JPH11100491A - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device

Info

Publication number
JPH11100491A
JPH11100491A JP26395497A JP26395497A JPH11100491A JP H11100491 A JPH11100491 A JP H11100491A JP 26395497 A JP26395497 A JP 26395497A JP 26395497 A JP26395497 A JP 26395497A JP H11100491 A JPH11100491 A JP H11100491A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
formulas
embedded image
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26395497A
Other languages
Japanese (ja)
Inventor
Shigehisa Ueda
茂久 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP26395497A priority Critical patent/JPH11100491A/en
Publication of JPH11100491A publication Critical patent/JPH11100491A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an epoxy resin composition slight in warpage when subjected to soldering treatment after molded in an area mount package, excellent in adhesion to substrate and storability at high temperatures, by including an epoxy resin, a phenolic resin curing agent, a curing promoter, fused silica powder, and Sb2 O4 or the like. SOLUTION: This epoxy resin composition is obtained by including (A) a total epoxy resin containing pref. 20-90 wt.% of a polyfunctional epoxy resin of formula I (R is a halogen or a 1-12C alkyl; (1) is 1-10; (m) is 0-3; (n) is 0-4) or the like and/or pref. >=20 wt.% of a crystalline epoxy resin of formula II (R is H, a 1-12C alkyl or the like) with a melting point of 50-150 deg.C, (B) a phenolic resin curing agent of formula III, (C) a curing promoter, (D) fused silica powder, and (E) Sb2 O4 or Sb2 O5 .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は成形性、信頼性、実
装性に優れた樹脂封止型半導体装置に関し、更に詳述す
ればプリント配線板や金属リードフレームの片面に半導
体素子を搭載し、その搭載面側の実質的に片面のみを樹
脂封止されたいわゆるエリア実装型半導体装置におい
て、樹脂封止後の反りや基板実装時の半田付け工程での
反りが小さく、また温度サイクル試験での耐パッケージ
クラック性や半田付け工程での耐パッケージクラック性
や耐剥離性に優れ、かつ高温保管性に優れた半導体封止
用エポキシ樹脂組成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin-encapsulated semiconductor device having excellent moldability, reliability, and mountability. More specifically, a semiconductor device is mounted on one side of a printed wiring board or a metal lead frame. In a so-called area mounting type semiconductor device in which substantially only one of its mounting surfaces is resin-sealed, the warpage after resin sealing and the warping in the soldering process at the time of board mounting are small, and in a temperature cycle test. The present invention relates to an epoxy resin composition for semiconductor encapsulation which is excellent in package crack resistance, package crack resistance and peeling resistance in a soldering step, and excellent in high-temperature storage property.

【0002】[0002]

【従来の技術】近年の電子機器の小型化、軽量化、高性
能化の市場動向において、半導体の高集積化が年々進
み、又半導体パッケージの表面実装化が促進されるなか
で、新規にエリア実装のパッケージが開発され、従来構
造のパッケージから移行し始めている。エリア実装パッ
ケージとしてはBGA(ボールグリッドアレイ)あるい
は更に小型化を追求したCSP(チップサイズパッケー
ジ)が代表的であるが、これらは従来QFP、SOPに
代表される表面実装パッケージでは限界に近づいている
多ピン化・高速化・マルチチップ化への要求に対応する
ために開発されたものである。構造としては、BT樹脂
/銅箔回路基板(ビスマレイミド・トリアジン/ガラス
クロス基板)に代表される硬質回路基板、あるいはポリ
イミド樹脂フィルム/銅箔回路基板に代表されるフレキ
シブル回路基板の片面上に半導体素子を搭載し、その素
子搭載面、即ち基板の片面のみがエポキシ樹脂組成物な
どで成形・封止されている。また、基板の素子搭載面の
反対面には半田ボールを2次元的に並列して形成し、パ
ッケージを実装する回路基板との接合を行う特徴を有し
ている。更に、素子を搭載する基板としては、上記有機
回路基板以外にもリードフレーム等の金属基板を用いる
構造も考案されている。
2. Description of the Related Art In recent years, in the market trend of miniaturization, weight reduction, and high performance of electronic equipment, high integration of semiconductors has been progressing year by year, and surface mounting of semiconductor packages has been promoted. Packaging packages have been developed and are beginning to move away from packages with traditional structures. Typical area mounting packages are BGA (ball grid array) or CSP (chip size package) pursuing further miniaturization, but these are approaching the limit in conventional surface mounting packages such as QFP and SOP. It was developed to meet the demands for multi-pin, high-speed, multi-chip. The structure is as follows: a rigid circuit board represented by a BT resin / copper foil circuit board (bismaleimide / triazine / glass cloth board) or a flexible circuit board represented by a polyimide resin film / copper foil circuit board; An element is mounted, and only the element mounting surface, that is, one side of the substrate is molded and sealed with an epoxy resin composition or the like. In addition, a solder ball is formed two-dimensionally in parallel on the surface opposite to the element mounting surface of the substrate, and has a feature of joining with a circuit board on which a package is mounted. Further, a structure using a metal substrate such as a lead frame other than the organic circuit substrate has been devised as a substrate on which the element is mounted.

