:90mmφ,2mmt の円盤を成
形し、85℃/85%RHの条件で飽和吸湿率を重量変
化から求めた。
3. Moisture absorption: A disk of 90 mmφ, 2 mmt was formed, and the saturated moisture absorption was determined from the weight change under the conditions of 85 ° C./85% RH.

【0060】4.接着力:0.03mmtのアルミ箔と成形
材料とのピール強度を引っ張り速度50mm/分で求め
た。
4. Adhesive strength: The peel strength between a 0.03 mmt aluminum foil and a molding material was determined at a pulling speed of 50 mm / min.

【0061】5.難燃性:UL−94規格に従って測定
した。
5. Flame retardancy: measured according to UL-94 standard.

【0062】6.抽出液のpH:硬化後のエポキシ樹脂
組成物を粉砕ミルによって微細に粉砕し、粉砕品を10
倍量の純水で希釈して120℃のプレッシャ・クッカ釜
中で40時間放置した後の抽出液をpHメータを用いて
室温で測定した。
6. PH of extract: The cured epoxy resin composition is finely pulverized by a pulverizing mill,
The extract was diluted with twice the volume of pure water and allowed to stand in a pressure cooker at 120 ° C. for 40 hours, and the extract was measured at room temperature using a pH meter.

【0063】7.臭素,リン及び窒素の樹脂中における
元素含有量:硬化後のエポキシ樹脂組成物を誘導結合プ
ラズマ(ICP)原子発光分析計またはI原子吸光分析
計を用いて各元素の含有量を測定後、ホウ酸亜鉛及び無
機フィラを除く全樹脂量に換算して求めた。ホウ酸亜鉛
及び無機フィラを除く全樹脂量はエポキシ樹脂組成物を
空気中において700℃2時間で焼成した後、焼成残渣
を測定することによって加熱揮発分から求めた。
7. Elemental content of bromine, phosphorus and nitrogen in the resin: After curing the epoxy resin composition with an inductively coupled plasma (ICP) atomic emission spectrometer or I atomic absorption spectrometer, the content of each element is measured. It was determined by converting it to the total amount of resin excluding zinc acid and inorganic filler. The total amount of resin excluding zinc borate and the inorganic filler was determined from the volatile matter by heating by calcining the epoxy resin composition in air at 700 ° C. for 2 hours and measuring the calcined residue.

【0064】[0064]

【表1】 [Table 1]

【0065】[0065]

【表2】 [Table 2]

【0066】表1と表2から明らかなように、本発明に
おける半導体装置用樹脂組成物は臭素系有機化合物,リ
ン系有機化合物及び窒素系有機化合物の中の少なくとも
1種類からなる有機化合物並びにホウ酸金属塩を併用す
ることにより、参考例1の臭素系有機化合物難燃剤と3
酸化アンチモンを併用した系と同様に難燃性のUL−9
4規格のV−0を達成することができる。さらに、成形
性並びに硬化物物性においても、従来の半導体装置用樹
脂組成物である比較例1の場合と同等かそれ以上である
ため、半導体装置用の封止材として優れた特性を有する
ことが分かる。参考例2に示すように、ホウ酸金属塩の
配合量が全樹脂組成物に対して1.5 重量%未満になる
と、前記の難燃性の基準に到達することができない。ま
た、有機化合物系難燃剤の配合量が無機充填剤を除く全
樹脂量に対して0.35 重量%未満であっても(参考例
5)、難燃性の規格であるV−0を達成することが出来
ない。一方、比較例3と4に示すように、ホウ酸金属塩
の配合量が全樹脂組成物に対して15重量%を超える
と、難燃性は向上するものの封止材の熱時硬度が大幅に
低下して成形性が悪くなる。さらに、吸湿率の増大や接
着力の低下が顕著になる。
As is clear from Tables 1 and 2, the resin composition for a semiconductor device according to the present invention comprises an organic compound comprising at least one of a bromine-based organic compound, a phosphorus-based organic compound and a nitrogen-based organic compound; By using the acid metal salt in combination, the brominated organic compound flame retardant of Reference Example 1 and 3
UL-9 as flame-retardant as antimony oxide combined system
V-0 of four standards can be achieved. Furthermore, since the moldability and the physical properties of the cured product are equal to or higher than those of Comparative Example 1 which is a conventional resin composition for a semiconductor device, it has excellent properties as a sealing material for a semiconductor device. I understand. As shown in Reference Example 2, when the content of the metal borate is less than 1.5% by weight based on the total resin composition, the above-mentioned flame retardancy standard cannot be achieved. Further, even when the compounding amount of the organic compound-based flame retardant is less than 0.35% by weight with respect to the total resin amount excluding the inorganic filler (Reference Example 5), the flame retardancy standard V-0 is achieved. I can't do it. On the other hand, as shown in Comparative Examples 3 and 4, when the amount of the metal borate exceeds 15% by weight based on the total resin composition, the flame retardancy is improved, but the heat hardness of the sealing material is greatly increased. And the moldability deteriorates. Further, an increase in the moisture absorption rate and a decrease in the adhesive strength become remarkable.

【0067】上記材料を用いて、図1に示すように表面
にアルミニウムのジグザグ配線を形成した半導体素子
(6×6mm)を42アロイ系のリードフレームに搭載
し、さらに半導体素子表面のアルミニウム電極とリード
フレーム間を金線(30μm径)でワイヤボンデイング
した半導体装置(外形20×14mm,厚さ2mm)を封止
し、175℃5時間硬化した。耐温度サイクル性の信頼
性試験はこの樹脂封止型半導体装置を−55℃10分,
150℃10分に放置し、これを1サイクルとし、10
00サイクルでパッケージがクラックしたものをクラッ
ク発生数として調べた。耐湿信頼性は前記の樹脂封止型
半導体装置を65℃/95%RHの条件下、1000時
間放置後、印加バイアス電圧20Vにおいて断線不良が
発生したパッケージの数を不良数として調べた。耐はん
だリフロー性の信頼性試験は前記の樹脂封止型半導体装
置を85℃85%RHの条件下にて48時間放置後、2
40℃の赤外線リフロー炉中で10秒間加熱する試験を
行い、パッケージがクラックしたものをクラック発生数
として調べた。高温放置信頼性試験は前記の樹脂封止型
半導体装置を200℃の高温中に1000時間放置し、
金ワイヤとアルミニウム配線の接合部の接続不良数を印
加バイアス電圧1Vを用い電気的にオープンかどうかで
調べた。これらの結果をまとめて表3と表4に示す。表
中、分母は試料数、分子は不良数である。
A semiconductor element (6 × 6 mm) having an aluminum zigzag wiring formed on the surface thereof as shown in FIG. 1 was mounted on a 42-alloy lead frame using the above-mentioned materials. A semiconductor device (outer diameter 20 × 14 mm, thickness 2 mm) in which the lead frames were wire-bonded with a gold wire (diameter 30 μm) was sealed and cured at 175 ° C. for 5 hours. The reliability test of the temperature cycle resistance was performed by testing this resin-encapsulated semiconductor device at -55 ° C for 10 minutes.
This was left at 150 ° C. for 10 minutes, and this was taken as one cycle.
Cracks of the package in 00 cycles were examined as the number of cracks. The moisture resistance reliability was evaluated by measuring the number of packages in which a disconnection failure occurred at an applied bias voltage of 20 V after leaving the resin-encapsulated semiconductor device at 65 ° C./95% RH for 1000 hours. The reliability test of the solder reflow resistance was as follows.
A test was conducted in which the package was heated for 10 seconds in an infrared reflow furnace at 40 ° C., and the cracked package was examined as the number of cracks generated. The high temperature storage reliability test was performed by leaving the resin-encapsulated semiconductor device at a high temperature of 200 ° C. for 1000 hours.
The number of connection failures at the joint between the gold wire and the aluminum wire was examined by using an applied bias voltage of 1 V to determine whether or not the connection was electrically open. The results are summarized in Tables 3 and 4. In the table, the denominator is the number of samples, and the numerator is the number of defects.

【0068】[0068]

【表3】 [Table 3]

【0069】[0069]

【表4】 [Table 4]