【0003】これらエリア実装型半導体パッケージの構
造は基板の素子搭載面のみを樹脂組成物で封止し、半田
ボール形成面側は封止しないという片面封止の形態をと
っている。ごく希に、リードフレーム等の金属基板など
では、半田ボール形成面でも数十μm程度の封止樹脂層
が存在することもあるが、素子搭載面では数百μmから
数mm程度の封止樹脂層が形成されるため、実質的に片
面封止となっている。このため、有機基板や金属基板と
樹脂組成物の硬化物との間での熱膨張・熱収縮の不整
合、あるいは樹脂組成物の成形・硬化時の硬化収縮によ
る影響により、これらのパッケージでは成形直後から反
りが発生しやすい。また、これらのパッケージを実装す
る回路基板上に半田接合を行う場合、200℃以上の加
熱工程を経るが、この際にパッケージの反りが発生し、
多数の半田ボールが平坦とならず、パッケージを実装す
る回路基板から浮き上がってしまい、電気的接合信頼性
が低下する問題も起こる。基板上の実質的に片面のみを
樹脂組成物で封止したパッケージにおいて、反りを低減
するには、基板の線膨張係数と樹脂組成物の硬化物の線
膨張係数を近付けること、及び樹脂組成物の硬化収縮を
小さくする二つの方法が重要である。基板としては有機
基板ではBT樹脂やポリイミド樹脂のような高ガラス転
移温度の樹脂が広く用いられており、これらはエポキシ
樹脂組成物の成形温度である170℃近辺よりも高いガ
ラス転移温度を有する。従って、成形温度から室温まで
の冷却過程では有機基板のα1 の領域のみで収縮する。
従って、樹脂組成物もガラス転移温度が高くかつα1
回路基板と同じであり、さらに硬化収縮がゼロであれば
反りはほぼゼロであると考えられる。このため、多官能
型エポキシ樹脂と多官能型フェノール樹脂との組み合わ
せによりガラス転移温度を高くし、無機質充填材の配合
量でα1 を合わせる手法が既に提案されている。
[0003] The structure of these area mounting type semiconductor packages adopts a single-sided sealing form in which only the element mounting surface of the substrate is sealed with a resin composition and the solder ball forming surface is not sealed. Very rarely, on a metal substrate such as a lead frame, a sealing resin layer of about several tens of μm may exist even on the solder ball forming surface, but a sealing resin layer of several hundred μm to several mm on the element mounting surface. Since the layer is formed, one-sided sealing is substantially achieved. For this reason, due to the mismatch of thermal expansion and thermal contraction between the organic substrate or metal substrate and the cured product of the resin composition, or the effect of curing shrinkage during molding and curing of the resin composition, these packages cannot be molded. Warpage tends to occur immediately after. In addition, when soldering is performed on a circuit board on which these packages are mounted, a heating step of 200 ° C. or more is performed. At this time, package warpage occurs.
A large number of solder balls are not flattened and rise from the circuit board on which the package is mounted, which causes a problem that electrical connection reliability is reduced. In a package in which substantially only one surface on a substrate is sealed with a resin composition, in order to reduce warpage, the linear expansion coefficient of the substrate and the linear expansion coefficient of a cured product of the resin composition are brought close to each other, and the resin composition There are two important ways to reduce the cure shrinkage. As the substrate, in the case of an organic substrate, a resin having a high glass transition temperature such as a BT resin or a polyimide resin is widely used, and these have a glass transition temperature higher than around 170 ° C. which is a molding temperature of the epoxy resin composition. Accordingly, in the cooling process from the molding temperature to room contracts only alpha 1 region of the organic substrate.
Therefore, the resin composition is also the same as high and alpha 1 is a circuit board glass transition temperature, warpage is considered to be substantially zero when further curing shrinkage is zero. Therefore, the glass transition temperature higher by a combination of a polyfunctional epoxy resin and a polyfunctional phenol resin, methods to adjust the alpha 1 in the amount of the inorganic filler has been proposed.

【0004】また、赤外線リフロー、ベーパーフェイズ
ソルダリング、半田浸漬などの手段での半田処理による
半田接合を行う場合、樹脂組成物の硬化物並びに有機基
板からの吸湿によりパッケージ内部に存在する水分が高
温で急激に気化することによる応力でパッケージにクラ
ックが発生したり、基板の素子搭載面と樹脂組成物の硬
化物との界面で剥離が発生することもあり、硬化物の低
応力化・低吸湿化とともに、基板との密着性も求められ
る。さらに、基板と硬化物の熱膨張係数の不整合によ
り、信頼性テストの代表例である温度サイクル試験で
も、基板/硬化物界面の剥離やパッケージクラックが発
生する。従来のQFPやSOPなどの表面実装パッケー
ジでは、半田実装時のクラックや各素材界面での剥離の
防止のために、ビフェニル型エポキシ樹脂に代表される
ような結晶性エポキシ樹脂と可撓性骨格を有するフェノ
ール樹脂硬化剤とを組み合わせて用い、かつ無機質充填
材の配合量を増加することにより、低ガラス転移温度化
かつ低吸湿化を行う対策がとられてきた。しかし、この
手法では、片面封止パッケージにおける反りの問題は解
決できないのが現状であった。
Further, when soldering is performed by soldering by means such as infrared reflow, vapor phase soldering, or solder immersion, moisture present inside the package due to moisture absorption from the cured product of the resin composition and the organic substrate is high. Cracks in the package due to stress caused by rapid vaporization in the package, and peeling at the interface between the device mounting surface of the substrate and the cured product of the resin composition, resulting in a low stress and low moisture absorption of the cured product. With the development, the adhesion to the substrate is also required. Furthermore, due to the mismatch between the thermal expansion coefficient of the substrate and the cured product, peeling of the substrate / cured product interface and package cracking occur even in a temperature cycle test, which is a typical example of a reliability test. Conventional surface mount packages such as QFP and SOP use a crystalline epoxy resin typified by a biphenyl-type epoxy resin and a flexible skeleton to prevent cracks at the time of solder mounting and peeling at each material interface. By using a phenolic resin curing agent in combination and increasing the blending amount of an inorganic filler, measures have been taken to lower the glass transition temperature and lower the moisture absorption. However, at present, this method cannot solve the problem of warpage in a single-sided sealed package.