【0070】表3と表4から明らかなように、本発明に
よる半導体装置は優れた信頼性を有していることが分か
る。これは表1に示したように、本発明による樹脂組成
物が各種信頼性に及ぼす物性値、すなわち線膨張係数,
ガラス転移温度,飽和吸湿率,接着力、並びに抽出液の
pHが所望の値を有しているためである。特に、ホウ酸
金属塩を有する樹脂組成物で半導体素子を封止する本発
明の半導体装置は、200℃/1Vという高温低印加電
圧においても従来(比較例1)と比べて格段に優れた信頼
性を有することが分かる。なお、比較例3は樹脂組成物
の硬化性が極端に悪かったため、半導体装置の成形が不
可能であった。また、比較例6は樹脂組成物中にホウ酸
金属塩を含有するものの、臭素系有機化合物,リン系有
機化合物及び窒素系有機化合物の中の少なくとも1種類
からなる有機化合物中に含まれる臭素,リン及び窒素の
少なくとも1種類の元素含有量が無機充填剤を除く全樹
脂量に対して10重量%を超えているため、脱離臭素化
合物による影響が大きく高温放置信頼性の低下がみられ
る。ホウ素化合物としてホウ酸を用いた場合も、半導体
装置の信頼性向上に対してほとんど効果のないことが分
かる(比較例7)。表1並びに表3の実施例では、ホウ酸
金属塩として代表的なホウ酸亜鉛を用いた例を示した
が、ホウ酸アルミニウムやホウ砂等の他のホウ酸金属塩
を含有するエポキシ樹脂組成物においてもホウ酸亜鉛の
場合とほぼ同等の硬化物の難燃性及び特性を示す。さら
に、ホウ酸アルミニウムやホウ砂等の他のホウ酸金属塩
を含有するエポキシ樹脂組成物で封止した半導体装置も
ホウ酸亜鉛の場合とほぼ同等の信頼性を得ることができ
る。
As is clear from Tables 3 and 4, it is understood that the semiconductor device according to the present invention has excellent reliability. As shown in Table 1, the resin composition according to the present invention exerts various physical properties on reliability, that is, a coefficient of linear expansion,
This is because the glass transition temperature, the saturated moisture absorption, the adhesive strength, and the pH of the extract have desired values. In particular, the semiconductor device of the present invention, in which a semiconductor element is sealed with a resin composition having a metal borate salt, has a significantly higher reliability than the conventional device (Comparative Example 1) even at a high temperature and a low applied voltage of 200 ° C./1 V. It can be seen that it has the property. In Comparative Example 3, molding of a semiconductor device was impossible because the curability of the resin composition was extremely poor. In Comparative Example 6, although the resin composition contained a metal borate, bromine contained in at least one of a bromine-based organic compound, a phosphorus-based organic compound, and a nitrogen-based organic compound, Since the content of at least one element of phosphorus and nitrogen exceeds 10% by weight with respect to the total amount of the resin excluding the inorganic filler, the effect of the desorbed bromine compound is large, and the high-temperature storage reliability is reduced. It can be seen that the use of boric acid as the boron compound has little effect on the improvement of the reliability of the semiconductor device (Comparative Example 7). In Examples of Tables 1 and 3, an example using zinc borate as a representative metal borate is shown. However, an epoxy resin composition containing another metal borate such as aluminum borate or borax is used. The cured product shows almost the same flame retardancy and properties as the cured product of zinc borate. Furthermore, a semiconductor device sealed with an epoxy resin composition containing another metal borate such as aluminum borate or borax can also obtain almost the same reliability as the case of zinc borate.

【0071】実施例13 表1に示す実施例2の樹脂組成物を用いて、図2に示す
ように表面にアルミニウムのジグザグ配線を形成した半
導体素子(6×6mm)を、両面に接着剤を塗付したポリ
イミドフィルムを貼り合わせた42アロイ系のリードフ
レームと加熱溶融による接着を行い半導体素子上にリー
ドフレームを搭載した後、半導体素子表面のアルミニウ
ム電極とリードフレーム間を金線(30μm径)でワイ
ヤボンデイングした半導体装置(外形16×12mm,厚
さ2.7mm )を封止し175℃5時間硬化した。この樹
脂封止型半導体装置の耐温度サイクル性,耐湿性,耐は
んだリフロー性、並びに高温放置信頼性などの各種信頼
性試験を表3と同様の条件で行った結果、いずれもパッ
ケージのクラックや接続不良は観測されず、優れた信頼
性を有することが分かった。
Example 13 Using the resin composition of Example 2 shown in Table 1, a semiconductor element (6 × 6 mm) having an aluminum zigzag wiring formed on the surface as shown in FIG. After bonding by heating and melting to a 42 alloy-based lead frame to which a coated polyimide film is bonded, and mounting the lead frame on the semiconductor element, a gold wire (30 μm diameter) is formed between the aluminum electrode on the semiconductor element surface and the lead frame. The semiconductor device (external size 16 × 12 mm, thickness 2.7 mm) wire-bonded in the above was sealed and cured at 175 ° C. for 5 hours. Various reliability tests such as temperature cycle resistance, moisture resistance, solder reflow resistance, and high-temperature storage reliability of this resin-encapsulated semiconductor device were performed under the same conditions as those in Table 3, and as a result, cracking of the package was observed. No connection failure was observed, indicating excellent reliability.

【0072】[0072]

【発明の効果】本発明によって得られた樹脂封止型半導
体装置は、従来のハロゲン及びアンチモン化合物を有す
る樹脂組成物で封止した半導体装置と同等の難燃性を含
有するとともに、ホウ酸金属塩によるハロゲンまたはリ
ンなどの脱離ガス成分の発生抑制またはトラップ効果に
より耐湿信頼性並びに高温放置信頼性が格段に飛躍す
る。さらに、樹脂組成物の流動性,硬化性並びに硬化物
物性を従来の半導体材料とほぼ同等にしているため、成
形において問題なく、しかも温度サイクル性,耐はんだ
リフロー性などの他の各種信頼性においても良好な特性
を示すことができ、その工業的価値は極めて大きい。
The resin-encapsulated semiconductor device obtained according to the present invention has the same flame retardancy as a conventional semiconductor device encapsulated with a resin composition containing a halogen and antimony compound, and has a metal borate content. Due to the suppression of the generation of desorbed gas components such as halogen or phosphorus by the salt or the trapping effect, the moisture resistance reliability and the high-temperature storage reliability are remarkably increased. Furthermore, because the fluidity, curability and cured physical properties of the resin composition are almost the same as those of conventional semiconductor materials, there is no problem in molding, and in other various reliability such as temperature cycleability and solder reflow resistance. Can also show good characteristics, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による樹脂封止型半導体装置の製造方法
を示す断面図で、リードフレームのダイパッド上に搭載
した半導体素子を有機化合物系難燃剤とホウ素化合物を
含有する樹脂組成物で封止する方法である。
FIG. 1 is a cross-sectional view illustrating a method of manufacturing a resin-encapsulated semiconductor device according to the present invention, in which a semiconductor element mounted on a die pad of a lead frame is encapsulated with a resin composition containing an organic compound flame retardant and a boron compound. How to

【図2】本発明によるリードオンチップ方式の樹脂封止
型半導体装置の製造方法を示す断面図である。
FIG. 2 is a cross-sectional view illustrating a method for manufacturing a lead-on-chip type resin-encapsulated semiconductor device according to the present invention.

【図3】本発明によるボールグリッドアレイの樹脂封止
型半導体装置の製造方法を示す断面図である。
FIG. 3 is a cross-sectional view illustrating a method of manufacturing a resin-encapsulated semiconductor device of a ball grid array according to the present invention.

【図4】本発明によるチップサイズの樹脂封止型半導体
装置の製造方法を示す断面図である。
FIG. 4 is a cross-sectional view illustrating a method of manufacturing a chip-sized resin-sealed semiconductor device according to the present invention.

【符号の説明】 1…半導体素子、2…ダイパッド、3…インナーリー
ド、4…接着剤、5…金ワイヤ、6…アルミ電極、7…
有機化合物系難燃剤とホウ素化合物を有する封止材、8
…フィルム接着剤、9…プリント配線基板、10…ソル
ダレジスト、11…はんだバンプ、12…ポリイミド配
線テープ、13…銅パッド。
[Description of Signs] 1 ... Semiconductor element, 2 ... Die pad, 3 ... Inner lead, 4 ... Adhesive, 5 ... Gold wire, 6 ... Aluminum electrode, 7 ...
An encapsulant containing an organic compound flame retardant and a boron compound, 8
... Film adhesive, 9 ... Printed wiring board, 10 ... Solder resist, 11 ... Solder bump, 12 ... Polyimide wiring tape, 13 ... Copper pad.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08K 5/49 C08K 5/49 H01L 23/29 H01L 23/30 R 23/31 (72)発明者 小角 博義 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 永井 晃 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 茂木 亮 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 荻野 雅彦 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 瀬川 正則 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 露野 円丈 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 上野 巧 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 中村 篤 東京都小平市上水本町五丁目20番1号 株 式会社日立製作所半導体事業部内 (72)発明者 西村 朝雄 東京都小平市上水本町五丁目20番1号 株 式会社日立製作所半導体事業部内────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification code FI C08K 5/49 C08K 5/49 H01L 23/29 H01L 23/30 R 23/31 (72) Inventor Hiroyoshi Ogumi Hiromi Oka 7-1-1, Machi-cho, Hitachi, Ltd.Hitachi Research Laboratories, Ltd. (72) Inventor Akira Nagai 7-1-1, Omika-cho, Hitachi City, Ibaraki Pref. 7-1-1, Omika-cho, Hitachi, Hitachi, Ltd. Within Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Masahiko Ogino 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture, Hitachi, Ltd. (72) Invention Person Masanori Segawa 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside the Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Mamoru Takeno Omika-cho, Hitachi City, Ibaraki Prefecture 1-1-1 Hitachi Hitachi, Ltd. Hitachi Research Laboratory (72) Inventor Takumi Ueno 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Atsushi Nakamura Kodaira, Tokyo 5-2-1, Josui-Honcho-shi, Hitachi Semiconductor Company, Ltd. (72) Inventor Asao Nishimura 5-2-1, Josui-Honcho, Kodaira-shi, Tokyo Inside Semiconductor Company, Hitachi Ltd.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】半導体素子を樹脂組成物で封止した半導体
装置において、樹脂組成物が臭素系有機化合物,リン系
有機化合物及び窒素系有機化合物の中の少なくとも1種
類からなる有機化合物並びにホウ酸金属塩を含有したエ
ポキシ樹脂組成物であることを特徴とする樹脂封止型半
導体装置。
1. A semiconductor device in which a semiconductor element is sealed with a resin composition, wherein the resin composition is an organic compound comprising at least one of a bromine-based organic compound, a phosphorus-based organic compound and a nitrogen-based organic compound, and boric acid. A resin-sealed semiconductor device, which is an epoxy resin composition containing a metal salt.
【請求項2】臭素系有機化合物,リン系有機化合物及び
窒素系有機化合物の中の少なくとも1種類からなる有機
化合物並びにホウ酸金属塩を含み、10倍量の120℃
の熱水で40時間加熱抽出した後の抽出液においてpH
が5.0〜7.5の範囲にあるエポキシ樹脂組成物で半導
体素子を封止したことを特徴とする樹脂封止型半導体装
置。