【0005】[0005]

【発明が解決しようとする課題】本発明は、エリア実装
パッケージでの成形後や半田処理時の反りが小さく、ま
た基板との接着性に特に優れるため温度サイクル試験や
半田処理時などの信頼性、に優れ、さらに高温保管性に
も優れた半導体封止用エポキシ樹脂組成物の開発を目的
としてなされたものである。
DISCLOSURE OF THE INVENTION The present invention has low warpage after molding in an area mounting package or during soldering, and has particularly excellent adhesion to a substrate, so that reliability in a temperature cycle test, soldering, etc. The present invention has been made for the purpose of developing an epoxy resin composition for semiconductor encapsulation which is excellent in heat resistance and high-temperature storage property.

【0006】[0006]

【課題を解決するための手段】本発明は(A)一般式
(2)、(3)で示される多官能エポキシ樹脂及び/又
は式(4)〜(8)で示され、かつ融点が50〜150
℃の結晶性エポキシ樹脂の群から選択される少なくとも
一つのエポキシ樹脂であり、特に好ましくは式(2)、
(3)で示される多官能エポキシ樹脂を総エポキシ樹脂
中に20〜90重量%含み、かつ式(4)〜(8)で示
される結晶性エポキシ樹脂を総エポキシ樹脂中に20重
量%以上を含むことを特徴とするエポキシ樹脂、(B)
一般式(1)で示されるフェノール樹脂硬化剤、(C)
硬化促進剤、(D)溶融シリカ粉末、及び(E)Sb2
4あるいはSb25からなることを特徴とする半導体
封止用エポキシ樹脂組成物についてである。また、基板
の片面に半導体素子が搭載され、この半導体素子が搭載
された基板面側の実質的に片面のみがこれらのエポキシ
樹脂組成物によって封止されていることを特徴とする半
導体装置である。
The present invention relates to (A) a polyfunctional epoxy resin represented by the general formulas (2) and (3) and / or a polyfunctional epoxy resin represented by the formulas (4) to (8) and having a melting point of 50: ~ 150
C. is at least one epoxy resin selected from the group of crystalline epoxy resins at a temperature of 0 ° C., particularly preferably of the formula (2)
20 to 90% by weight of the polyfunctional epoxy resin represented by (3) in the total epoxy resin, and 20% by weight or more of the crystalline epoxy resin represented by the formulas (4) to (8) in the total epoxy resin. Epoxy resin characterized by containing (B)
A phenolic resin curing agent represented by the general formula (1), (C)
Curing accelerator, (D) fused silica powder, and (E) Sb 2
The present invention relates to an epoxy resin composition for semiconductor encapsulation, which is made of O 4 or Sb 2 O 5 . Further, a semiconductor device is provided in which a semiconductor element is mounted on one surface of a substrate, and substantially only one surface on the substrate surface side on which the semiconductor element is mounted is sealed with these epoxy resin compositions. .

【0007】[0007]

【化5】 Embedded image

【0008】[0008]

【化6】 Embedded image

【0009】[0009]

【化7】 Embedded image

【0010】[0010]

【化8】 Embedded image

【0011】式(1)、(2)、(3)および(8)中
のRはハロゲン原子又は炭素数1〜12のアルキル基を
示し、互いに同一であっても、異なっていてもよい。l
は1〜10の正の整数、mは0もしくは1〜3の正の整
数、及びnは0もしくは1〜4の正の整数である。式
(4)〜(7)中のRは水素原子、ハロゲン原子又は炭
素数1〜12のアルキル基を示し、互いに同一であって
も、異なっていてもよい。
In the formulas (1), (2), (3) and (8), R represents a halogen atom or an alkyl group having 1 to 12 carbon atoms, which may be the same or different. l
Is a positive integer of 1 to 10, m is a positive integer of 0 or 1 to 3, and n is 0 or a positive integer of 1 to 4. R in the formulas (4) to (7) represents a hydrogen atom, a halogen atom or an alkyl group having 1 to 12 carbon atoms, and may be the same or different.

【0012】[0012]

【発明の実施の形態】以下に本発明を詳細に説明する。
本発明に用いられる式(2)で示される通常トリフェノ
ールメタン型エポキシ樹脂と総称される樹脂または式
(3)で示されるエポキシ樹脂は、式(1)のフェノー
ル樹脂硬化剤との組み合わせにより硬化物の架橋密度が
高く、高いガラス転移温度となり、また硬化収縮率が小
さい特徴を有するため、本エポキシ樹脂組成物の用途で
あるエリア実装半導体パッケージの封止では反りの低減
に効果的である。式(2)及び式(3)の具体例として
は以下のものが挙げられるが、これらに限定されるもの
ではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The resin generally referred to as a triphenolmethane epoxy resin represented by the formula (2) used in the present invention or the epoxy resin represented by the formula (3) is cured by a combination with a phenol resin curing agent represented by the formula (1). Since the epoxy resin composition has a high crosslink density, a high glass transition temperature, and a small curing shrinkage, it is effective in reducing warpage in sealing an area-mounted semiconductor package, which is a use of the present epoxy resin composition. Specific examples of the formulas (2) and (3) include the following, but are not limited thereto.