2. An organic compound comprising at least one of a bromine-based organic compound, a phosphorus-based organic compound and a nitrogen-based organic compound, and a metal borate, which are 10 times the amount of 120 ° C.
PH after extraction with hot water for 40 hours
Wherein the semiconductor element is sealed with an epoxy resin composition having a range of 5.0 to 7.5.
【請求項3】臭素系有機化合物,リン系有機化合物及び
窒素系有機化合物の中の少なくとも1種類からなる有機
化合物並びにホウ酸金属塩を含むエポキシ樹脂組成物で
半導体素子を封止した半導体装置であり、該半導体装置
を200℃の恒温槽中で1ボルトの電圧を印加したまま
1000時間放置した時にリードまたは半田ボールなど
の外部端子において電気的な導通がなくなることによっ
て生じる不良率が0.1%未満であることを特徴とする樹
脂封止型半導体装置。
3. A semiconductor device in which a semiconductor element is sealed with an epoxy resin composition containing an organic compound comprising at least one of a bromine organic compound, a phosphorus organic compound and a nitrogen organic compound and a metal borate. Yes, when the semiconductor device is left in a constant temperature bath at 200 ° C. for 1000 hours while applying a voltage of 1 volt, a defect rate caused by the loss of electrical continuity in external terminals such as leads or solder balls is less than 0.1%. A resin-encapsulated semiconductor device, characterized in that:
【請求項4】臭素系有機化合物,リン系有機化合物及び
窒素系有機化合物の中の少なくとも1種類からなる有機
化合物並びにホウ酸金属塩を含むエポキシ樹脂組成物で
あり、かつ該エポキシ樹脂組成物の加熱硬化物の線膨張
係数が0.6〜2.5×10-5,ガラス転移温度が110
℃以上、飽和吸湿率が85℃85%RHの条件で0.8w
t%以下及び難燃性がUL−94規格のV−0の特性を
有することを特徴とする樹脂封止型半導体装置。
4. An epoxy resin composition comprising an organic compound comprising at least one of a bromine-based organic compound, a phosphorus-based organic compound and a nitrogen-based organic compound, and a metal borate salt. The heat-cured product has a linear expansion coefficient of 0.6 to 2.5 × 10 −5 and a glass transition temperature of 110.
0.8W under the condition of 85 ° C and 85% RH with a saturated moisture absorption of 85 ° C or higher
A resin-encapsulated semiconductor device having a characteristic of V-0 of t-% or less and flame retardancy of UL-94 standard.
【請求項5】前記リン系有機化合物が下記(1)式の構
造及び芳香環を有する化合物であり、 前記窒素系有機化合物が芳香環またはヘテロ環を有する
化合物であることを特徴とする特許請求の範囲第1項,
第2項,第3項及び第4項のいずれかに記載の樹脂封止
型半導体装置。
5. The phosphorus-based organic compound is a compound having a structure represented by the following formula (1) and an aromatic ring: 2. The method according to claim 1, wherein the nitrogen-based organic compound is a compound having an aromatic ring or a hetero ring.
Item 5. A resin-sealed semiconductor device according to any one of Items 2, 3 and 4.
【請求項6】半導体素子を樹脂組成物で封止した半導体
装置において、該樹脂組成物が臭素系有機化合物,リン
系有機化合物及び窒素系有機化合物の中の少なくとも1
種類からなる有機化合物並びにホウ酸金属塩を含有し、
かつ有機化合物の臭素,リン及び窒素の少なくとも1種
類の元素含有量が上記ホウ酸金属塩及び無機充填剤を除
く全樹脂量に対して0.35 〜10重量%、ホウ酸金属
塩が全樹脂組成物に対して1.5 〜15重量%の範囲に
あるエポキシ樹脂組成物であることを特徴とする樹脂封
止型半導体装置。
6. A semiconductor device in which a semiconductor element is sealed with a resin composition, wherein the resin composition is at least one of a bromine organic compound, a phosphorus organic compound and a nitrogen organic compound.
Containing organic compounds and metal borate salts consisting of
And the content of at least one element of bromine, phosphorus and nitrogen of the organic compound is 0.35 to 10% by weight based on the total amount of the resin excluding the above-mentioned metal borate and the inorganic filler; A resin-encapsulated semiconductor device, which is an epoxy resin composition in an amount of 1.5 to 15% by weight based on the composition.
【請求項7】半導体素子を樹脂組成物で封止した半導体
装置において、該樹脂組成物が臭素系有機化合物,リン
系有機化合物及び窒素系有機化合物の中の少なくとも1
種類からなる有機化合物並びにホウ酸金属塩を含有し、
かつ有機化合物の臭素,リン及び窒素の少なくとも1種
類の元素含有量が上記ホウ酸金属塩及び無機充填剤を除
く全樹脂量に対して0.4 〜7重量%、ホウ酸金属塩が
全樹脂組成物に対して1.5 〜15重量%の範囲にある
エポキシ樹脂組成物であることを特徴とする樹脂封止型
半導体装置。
7. A semiconductor device in which a semiconductor element is sealed with a resin composition, wherein the resin composition is at least one of a bromine organic compound, a phosphorus organic compound and a nitrogen organic compound.
Containing organic compounds and metal borate salts consisting of
And the content of at least one element of bromine, phosphorus and nitrogen of the organic compound is 0.4 to 7% by weight based on the total amount of the resin except for the above-mentioned metal borate and the inorganic filler; A resin-encapsulated semiconductor device, which is an epoxy resin composition in an amount of 1.5 to 15% by weight based on the composition.
【請求項8】リードフレームのダイパッド上に搭載され
た半導体素子が金ワイヤで接合され、該半導体素子が臭
素系有機化合物,リン系有機化合物及び窒素系有機化合
物の中の少なくとも1種類からなる有機化合物並びにホ
ウ酸金属塩を含有し、その樹脂組成物の加熱硬化物の線
膨張係数が0.6〜2.5×10-5、ガラス転移温度が1
10℃以上、飽和吸湿率が85℃85%RHの条件で
0.8wt% 以下及び難燃性がUL−94規格のV−0
の特性を有する樹脂組成物で一体樹脂モールド成形によ
って封止されたことを特徴とする樹脂封止型半導体装
置。
8. A semiconductor element mounted on a die pad of a lead frame is joined by a gold wire, and the semiconductor element is made of at least one of a bromine organic compound, a phosphorus organic compound and a nitrogen organic compound. It contains a compound and a metal borate, and has a linear expansion coefficient of 0.6 to 2.5 × 10 -5 and a glass transition temperature of 1 when a heat-cured product of the resin composition is obtained.
10 wt% or more, saturated moisture absorption rate is 0.8 wt% or less under the condition of 85 ° C and 85% RH, and the flame retardancy is V-0 of UL-94 standard.
A resin-encapsulated semiconductor device which is encapsulated with a resin composition having the following characteristics by integral resin molding.
【請求項9】半導体素子の上に有機フィルム接着剤また
は無機の接合材を用いてリードフレームを搭載し、半導
体素子上の電極をリードフレームと金ワイヤで接合した
後、臭素系有機化合物,リン系有機化合物及び窒素系有
機化合物の中の少なくとも1種類からなる有機化合物並
びにホウ酸金属塩を含有し、その樹脂組成物の加熱硬化
物の線膨張係数が0.6〜2.5×10-5、ガラス転移温
度が110℃以上、飽和吸湿率が85℃85%RHの条
件で0.8wt% 以下及び難燃性がUL−94規格のV
−0の特性を有する樹脂組成物で一体モールド樹脂成形
によって封止されたことを特徴とするリードオンチップ
方式の半導体装置。
9. A lead frame is mounted on a semiconductor element using an organic film adhesive or an inorganic bonding material, and an electrode on the semiconductor element is joined to the lead frame by a gold wire. Containing at least one kind of organic compounds and nitrogen-based organic compounds and a metal borate, and having a linear expansion coefficient of 0.6 to 2.5 × 10 of a heat-cured product of the resin composition. 5. The glass transition temperature is 110 ° C or higher, the saturated moisture absorption is 0.8% by weight or less at 85 ° C and 85% RH, and the flame retardancy is UL-94 standard V.
A lead-on-chip type semiconductor device, which is sealed with a resin composition having a characteristic of −0 by integral molding resin molding.
【請求項10】回路パターンを有する樹脂基板の上面に
半導体素子を実装するとともに、樹脂基板の底面に外部
接続端子を設けてなる半導体装置において、前記半導体
素子を臭素系有機化合物,リン系有機化合物及び窒素系
有機化合物の中の少なくとも1種類からなる有機化合物
並びにホウ酸金属塩を含有し、その樹脂組成物の加熱硬
化物の線膨張係数が0.6〜2.5×10-5、ガラス転移
温度が110℃以上、飽和吸湿率が85℃85%RHの
条件で0.8wt% 以下及び難燃性がUL−94規格の
V−0の特性を有する樹脂組成物で一体モールド樹脂成
形によって封止されたことを特徴とするボールグリッド
アレイまたはピングリッドアレイ樹脂封止型半導体装
置。
10. A semiconductor device having a semiconductor element mounted on an upper surface of a resin substrate having a circuit pattern and an external connection terminal provided on a lower surface of the resin substrate, wherein the semiconductor element is formed of a bromine-based organic compound or a phosphorus-based organic compound. And a resin containing at least one organic compound selected from the group consisting of nitrogen and nitrogen-based organic compounds, and a metal borate, wherein the resin composition has a heat-cured product having a linear expansion coefficient of 0.6 to 2.5 × 10 −5 , glass A resin composition having a transition temperature of 110 ° C. or more, a saturated moisture absorption of 0.8% by weight or less under conditions of 85 ° C. and 85% RH, and a flame retardancy of V-0 of UL-94 standard by integral molding resin molding. A ball grid array or a pin grid array resin-sealed semiconductor device characterized by being sealed.