【0013】[0013]

【化9】 Embedded image

【0014】[0014]

【化10】 Embedded image

【0015】また、式(4)〜(8)で示され、かつ融
点が50〜150℃の結晶性エポキシ樹脂は、1分子中
にエポキシ基を2個有するジエポキシ化合物またはこれ
らのオリゴマーである。これらのエポキシ樹脂はいずれ
も結晶性を示すため、融点未満の温度では固体である
が、融点以上の温度で低粘度の液状物質となる。このた
めこれらを用いたエポキシ樹脂組成物は溶融状態で低粘
度を示すため成形時に樹脂組成物の流動性が高く、薄型
パッケージへの充填性に優れる。従って、溶融シリカ粉
末の配合量を増量して、得られるエポキシ樹脂組成物の
硬化物の吸湿率を低減し、耐半田リフロー性を向上させ
る手法をとるに際してはこれら結晶性エポキシ樹脂の使
用が好ましい。
The crystalline epoxy resin represented by the formulas (4) to (8) and having a melting point of 50 to 150 ° C. is a diepoxy compound having two epoxy groups in one molecule or an oligomer thereof. Since all of these epoxy resins show crystallinity, they are solid at a temperature lower than the melting point, but become a low-viscosity liquid material at a temperature higher than the melting point. For this reason, the epoxy resin composition using these has a low viscosity in a molten state, so that the fluidity of the resin composition at the time of molding is high, and the filling property into a thin package is excellent. Therefore, it is preferable to use these crystalline epoxy resins when increasing the amount of the fused silica powder to reduce the moisture absorption of the cured product of the obtained epoxy resin composition and improving the solder reflow resistance. .

【0016】これらの結晶性エポキシ樹脂は1分子中の
エポキシ基の数が2個からせいぜい数個と少なく、一般
的には架橋密度が低く、耐熱性の低い硬化物しか得られ
ない。しかし構造として剛直な平面ないし棒状骨格を有
しており、かつ結晶化する性質、即ち分子同士が配向し
やすいという特徴を有するため、一般式(1)で示され
る多官能型フェノール樹脂硬化剤と組み合わせて用いた
場合、硬化後ガラス転移温度などの耐熱性を低下させ難
い。このため、これら結晶性エポキシ樹脂と一般式
(1)で示されるフェノール樹脂硬化剤との組み合わせ
によるエポキシ樹脂組成物で封止された半導体パッケー
ジは反り量を小さくできる。さらに一旦ガラス転移温度
を越えた温度領域では低官能基数化合物の特徴である低
弾性率を示すため、半田処理温度での低応力化に効果的
である。このため、半田処理でのパッケージクラック発
生や基板と樹脂組成物界面の剥離発生を防止する効果が
ある。
In these crystalline epoxy resins, the number of epoxy groups in one molecule is as small as 2 to at most several, and in general, only a cured product having a low crosslinking density and low heat resistance can be obtained. However, since it has a rigid plane or rod-like skeleton as a structure and has the property of being crystallized, that is, the feature that molecules are easily oriented, the polyfunctional phenol resin curing agent represented by the general formula (1) is used. When used in combination, it is difficult to lower the heat resistance such as the glass transition temperature after curing. For this reason, the semiconductor package sealed with the epoxy resin composition by the combination of the crystalline epoxy resin and the phenol resin curing agent represented by the general formula (1) can reduce the amount of warpage. Further, in a temperature region once exceeding the glass transition temperature, the compound exhibits a low elasticity characteristic which is a characteristic of the compound having a low functional group, and thus is effective in reducing the stress at the solder processing temperature. This has the effect of preventing the occurrence of package cracks during the soldering process and the occurrence of separation at the interface between the substrate and the resin composition.

【0017】上記結晶性エポキシ樹脂は50℃未満の融
点では、エポキシ樹脂組成物の製造工程において融着を
起こしやすく、作業性が著しく低下する。また、150
℃を越える融点を示す結晶性エポキシ樹脂では、エポキ
シ樹脂組成物を加熱混練する製造工程で充分に溶融しな
いため、材料の均一性に劣るといった問題点を有する。
融点の測定方法は、示差走査熱量計[セイコー電子(株)
SSC520、昇温速度5℃/分]で吸熱ピーク温度か
ら求められる。以下にこれら結晶性エポキシ樹脂の具体
例を示すがこれらに限定されるものではない。
If the crystalline epoxy resin has a melting point of less than 50 ° C., it tends to fuse in the production process of the epoxy resin composition, and the workability is significantly reduced. Also, 150
A crystalline epoxy resin having a melting point exceeding ℃ has a problem that the uniformity of the material is inferior because the epoxy resin composition is not sufficiently melted in the production process of heating and kneading.
The melting point is measured by a differential scanning calorimeter [Seiko Electronics Co., Ltd.
SSC520, heating rate 5 ° C./min] from the endothermic peak temperature. Specific examples of these crystalline epoxy resins are shown below, but the invention is not limited thereto.

【0018】[0018]

【化11】 Embedded image

【0019】[0019]

【化12】 Embedded image

【0020】[0020]

【化13】 Embedded image

【0021】[0021]

【化14】 Embedded image

【0022】また、パッケージの反りの低減と成形時の
高流動化、及び実装時の耐半田性の両立という観点から
は上記一般式(2)、(3)で示される多官能エポキシ
樹脂を総エポキシ樹脂中に20〜90重量%含み、さら
に式(4)〜(8)で示され、かつ融点50〜150℃
の結晶性エポキシ樹脂を総エポキシ樹脂中に20重量%
以上を含むことが特に好ましい。更に本発明では、一般
式(2)〜(8)のエポキシ樹脂の特性を損なわない範
囲でオルソクレゾールノボラック型エポキシ樹脂、ナフ
タレン型エポキシ樹脂等の他のエポキシ樹脂を添加して
も構わない。
In addition, from the viewpoint of reducing package warpage, increasing fluidity during molding, and achieving solder resistance during mounting, the polyfunctional epoxy resins represented by the above general formulas (2) and (3) are all used. 20 to 90% by weight in the epoxy resin, further represented by the formulas (4) to (8), and having a melting point of 50 to 150 ° C.
20% by weight of crystalline epoxy resin in total epoxy resin
It is particularly preferable to include the above. Further, in the present invention, other epoxy resins such as an orthocresol novolak type epoxy resin and a naphthalene type epoxy resin may be added as long as the properties of the epoxy resins of the general formulas (2) to (8) are not impaired.

【0023】本発明で用いられる(B)成分の式(1)
で示されるフェノール樹脂硬化剤はいわゆるトリフェノ
ールメタン型フェノール樹脂と呼ばれるもので、具体例
を以下に示すがこれらに限定されるものではない。
The formula (1) of the component (B) used in the present invention
Is a so-called triphenolmethane-type phenolic resin, and specific examples are shown below, but are not limited thereto.

【化15】 Embedded image

【0024】これらフェノール樹脂を使用すると硬化物
の架橋密度が高くなり、高いガラス転移温度の硬化物が
得られる。このため、得られたエポキシ樹脂組成物によ
り封止されたパッケージの反りが低減できる。式(1)
のフェノール樹脂は他のフェノール樹脂と適宜併用可能
であり、特に限定されるものではないが、フェノールノ
ボラック樹脂、クレゾールノボラック樹脂、ナフトタレ
ン型ノボラック樹脂等が挙げられる。
When these phenolic resins are used, the crosslinked density of the cured product increases, and a cured product having a high glass transition temperature can be obtained. For this reason, the warpage of the package sealed with the obtained epoxy resin composition can be reduced. Equation (1)
The phenol resin can be used in combination with other phenol resins, and is not particularly limited. Examples thereof include a phenol novolak resin, a cresol novolak resin, and a naphthotalene type novolak resin.

【0025】本発明で用いられる(C)成分の硬化促進
剤としては、前記エポキシ樹脂とフェノール樹脂硬化剤
との架橋反応の触媒となり得るものを指し、具体的には
トリブチルアミン等のアミン系化合物、トリフェニルホ
スフィン、テトラフェニルホスフォニウム・テトラフェ
ニルボレート塩等の有機リン系化合物、2−メチルイミ
ダゾール等のイミダゾール化合物等が例示できるがこれ
らに限定されるものではない。これらの硬化促進剤は単
独であっても混合して用いても差し支えない。
The curing accelerator of the component (C) used in the present invention refers to those which can serve as a catalyst for a crosslinking reaction between the epoxy resin and the phenol resin curing agent, and specifically includes amine compounds such as tributylamine. And organic phosphorus compounds such as triphenylphosphine and tetraphenylphosphonium / tetraphenylborate, and imidazole compounds such as 2-methylimidazole, but are not limited thereto. These curing accelerators may be used alone or as a mixture.

【0026】本発明で用いられる(D)成分の溶融シリ
カ粉末は、破砕状、球状のいずれでも使用可能である
が、溶融シリカ粉末の配合量を高め、かつ樹脂組成物の
溶融粘度の上昇を抑えるためには、球状シリカを主に用
いる方が好ましい。更に球状シリカの配合量を高めるた
めには、球状シリカの粒度分布をより広くとるよう調整
することが望ましい。
The fused silica powder of the component (D) used in the present invention can be used in any of a crushed form and a spherical form. However, the amount of the fused silica powder is increased, and the melt viscosity of the resin composition is increased. In order to suppress this, it is preferable to mainly use spherical silica. In order to further increase the content of the spherical silica, it is desirable to adjust the particle size distribution of the spherical silica to be wider.

【0027】本発明で用いられる(E)成分のSb
24、Sb25は難燃化が達成されればどちらを用いて
も差し支えない。これらの酸化アンチモンは臭素化エポ
キシと組み合わせることにより難燃性が高められるため
臭素化エポキシ樹脂を併用することが望ましい。
Sb of component (E) used in the present invention
Either 2 O 4 or Sb 2 O 5 may be used as long as flame retardancy is achieved. Since the flame retardancy of these antimony oxides is enhanced by combining them with a brominated epoxy resin, it is desirable to use a brominated epoxy resin in combination.

【0028】本発明の樹脂組成物は、(A)〜(E)ま
での必須成分以外にも必要に応じて臭素化エポキシ樹脂
等の難燃剤、カップリング剤、カーボンブラックに代表
される着色剤、天然ワックス及び合成ワックス等の離型
剤等が適宜配合可能である。樹脂組成物とするには各成
分を混合後、加熱ニーダや熱ロールにより加熱混練し、
続いて冷却、粉砕することで目的とする樹脂組成物が得
られる。本発明のエポキシ樹脂組成物を用いて、半導体
等の電子部品を封止し、半導体装置を製造するには、ト
ランスファーモールド、コンプレッションモールド、イ
ンジェクションモールド等の従来からの成形方法で硬化
成形をすればよい。
In addition to the essential components (A) to (E), the resin composition of the present invention may contain, if necessary, a flame retardant such as a brominated epoxy resin, a coupling agent, and a coloring agent represented by carbon black. A release agent such as natural wax and synthetic wax can be appropriately compounded. After mixing each component to make a resin composition, heat kneading with a heating kneader or a hot roll,
Subsequently, the desired resin composition is obtained by cooling and pulverizing. Using the epoxy resin composition of the present invention to encapsulate electronic components such as semiconductors and manufacture semiconductor devices, transfer molding, compression molding, and injection molding can be performed by conventional molding methods such as injection molding. Good.

【0029】[0029]

【実施例】以下、本発明を実施例で具体的に説明する。 《実施例1》 ・式(9)の構造を主成分とするエポキシ樹脂 [油化シェルエポキシ(株)製、商品名エピコート1032H、軟化点60℃、 エポキシ当量170] 3.8重量部 ・式(10)の構造を主成分とするビフェニル型エポキシ樹脂 [油化シェルエポキシ(株)製、商品名YX−4000H、融点105℃、エポ キシ当量195] 3.8重量部 ・式(11)で示されるフェノール樹脂 [明和化成(株)製、商品名MEH−7500、軟化点107℃、水酸基当量9 7] 4.4重量部 ・トリフェニルホスフィン 0.2重量部 ・球状溶融シリカ 85.0重量部 ・Sb24 1.0重量部 ・臭素化エポキシ樹脂 1.0重量部 [日本化薬(株)製、商品名BREN、エポキシ当量285] ・カルナバワックス 0.5重量部 ・カーボンブラック 0.3重量部 上記の全成分をミキサーにより混合した後、表面温度が
90℃と45℃の2本ロールを用いて30回混練し、得
られた混練物シートを冷却後粉砕して、樹脂組成物とし
た。得られた樹脂組成物の特性を以下の方法で評価をし
た。評価結果を表1に示す。
The present invention will be specifically described below with reference to examples. << Example 1 >> An epoxy resin having a structure represented by the formula (9) as a main component [trade name: Epicoat 1032H, manufactured by Yuka Shell Epoxy Co., Ltd., softening point 60 ° C, epoxy equivalent 170] 3.8 parts by weight Biphenyl-type epoxy resin having the structure of (10) as a main component [YX-4000H, manufactured by Yuka Shell Epoxy Co., Ltd., melting point 105 ° C, epoxy equivalent 195] 3.8 parts by weight ・ Formula (11) The indicated phenolic resin [MEH-7500, trade name, manufactured by Meiwa Kasei Co., Ltd., softening point 107 ° C, hydroxyl equivalent 97] 4.4 parts by weight ・ 0.2 parts by weight of triphenylphosphine ・ 85.0 parts by weight of spherical fused silica part-Sb 2 O 4 1.0 parts by weight brominated epoxy resin 1.0 parts by Nippon Kayaku Co., Ltd., trade name BREN, epoxy equivalent 285] carnauba wax 0.5 parts by weight carbon black H 0.3 parts by weight After the above components are mixed by a mixer, the mixture is kneaded 30 times using two rolls having a surface temperature of 90 ° C. and 45 ° C., and the obtained kneaded material sheet is cooled and pulverized. A resin composition was obtained. The properties of the obtained resin composition were evaluated by the following methods. Table 1 shows the evaluation results.

【0030】[0030]

【化16】 Embedded image

【0031】《実施例2〜9及び比較例1〜2》実施例
1を基本配合として、式(9)及び(10)のエポキシ
樹脂及び式(11)のフェノール樹脂の種類並びにそれ
らの配合量を変えて、その他は基本配合と同じ割合で各
成分を配合し、実施例1と同様に混合、混練して樹脂組
成物を得た。実施例1と同様に評価を行った。配合処方
及び評価結果を表1に示す。 《比較例3》実施例1を基本配合として、酸化アンチモ
ンをSb23に変えて配合し、実施例1と同様に混合、
混練して樹脂組成物を得た。実施例1と同様に評価を行
った。配合処方及び評価結果を表1に示す。
<< Examples 2 to 9 and Comparative Examples 1 and 2 >> Based on Example 1, the types of the epoxy resins of the formulas (9) and (10) and the phenolic resin of the formula (11) and the amounts thereof are shown. The other components were blended in the same proportions as in the basic blending, and mixed and kneaded in the same manner as in Example 1 to obtain a resin composition. Evaluation was performed in the same manner as in Example 1. Table 1 shows the formulation and evaluation results. << Comparative Example 3 >> Based on Example 1, the antimony oxide was replaced with Sb 2 O 3 and mixed.
The mixture was kneaded to obtain a resin composition. Evaluation was performed in the same manner as in Example 1. Table 1 shows the formulation and evaluation results.

【0032】上記実施例及び比較例で使用した式(1
2)〜(16)のエポキシ樹脂、式(17)、(18)
のフェノール樹脂の構造及び性状を以下に示す。
The formula (1) used in the above Examples and Comparative Examples
2) epoxy resins of formulas (17) and (18)
The structure and properties of the phenolic resin are shown below.

【化17】 Embedded image

【0033】[0033]

【化18】 Embedded image

【0034】[0034]

【化19】 Embedded image

【0035】 ・式(12)の構造を主成分とするエポキシ樹脂: 融点144℃、エポキシ当量175 ・式(13)の構造を主成分とするエポキシ樹脂: 融点103℃、エポキシ当量225 ・式(14)の構造を主成分とするエポキシ樹脂: 融点133℃、エポキシ当量182 ・式(15)の構造を主成分とするエポキシ樹脂: 融点 82℃、エポキシ当量190 ・式(16)の構造を主成分とするエポキシ樹脂: 軟化点65℃、エポキシ当量210 ・式(17)のフェノール樹脂: 軟化点80℃、水酸基当量104 ・式(18)のフェノール樹脂: 軟化点72℃、水酸基当量171An epoxy resin having a structure of the formula (12) as a main component: a melting point of 144 ° C. and an epoxy equivalent of 175. An epoxy resin having a structure of the formula (13) as a main component: a melting point of 103 ° C. and an epoxy equivalent of 225. Epoxy resin having a structure of 14) as a main component: melting point 133 ° C., epoxy equivalent 182 ・ Epoxy resin having a structure of formula (15) as a main component: melting point 82 ° C., epoxy equivalent 190 ・ mainly a structure of formula (16) Epoxy resin as a component: Softening point 65 ° C, epoxy equivalent 210 ・ Phenolic resin of formula (17): Softening point 80 ° C, hydroxyl equivalent 104 ・ Phenolic resin of formula (18): Softening point 72 ° C, hydroxyl equivalent 171

【0036】《評価方法》 ・スパイラルフロー:EMMI−1−66に準じたスパ
イラルフロー測定用の金型を用いて、金型温度175
℃、注入圧力70kg/cm2 、硬化時間2分で測定し
た。 ・パッケージ反り量:225ピンBGAパッケージ(基
板は0.36mm厚BT樹脂基板、パッケージサイズは
24×24mm、厚み1.17mm、シリコンチップは
サイズ9×9mm、厚み0.35mm、チップと回路基
板のボンディングパッドとを25μm径の金線でボンデ
ィングしている)を180℃の金型温度、75kg/c
2 の射出圧力で2分間トランスファー成形を行い、更
に175℃で8時間、後硬化した。室温に冷却後パッケ
ージのゲートから対角線方向に、表面粗さ計を用いて高
さ方向の変位を測定し、変位差の最も大きい値を反り量
とした。 ・耐半田性:パッケージ反り量測定に用いた成形品パッ
ケージを85℃、相対湿度60%の環境下で168時間
放置し、その後240℃の半田槽に10秒間浸漬した。
超音波探傷機を用いてパッケージを観察し、内部クラッ
ク数を(発生パッケージ数)/(全パッケージ数)の%
表示し、耐半田不良率とした。
<< Evaluation Method >> Spiral flow: Using a mold for measuring spiral flow according to EMMI-1-66, using a mold temperature of 175
C., injection pressure was 70 kg / cm 2 , and curing time was 2 minutes. Package warpage: 225-pin BGA package (substrate is 0.36 mm thick BT resin substrate, package size is 24 × 24 mm, thickness 1.17 mm, silicon chip is 9 × 9 mm, thickness 0.35 mm, chip and circuit board The bonding pad is bonded with a 25 μm diameter gold wire) at a mold temperature of 180 ° C. and 75 kg / c.
Transfer molding was performed at an injection pressure of m 2 for 2 minutes, and post-curing was further performed at 175 ° C. for 8 hours. After cooling to room temperature, the displacement in the height direction was measured diagonally from the gate of the package using a surface roughness meter, and the largest value of the displacement difference was defined as the amount of warpage. Solder Resistance: The molded product package used for measuring the package warpage was left for 168 hours in an environment of 85 ° C. and 60% relative humidity, and then immersed in a 240 ° C. solder bath for 10 seconds.
Observe the package using an ultrasonic flaw detector and determine the number of internal cracks as (% of generated packages) / (total number of packages).
It was displayed and the soldering defect rate was taken.

【0037】・金線変形量:パッケージ反り量評価で成
形した225ピンBGAパッケージを軟X線透視装置で
観察し、金線変形率を(流れ量)/(金線長)で%表示
した。 ・耐温度サイクル性:パッケージ反り測定に用いた成形
品パッケージを−65℃/30分→150℃/30分を
1サイクルとした温度サイクル試験機に投入し、300
サイクル後のクラック発生率を(発生パッケージ数)/
(全パッケージ数)の%表示し、耐温度サイクル不良率
とした。 ・高温保管性:80pQFP(外寸20×14×2.7
mm、チップサイズ6×6mm、金線25μm)を18
0℃の金型温度、75kg/cm2 の射出圧力で2分間
トランスファー成形を行い、更に175℃で8時間、後
硬化した。このパッケージを200℃の雰囲気に放置
し、抵抗値の増加、断線を観察し、抵抗値上昇開始時間
を測定した。 ・耐燃性:1mm厚の耐燃試験片を成形し、UL94規
格に従い難燃性を評価した。
Gold wire deformation: The 225-pin BGA package formed by the evaluation of the package warpage was observed with a soft X-ray fluoroscope, and the gold wire deformation was expressed as (flow amount) / (gold wire length) in%. Temperature cycling resistance: The molded product package used for the package warpage measurement was put into a temperature cycle tester in which one cycle was from −65 ° C./30 minutes to 150 ° C./30 minutes, and 300 times.
Crack occurrence rate after cycle (number of packages generated) /
(The number of all packages) was indicated in%, and the temperature cycle failure rate was defined as the percentage.・ High temperature storage property: 80pQFP (outer size 20 × 14 × 2.7
mm, chip size 6 × 6 mm, gold wire 25 μm)
Transfer molding was performed at a mold temperature of 0 ° C. and an injection pressure of 75 kg / cm 2 for 2 minutes, and post-curing was further performed at 175 ° C. for 8 hours. This package was left in an atmosphere of 200 ° C., and the increase in resistance and the disconnection were observed, and the time to start increasing the resistance was measured. Flame resistance: A flame resistant test piece having a thickness of 1 mm was molded, and the flame retardancy was evaluated according to UL94 standard.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【発明の効果】本発明の半導体封止用エポキシ樹脂組成
物は、これを用いたエリア実装型半導体装置の室温及び
半田付け工程での反りが小さく、また特に基板上に形成
されたソルダーレジスト層との密着性に優れるため耐半
田性や耐温度サイクル性などの信頼性に優れ、また高温
保管性に優れるものである。
According to the epoxy resin composition for semiconductor encapsulation of the present invention, the warpage of the area mounting type semiconductor device using the same at room temperature and in the soldering step is small, and particularly, the solder resist layer formed on the substrate. It is excellent in adhesion such as soldering resistance and temperature cycle resistance because of its excellent adhesion to, and also excellent in high-temperature storage.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08K 3/22 C08K 3/22 3/36 3/36 H01L 23/29 H01L 23/30 R 23/31 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C08K 3/22 C08K 3/22 3/36 3/36 H01L 23/29 H01L 23/30 R 23/31

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】(A)一般式(2)、(3)で示される多
官能エポキシ樹脂及び/又は式(4)〜(8)で示さ
れ、かつ融点が50〜150℃の結晶性エポキシ樹脂の
群から選択される少なくとも一つのエポキシ樹脂、
(B)一般式(1)で示されるフェノール樹脂硬化剤、
(C)硬化促進剤、(D)溶融シリカ粉末、及び(E)
Sb24あるいはSb25からなることを特徴とする半
導体封止用エポキシ樹脂組成物。 【化1】 【化2】 【化3】 【化4】 式(1)、(2)、(3)及び(8)中のRはハロゲン
原子又は炭素数1〜12のアルキル基を示し、互いに同
一であっても、異なっていてもよい。lは1〜〜10以
下の正の整数、mは0もしくは1〜3の正の整数、及び
nは0もしくは1〜4の正の整数である。式(4)〜
(7)中のRは水素原子、ハロゲン原子又は炭素数1〜
12のアルキル基を示し、互いに同一であっても、異な
っていてもよい。
1. A polyfunctional epoxy resin represented by the general formulas (2) and (3) and / or a crystalline epoxy resin represented by the formulas (4) to (8) and having a melting point of 50 to 150 ° C. At least one epoxy resin selected from the group of resins,
(B) a phenolic resin curing agent represented by the general formula (1),
(C) a curing accelerator, (D) fused silica powder, and (E)
Sb 2 0 4 or a semiconductor encapsulating epoxy resin composition characterized by comprising a Sb 2 O 5. Embedded image Embedded image Embedded image Embedded image R in the formulas (1), (2), (3) and (8) represents a halogen atom or an alkyl group having 1 to 12 carbon atoms, and may be the same or different. l is a positive integer of 1 to 10 or less, m is 0 or a positive integer of 1 to 3, and n is 0 or a positive integer of 1 to 4. Equation (4)-
R in (7) is a hydrogen atom, a halogen atom or a carbon number of 1 to
Represents 12 alkyl groups, which may be the same or different from each other.
【請求項2】 式(2)、(3)で示される多官能エポ
キシ樹脂を総エポキシ樹脂中に20〜90重量%含み、
かつ式(4)〜(8)で示される結晶性エポキシ樹脂を
総エポキシ樹脂中に20重量%以上を含むことを特徴と
する請求項1又は2記載の半導体封止用エポキシ樹脂組
成物。
2. A polyfunctional epoxy resin represented by the formulas (2) and (3) containing 20 to 90% by weight in the total epoxy resin,
The epoxy resin composition for semiconductor encapsulation according to claim 1 or 2, wherein the total amount of the crystalline epoxy resins represented by the formulas (4) to (8) is 20% by weight or more.
【請求項3】 基板の片面に半導体素子が搭載され、こ
の半導体素子が搭載された基板面側の実質的に片面のみ
が請求項1又は2記載のエポキシ樹脂組成物によって封
止されていることを特徴とする半導体装置。
3. A semiconductor element is mounted on one side of a substrate, and substantially only one side on the substrate side on which the semiconductor element is mounted is sealed with the epoxy resin composition according to claim 1 or 2. A semiconductor device characterized by the above-mentioned.
JP26395497A 1997-09-29 1997-09-29 Epoxy resin composition and semiconductor device Pending JPH11100491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26395497A JPH11100491A (en) 1997-09-29 1997-09-29 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26395497A JPH11100491A (en) 1997-09-29 1997-09-29 Epoxy resin composition and semiconductor device

Publications (1)

Publication Number Publication Date
JPH11100491A true JPH11100491A (en) 1999-04-13

Family

ID=17396566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26395497A Pending JPH11100491A (en) 1997-09-29 1997-09-29 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JPH11100491A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192532A (en) * 2000-01-11 2001-07-17 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2002012741A (en) * 2000-06-27 2002-01-15 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2009256475A (en) * 2008-04-17 2009-11-05 Nitto Denko Corp Epoxy resin composition for sealing semiconductor and semiconductor device using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192532A (en) * 2000-01-11 2001-07-17 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2002012741A (en) * 2000-06-27 2002-01-15 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2009256475A (en) * 2008-04-17 2009-11-05 Nitto Denko Corp Epoxy resin composition for sealing semiconductor and semiconductor device using the same

Similar Documents

Publication Publication Date Title
JPH11147936A (en) Epoxy resin composition for semiconductor sealing and semiconductor device
JP3292452B2 (en) Epoxy resin composition and semiconductor device
JP3365725B2 (en) Epoxy resin composition and semiconductor device
JP4710200B2 (en) Manufacturing method of area mounting type semiconductor sealing epoxy resin composition and area mounting type semiconductor device
JPH11130936A (en) Epoxy resin composition and semiconductor device
JP2000273280A (en) Epoxy resin composition and semiconductor device
JP3390335B2 (en) Semiconductor device
JP3844098B2 (en) Epoxy resin composition and semiconductor device
JP3608930B2 (en) Epoxy resin composition and semiconductor device
JPH11100491A (en) Epoxy resin composition and semiconductor device
JP3649554B2 (en) Epoxy resin composition and semiconductor device
JPH1192629A (en) Epoxy resin composition and semiconductor device
JPH1192631A (en) Epoxy resin composition and semiconductor device
JPH1160901A (en) Epoxy resin composition and semiconductor device
JP2000169677A (en) Epoxy resin composition and semiconductor apparatus
JP3292456B2 (en) Epoxy resin composition and semiconductor device
JPH1192630A (en) Epoxy resin composition and semiconductor device
JPH11130937A (en) Epoxy resin composition and semiconductor device
JP4491884B2 (en) Epoxy resin composition and semiconductor device
JP2002212393A (en) Epoxy resin composition and semi-conductor device
JP4639427B2 (en) Epoxy resin composition and semiconductor device
JP4470264B2 (en) Area type mounting semiconductor sealing epoxy resin composition and area type mounting semiconductor device
JP4765159B2 (en) Epoxy resin composition and semiconductor device
JPH11100490A (en) Epoxy resin composition and semiconductor device
JP4556324B2 (en) Area mounting semiconductor sealing epoxy resin composition and area mounting semiconductor device.