【請求項11】回路パターンを有する配線フィルムの上
面に半導体素子を実装するとともに、樹脂基板の底面に
外部接続端子を設けてなる半導体装置において、前記半
導体素子を臭素系有機化合物,リン系有機化合物及び窒
素系有機化合物の中の少なくとも1種類からなる有機化
合物並びにホウ酸金属塩を含有し、その樹脂組成物の加
熱硬化物の線膨張係数が0.6〜2.5×10-5、ガラス
転移温度が110℃以上、飽和吸湿率が85℃85%R
Hの条件で0.8wt% 以下及び難燃性がUL−94規
格のV−0の特性を有する樹脂組成物で一体モールド樹
脂成形によって封止されたことを特徴とするボールグリ
ッドアレイまたはチップサイズ樹脂封止型半導体装置。
11. A semiconductor device having a semiconductor element mounted on an upper surface of a wiring film having a circuit pattern and an external connection terminal provided on a bottom surface of a resin substrate, wherein the semiconductor element is formed of a bromine-based organic compound or a phosphorus-based organic compound. And a resin containing at least one organic compound selected from the group consisting of nitrogen and nitrogen-based organic compounds, and a metal borate, wherein the resin composition has a heat-cured product having a linear expansion coefficient of 0.6 to 2.5 × 10 −5 , glass Transition temperature is 110 ℃ or more, saturated moisture absorption is 85 ℃ 85% R
A ball grid array or chip size, which is sealed by integral molding resin molding with a resin composition having a property of 0.8 wt% or less and flame retardancy of V-0 of UL-94 standard under the condition of H Resin-sealed semiconductor device.
【請求項12】リードフレーム,回路パターンを有する
樹脂基板、または回路パターンを有する配線フィルムの
上面に半導体素子を搭載し、半導体素子の電極を金ワイ
ヤ,TABリード、または金属バンプを用いて該リード
フレーム、樹脂基板の配線パッド、または配線フィルム
のパッドへ接合した後、臭素系有機化合物,リン系有機
化合物及び窒素系有機化合物の中の少なくとも1種類か
らなる有機化合物並びにホウ酸金属塩を含有し、その樹
脂組成物の加熱硬化物の線膨張係数が0.6 〜2.5×
10-5 、ガラス転移温度が110℃以上、飽和吸湿率
が85℃85%RHの条件で0.8wt% 以下及び難燃
性がUL−94規格のV−0の特性を有するエポキシ樹
脂組成物で一体モールド樹脂成形によって封止されたこ
とを特徴とする半導体装置の製造方法。
12. A semiconductor element is mounted on an upper surface of a lead frame, a resin substrate having a circuit pattern, or a wiring film having a circuit pattern, and the electrodes of the semiconductor element are formed using gold wires, TAB leads, or metal bumps. After bonding to a wiring pad of a frame, a resin substrate, or a pad of a wiring film, it contains an organic compound composed of at least one of a bromine organic compound, a phosphorus organic compound and a nitrogen organic compound, and a metal borate. The coefficient of linear expansion of the heat-cured product of the resin composition is 0.6 to 2.5 ×.
10-5 , epoxy resin composition having a glass transition temperature of 110 ° C. or more, a saturated moisture absorption of 0.8 wt% or less under conditions of 85 ° C. and 85% RH, and a flame retardancy of V-0 of UL-94 standard. Wherein the semiconductor device is sealed by integral molding resin molding.
JP22598797A 1996-08-22 1997-08-22 Resin-sealed semiconductor device and method of manufacturing the same Expired - Fee Related JP3440775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22598797A JP3440775B2 (en) 1996-08-22 1997-08-22 Resin-sealed semiconductor device and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-220991 1996-08-22
JP22099196 1996-08-22
JP22598797A JP3440775B2 (en) 1996-08-22 1997-08-22 Resin-sealed semiconductor device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10114853A true JPH10114853A (en) 1998-05-06
JP3440775B2 JP3440775B2 (en) 2003-08-25

Family

ID=26524014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22598797A Expired - Fee Related JP3440775B2 (en) 1996-08-22 1997-08-22 Resin-sealed semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3440775B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302883A (en) * 2000-04-21 2001-10-31 Toshiba Chem Corp Sealing resin composition and sealed electronic component device
JP2003516455A (en) * 1999-12-13 2003-05-13 ダウ グローバル テクノロジーズ インコーポレイティド Flame retardant phosphorus element-containing epoxy resin composition
WO2004090033A1 (en) * 2003-04-07 2004-10-21 Hitachi Chemical Co., Ltd. Epoxy resin molding material for sealing use and semiconductor device
JP2004307650A (en) * 2003-04-07 2004-11-04 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and semiconductor device
JP2004307645A (en) * 2003-04-07 2004-11-04 Hitachi Chem Co Ltd Sealing epoxy resin molding compound and semiconductor device
JP2004307649A (en) * 2003-04-07 2004-11-04 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and semiconductor device
JP2004307646A (en) * 2003-04-07 2004-11-04 Hitachi Chem Co Ltd Sealing epoxy resin molding compound and semiconductor device
US7345421B2 (en) 2003-09-30 2008-03-18 Sanyo Electric Co., Ltd. Organic electroluminescent device having a high pH adhesive layer
JPWO2018003691A1 (en) * 2016-06-28 2019-04-18 東レ株式会社 Epoxy resin composition, prepreg and fiber reinforced composite material

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003516455A (en) * 1999-12-13 2003-05-13 ダウ グローバル テクノロジーズ インコーポレイティド Flame retardant phosphorus element-containing epoxy resin composition
JP2012197441A (en) * 1999-12-13 2012-10-18 Dow Global Technologies Llc Flame retardant phosphorus element-containing epoxy resin compositions
JP2001302883A (en) * 2000-04-21 2001-10-31 Toshiba Chem Corp Sealing resin composition and sealed electronic component device
WO2004090033A1 (en) * 2003-04-07 2004-10-21 Hitachi Chemical Co., Ltd. Epoxy resin molding material for sealing use and semiconductor device
JP2004307650A (en) * 2003-04-07 2004-11-04 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and semiconductor device
JP2004307645A (en) * 2003-04-07 2004-11-04 Hitachi Chem Co Ltd Sealing epoxy resin molding compound and semiconductor device
JP2004307649A (en) * 2003-04-07 2004-11-04 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and semiconductor device
JP2004307646A (en) * 2003-04-07 2004-11-04 Hitachi Chem Co Ltd Sealing epoxy resin molding compound and semiconductor device
US7397139B2 (en) 2003-04-07 2008-07-08 Hitachi Chemical Co., Ltd. Epoxy resin molding material for sealing use and semiconductor device
US7345421B2 (en) 2003-09-30 2008-03-18 Sanyo Electric Co., Ltd. Organic electroluminescent device having a high pH adhesive layer
KR101128214B1 (en) * 2003-09-30 2012-03-23 산요덴키가부시키가이샤 Organic Electroluminescent Device and Fabrication Method Thereof
JPWO2018003691A1 (en) * 2016-06-28 2019-04-18 東レ株式会社 Epoxy resin composition, prepreg and fiber reinforced composite material

Also Published As

Publication number Publication date
JP3440775B2 (en) 2003-08-25

Similar Documents

Publication Publication Date Title
KR100520793B1 (en) Resin-encapsulated semiconductor device and manufacturing method thereof
TWI388620B (en) Epoxy resin composition for encapsulating semiconductors, and semiconductor device
JP5028756B2 (en) Semiconductor sealing resin composition and semiconductor device
WO1998028788A1 (en) Manufacture of semiconductor device
WO2006059542A1 (en) Epoxy resin composition and semiconductor devices
JPH08188638A (en) Resin-sealed semiconductor device and its production
JP4569137B2 (en) Semiconductor sealing resin composition and semiconductor device
JP3440775B2 (en) Resin-sealed semiconductor device and method of manufacturing the same
JP7126186B2 (en) Resin composition for encapsulation, cured product thereof, and semiconductor device
JP4867339B2 (en) Epoxy resin composition and semiconductor device
JP2002212264A (en) Epoxy resin composition for sealing of semiconductor and semiconductor device using the same
JP4984474B2 (en) Epoxy resin composition and semiconductor device
JP2008045075A (en) Epoxy resin composition for sealing and electronic component device
JP3811154B2 (en) Resin composition for sealing and resin-sealed semiconductor device
JP3390335B2 (en) Semiconductor device
JP5098125B2 (en) Epoxy resin composition and semiconductor device
JP2002179773A (en) Epoxy resin composition and semiconductor device
JPH11335527A (en) Epoxy resin composition for semiconductor sealing
JP2816290B2 (en) Resin-sealed semiconductor device
JPH11100491A (en) Epoxy resin composition and semiconductor device
JP2009256475A (en) Epoxy resin composition for sealing semiconductor and semiconductor device using the same
JP4524837B2 (en) Epoxy resin composition and semiconductor device
JP2004091533A (en) Epoxy resin composition and semiconductor device
JP4743932B2 (en) Epoxy resin composition and semiconductor device
JP2002179882A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees