JP2002179773A - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device

Info

Publication number
JP2002179773A
JP2002179773A JP2000382101A JP2000382101A JP2002179773A JP 2002179773 A JP2002179773 A JP 2002179773A JP 2000382101 A JP2000382101 A JP 2000382101A JP 2000382101 A JP2000382101 A JP 2000382101A JP 2002179773 A JP2002179773 A JP 2002179773A
Authority
JP
Japan
Prior art keywords
epoxy resin
general formula
resin composition
represented
compound represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000382101A
Other languages
Japanese (ja)
Inventor
Fumihiro Umiga
文広 海賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2000382101A priority Critical patent/JP2002179773A/en
Publication of JP2002179773A publication Critical patent/JP2002179773A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a epoxy resin composition for sealing semiconductor having excellent moldability, moistureproof reliability, crack resistance on soldering, preservation at high temperatures and flame-retardancy, without using conventional flame-retardant such as halogen-based flame-retardant, antimony compound, aluminum hydroxide and magnesium hydroxide. SOLUTION: This epoxy resin composition for sealing semiconductor comprises as indispensable components an epoxy resin expressed by general formula (1) (where R is a group selected from a hydrogen atom and a C1-9 alkyl group same as or different from each other; and n is 1 to 5 positive number as an average), a phenolic resin expressed by general formula (2) (where notation is same as (1)), and a compound expressed by general formula: MgaAlb(OH)c(CO3)d and/or general formula: MgxAlyOz (where a, b, c, d, x, y, and z each denotes a positive number of 0.1 or more).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐半田クラック性
に優れた半導体封止用エポキシ樹脂組成物、及び半導体
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin composition for semiconductor encapsulation having excellent solder crack resistance and a semiconductor device.

【0002】[0002]

【従来の技術】従来からダイオード、トランジスタ、集
積回路等の電子部品は、主にエポキシ樹脂組成物を用い
て封止されている。特に集積回路では、エポキシ樹脂、
フェノール樹脂、及び溶融シリカ、結晶シリカ等の無機
充填材を配合した耐熱性、耐湿性に優れたエポキシ樹脂
組成物が用いられている。ところが近年、集積回路の高
集積化に伴い半導体素子は大型化し、かつ半導体装置は
従来のDIPタイプから表面実装化された小型、薄型の
QFP、SOP、SOJ、TSOP、TQFP、PLC
C、BGAタイプに変わってきている。即ち、大型の半
導体素子を小型で薄い半導体装置に封入することにな
り、熱応力によるクラックが発生し易く、これらのクラ
ックによる耐湿性の低下等の問題が大きくクローズアッ
プされてきている。特に半田付け工程において、急激に
200℃以上の高温にさらされることによって、半導体
装置の割れやエポキシ樹脂組成物の硬化物と半導体素子
との界面での剥離といった問題点が出てきている。従っ
てこれらの大型の半導体素子を封入するのに適した、耐
半田クラック性に優れるエポキシ樹脂組成物の開発が望
まれている。一方、半導体装置は自動車等の屋外使用機
器にも多数搭載される様になってきており、屋内機器で
用いられる場合よりも一層厳しい環境に耐え得る信頼性
を要求される様になってきている。よって実装時の熱応
力に耐え得る様にするため、これらの表面実装型の半導
体装置に使用されるエポキシ樹脂組成物は、低粘度性の
樹脂成分を配合し無機充填材を高充填化して、硬化物の
強度を上げ吸湿率を低下させたり、従来のオルソクレゾ
ールノボラック型エポキシ樹脂に替えてより強靱性が得
られるビフェニル型エポキシ樹脂等の結晶性エポキシ樹
脂や低吸湿性のジシクロペンタジエン変性フェノール型
エポキシ樹脂等の低分子量で官能基の少ない樹脂を用い
る様になってきている。しかし、これらのエポキシ樹脂
の化学構造から、これらのエポキシ樹脂を使用したエポ
キシ樹脂組成物は、硬化物のガラス転移温度が従来より
も低くなるため、高温又は多湿下ではエポキシ樹脂組成
物に含まれるCl-、Br-、Na+等のイオン性不純物
の影響で半導体回路の腐食が進み易く、他の要求項目で
ある耐湿信頼性、及び150℃程度の高温雰囲気下でも
半導体装置がその機能を維持できる保存信頼性(以下、
高温保管性という)に難点がある。
2. Description of the Related Art Conventionally, electronic components such as diodes, transistors, and integrated circuits have been mainly sealed with an epoxy resin composition. Especially for integrated circuits, epoxy resin,
An epoxy resin composition which is excellent in heat resistance and moisture resistance and is mixed with a phenol resin and an inorganic filler such as fused silica and crystalline silica is used. However, in recent years, semiconductor elements have become larger due to higher integration of integrated circuits, and semiconductor devices have become smaller and thinner QFPs, SOPs, SOJs, TSOPs, TQFPs, and PLCs which are surface-mounted from conventional DIP types.
C and BGA types are changing. That is, a large semiconductor element is sealed in a small and thin semiconductor device, cracks are easily generated by thermal stress, and problems such as a decrease in moisture resistance due to these cracks have been greatly highlighted. Particularly, in a soldering process, sudden exposure to a high temperature of 200 ° C. or more causes problems such as cracking of a semiconductor device and peeling at an interface between a cured product of an epoxy resin composition and a semiconductor element. Therefore, development of an epoxy resin composition suitable for encapsulating these large semiconductor elements and having excellent solder crack resistance has been desired. On the other hand, a large number of semiconductor devices are being mounted on outdoor devices such as automobiles, and reliability is required to withstand more severe environments than when used in indoor devices. . Therefore, in order to be able to withstand thermal stress during mounting, the epoxy resin composition used in these surface-mount type semiconductor devices is formulated with a low-viscosity resin component and highly filled with an inorganic filler, A crystalline epoxy resin such as a biphenyl type epoxy resin or a dicyclopentadiene-modified phenol with low hygroscopicity that can increase the strength of the cured product, reduce the moisture absorption rate, or obtain more toughness in place of the conventional orthocresol novolak type epoxy resin A resin having a low molecular weight and a small number of functional groups, such as a type epoxy resin, has been used. However, due to the chemical structure of these epoxy resins, epoxy resin compositions using these epoxy resins are included in the epoxy resin composition under high temperature or high humidity because the glass transition temperature of the cured product is lower than before. The corrosion of the semiconductor circuit is apt to progress due to the influence of ionic impurities such as Cl , Br , and Na + , and the semiconductor device maintains its function even under a high temperature atmosphere of about 150 ° C., which is another required item of humidity resistance. Storage reliability (hereafter,
High temperature storage).

【0003】又、エポキシ樹脂組成物中には、難燃性を
付与するためにハロゲン系難燃剤、及びアンチモン化合
物が配合されている。近年、地球環境に配慮した企業活
動の重視によりこれらの物質の削減・撤廃の動きがあ
り、ハロゲン系難燃剤、及びアンチモン化合物を使用し
ないで、難燃性に優れたエポキシ樹脂組成物の開発が要
求されている。これらに代わる環境対応型の難燃剤とし
ては、水酸化アルミニウムや水酸化マグネシウム等の金
属水酸化物や赤燐を含むエポキシ樹脂組成物が提案され
る様になってきているが、これらの難燃剤も、これを用
いた半導体装置の耐湿信頼性、高温保管性に影響を及ぼ
し、更には、成形性、硬化性とも、十分に満足の得られ
るエポキシ樹脂組成物が得られないという問題があり、
全ての要求に応えることができなかった。ハロゲン系難
燃剤、及びアンチモン化合物を使用せず、成形性に優
れ、耐半田クラック性、難燃性に優れたエポキシ樹脂組
成物という観点から考慮すると、エポキシ樹脂、フェノ
ール樹脂として低吸湿性、低弾性特性、及び難燃性を有
する一般式(1)のビフェニレン骨格を有するフェノー
ルアラルキル型エポキシ樹脂や一般式(2)のビフェニ
レン骨格を有するフェノールアラルキル樹脂を使用した
エポキシ樹脂組成物が知られている。しかし、単にこれ
らのエポキシ樹脂及びフェノール樹脂を用いただけのエ
ポキシ樹脂組成物は、耐半田クラック性が良好である点
では良いが、難燃性については、高い難燃性を有してい
るものの、全く難燃剤を使用せずにUL−94のV−0
を達成するためには、無機充填材を高充填化する必要が
ある。ところが流動性の低下による成形性の低下を考慮
すると、この系のみではV−0達成はかなり困難であ
る。又、この系でもイオン性不純物の影響で耐湿信頼
性、高温保管性に難点がある。このため、難燃剤を使用
せずに、流動性を確保しつつも難燃性(UL−94のV
−0)を有し、なお且つ耐湿信頼性、高温保管性に優れ
たエポキシ樹脂組成物が望まれている。
[0003] Further, a halogen-based flame retardant and an antimony compound are blended in the epoxy resin composition in order to impart flame retardancy. In recent years, there has been a movement to reduce or eliminate these substances due to the importance of corporate activities that consider the global environment, and the development of epoxy resin compositions with excellent flame retardancy without using halogen-based flame retardants and antimony compounds has been promoted. Has been requested. Epoxy resin compositions containing metal hydroxides such as aluminum hydroxide and magnesium hydroxide and red phosphorus have been proposed as alternative environmentally friendly flame retardants, but these flame retardants have been proposed. Also affect the moisture resistance reliability and high-temperature storage properties of semiconductor devices using the same, and furthermore, there is a problem that the moldability and the curability cannot be obtained as a sufficiently satisfactory epoxy resin composition.
We couldn't respond to all requests. Halogen-based flame retardants, and without using antimony compounds, excellent in moldability, solder crack resistance, from the viewpoint of an epoxy resin composition excellent in flame retardancy, low moisture absorption, low as epoxy resin, phenolic resin, A phenol aralkyl type epoxy resin having a biphenylene skeleton represented by the general formula (1) having elastic properties and flame retardancy, and an epoxy resin composition using a phenol aralkyl resin having a biphenylene skeleton represented by the general formula (2) are known. . However, the epoxy resin composition only using these epoxy resin and phenol resin is good in that solder crack resistance is good, but flame retardancy, although having high flame retardancy, V-0 of UL-94 without using any flame retardant
In order to achieve the above, it is necessary to increase the amount of the inorganic filler. However, in consideration of a decrease in moldability due to a decrease in fluidity, it is quite difficult to achieve V-0 with this system alone. In addition, even in this system, there are difficulties in moisture resistance reliability and high-temperature storage property due to the influence of ionic impurities. For this reason, without using a flame retardant, the flame retardancy (UL-94 V
-0) and an epoxy resin composition excellent in moisture resistance reliability and high-temperature storage property are desired.

【0004】[0004]

【発明が解決しようとする課題】本発明は、成形性、耐
湿信頼性、耐半田クラック性、高温保管性を有し、ハロ
ゲン系難燃剤、アンチモン化合物、水酸化アルミニウ
ム、水酸化マグネシウム等の従来の難燃剤を使用してい
ない半導体封止用エポキシ樹脂組成物、及びこれを用い
て半導体素子を封止してなる半導体装置を提供するもの
である。
DISCLOSURE OF THE INVENTION The present invention relates to conventional flame retardants, antimony compounds, aluminum hydroxide, magnesium hydroxide, etc. which have moldability, moisture resistance reliability, solder crack resistance, and high-temperature storage properties. The present invention provides an epoxy resin composition for semiconductor encapsulation that does not use a flame retardant, and a semiconductor device obtained by encapsulating a semiconductor element using the epoxy resin composition.

【0005】[0005]

【課題を解決するための手段】本発明は、(A)一般式
(1)で示されるエポキシ樹脂、(B)一般式(2)で
示されるフェノール樹脂、(C)硬化促進剤、(D)無
機充填材、及び(E)一般式(3)で示される化合物及
び/又は一般式(4)で示される化合物を必須成分とす
ることを特徴とする半導体封止用エポキシ樹脂組成物、
及びこのエポキシ樹脂組成物を用いて半導体素子を封止
してなることを特徴とする半導体装置である。
The present invention comprises (A) an epoxy resin represented by the general formula (1), (B) a phenolic resin represented by the general formula (2), (C) a curing accelerator, An epoxy resin composition for semiconductor encapsulation comprising, as essential components, an inorganic filler, and (E) a compound represented by the general formula (3) and / or a compound represented by the general formula (4).
And a semiconductor device obtained by sealing a semiconductor element using the epoxy resin composition.

【化3】 (式中のRは、水素原子又は炭素数1〜9までのアルキ
ル基から選択される基であり、互いに同一であっても異
なっていても良い。nは平均値で、1〜5の正数)
Embedded image (R in the formula is a group selected from a hydrogen atom or an alkyl group having 1 to 9 carbon atoms and may be the same or different. N is an average value of 1 to 5 number)

【0006】[0006]

【化4】 (式中のRは、水素原子又は炭素数1〜9までのアルキ
ル基から選択される基であり、互いに同一であっても異
なっていても良い。nは平均値で、1〜5の正数) MgaAlb(OH)c(CO3d (3) MgxAlyz (4) (式中のa、b、c、d、x、y、zは0.1以上の正
数)
Embedded image (R in the formula is a group selected from a hydrogen atom or an alkyl group having 1 to 9 carbon atoms and may be the same or different. N is an average value of 1 to 5 Number) Mg a Al b (OH) c (CO 3 ) d (3) Mg x Al y O z (4) (where a, b, c, d, x, y, and z are not less than 0.1) positive number)

【0007】[0007]

【発明の実施の形態】本発明で用いられる一般式(1)
で示されるエポキシ樹脂は、1分子中にエポキシ基を2
個以上有し、各エポキシ基間に疎水性の構造を有するこ
とを特徴とする。一般式(1)で示されるエポキシ樹脂
を用いたエポキシ樹脂組成物の硬化物は架橋密度が低
く、疎水性の構造を多く有することから吸湿率が低く、
又、Tgを越えた高温域での弾性率が低いという特徴を
もつため、表面実装の半田付け時における熱応力を低減
し、耐半田クラック性、半田処理後の基材との密着性に
優れるという特徴をもつ。一方、エポキシ基間の疎水性
の構造が剛直なビフェニレン骨格であることから、架橋
密度が低い割には耐熱性の低下が少ないという特徴をも
つ。一般式(1)で示されるエポキシ樹脂の具体例を以
下に示すが、これらに限定されるものではない。特に、
無機充填材を高充填化するためには、常温で結晶性の固
体であり成形温度で溶融粘度が極めて低くなる様な結晶
性を有するものが好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The general formula (1) used in the present invention
The epoxy resin represented by 2 has two epoxy groups in one molecule.
And a hydrophobic structure between each epoxy group. The cured product of the epoxy resin composition using the epoxy resin represented by the general formula (1) has a low crosslink density and a large number of hydrophobic structures, and therefore has a low moisture absorption rate,
In addition, since it has the feature of low elastic modulus in the high temperature range exceeding Tg, it reduces thermal stress during surface mounting soldering, and has excellent solder crack resistance and adhesion to the substrate after soldering. It has the characteristic. On the other hand, since the hydrophobic structure between the epoxy groups is a rigid biphenylene skeleton, it has a feature that the heat resistance is less reduced even though the crosslink density is low. Specific examples of the epoxy resin represented by the general formula (1) are shown below, but are not limited thereto. In particular,
In order to increase the amount of the inorganic filler, it is preferable that the inorganic filler be a crystalline solid at room temperature and have a crystallinity such that the melt viscosity becomes extremely low at the molding temperature.

【化5】 又、これらのエポキシ樹脂は単独でも2種類以上併用し
て用いても差し支えない。一般式(1)で示されるエポ
キシ樹脂の特徴を損なわない範囲で、他のエポキシ樹脂
を併用しても差し支えない。併用できるエポキシ樹脂と
しては、分子内にエポキシ基を有するモノマー、オリゴ
マー、及びポリマー全般を言い、例えば、ビスフェノー
ルA型エポキシ樹脂、ビスフェノールF型エポキシ樹
脂、ビフェニル型エポキシ樹脂、スチルベン型エポキシ
樹脂、フェノールノボラック型エポキシ樹脂、オルソク
レゾールノボラック型エポキシ樹脂、ナフトールノボラ
ック型エポキシ樹脂、フェノールアラルキル型エポキシ
樹脂、ナフトールアラルキル型エポキシ樹脂(フェニレ
ン骨格、ビフェニレン骨格等を有する)、ジシクロペン
タジエン変性フェノール型エポキシ樹脂、トリフェノー
ルメタン型エポキシ樹脂、アルキル変性トリフェノール
メタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂
等が挙げられ、これらは単独でも2種類以上併用して用
いても差し支えない。一般式(1)で示されるエポキシ
樹脂の配合量としては、全エポキシ樹脂中に50%重量
以上が好ましく、更に好ましくは70重量%以上であ
る。50重量%未満だとエポキシ樹脂組成物が燃焼し易
くなったり、吸湿率、弾性率が増大し、耐半田クラック
性を低下させる可能性がある。又、一般式(2)で示さ
れるフェノール樹脂を用いたり、無機充填材の配合量を
増加すれば、全エポキシ樹脂中の一般式(1)で示され
るエポキシ樹脂の配合量を下げても、難燃性が保たれ
る。
Embedded image These epoxy resins may be used alone or in combination of two or more. Other epoxy resins may be used in combination as long as the characteristics of the epoxy resin represented by the general formula (1) are not impaired. Epoxy resins that can be used in combination include monomers, oligomers, and polymers having an epoxy group in the molecule, and include, for example, bisphenol A epoxy resin, bisphenol F epoxy resin, biphenyl epoxy resin, stilbene epoxy resin, and phenol novolak. Type epoxy resin, orthocresol novolak type epoxy resin, naphthol novolak type epoxy resin, phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin (having phenylene skeleton, biphenylene skeleton, etc.), dicyclopentadiene modified phenol type epoxy resin, triphenol Methane-type epoxy resin, alkyl-modified triphenol-methane-type epoxy resin, triazine nucleus-containing epoxy resin, etc., alone or in combination of two or more No problem be used Te. The amount of the epoxy resin represented by the general formula (1) is preferably at least 50% by weight, more preferably at least 70% by weight, based on the total epoxy resin. If it is less than 50% by weight, the epoxy resin composition may be easily burned, the moisture absorption and the elastic modulus may be increased, and the solder crack resistance may be reduced. Also, if the phenolic resin represented by the general formula (2) is used or the amount of the inorganic filler is increased, the amount of the epoxy resin represented by the general formula (1) in all the epoxy resins is reduced. Flame retardancy is maintained.

【0008】本発明に用いられる一般式(2)で示され
るフェノール樹脂は、1分子中にフェノール性水酸基を
2個以上有し、各フェノール性水酸基間に疎水性の構造
を有することを特徴とする。エポキシ樹脂との硬化物は
架橋密度が低く、疎水性の構造を多く有することから吸
湿率が低く、又、Tgを越えた高温域での弾性率が低い
という特徴をもつため、表面実装の半田付け時における
熱応力を低減し、耐半田クラック性、半田処理後の基材
との密着性に優れるという特徴をもつ。一方、フェノー
ル性水酸基間の疎水性の構造が剛直なビフェニレン骨格
であることから、架橋密度が低い割には耐熱性の低下が
少ないという特徴をもつ。一般式(1)で示されるエポ
キシ樹脂と一般式(2)で示されるフェノール樹脂とを
組み合わせた場合には、半導体装置の低吸湿性、吸湿後
半田処理での耐半田クラック性、密着性などの信頼性で
最大の効果が得られる。一般式(2)で示されるフェノ
ール樹脂の具体例を以下に示すが、これに限定されるも
のでない。
The phenolic resin represented by the general formula (2) used in the present invention has two or more phenolic hydroxyl groups in one molecule, and has a hydrophobic structure between each phenolic hydroxyl group. I do. The cured product of epoxy resin has low crosslink density and low hydrophobicity due to its many hydrophobic structures, and low elasticity at high temperatures exceeding Tg. It has features of reducing thermal stress at the time of attaching, and having excellent solder crack resistance and excellent adhesion to a substrate after soldering. On the other hand, since the hydrophobic structure between the phenolic hydroxyl groups is a rigid biphenylene skeleton, the crosslink density is low, but there is little decrease in heat resistance. When the epoxy resin represented by the general formula (1) and the phenol resin represented by the general formula (2) are combined, the semiconductor device has low moisture absorption, solder crack resistance in soldering after moisture absorption, adhesion, and the like. The maximum effect can be obtained with reliability. Specific examples of the phenol resin represented by the general formula (2) are shown below, but are not limited thereto.

【化6】 又、これらのフェノール樹脂は単独でも2種類以上併用
して用いても差し支えない。一般式(2)で示されるフ
ェノール樹脂の特徴を損なわない範囲で、他のフェノー
ル樹脂を併用しても差し支えない。併用できるフェノー
ル樹脂としては、分子内にフェノール性水酸基を有する
モノマー、オリゴマー、及びポリマー全般を言い、例え
ば、フェノールノボラック樹脂、クレゾールノボラック
樹脂、フェノールアラルキル樹脂、ナフトールアラルキ
ル樹脂(フェニレン骨格、ビフェニレン骨格等を有す
る)、テルペン変性フェノール樹脂、ジシクロペンタジ
エン変性フェノール樹脂、ビスフェノールA、トリフェ
ノールメタン型樹脂等が挙げられる。これらは単独でも
2種類以上併用して用いても差し支えない。一般式
(2)で示されるフェノール樹脂の配合量としては、全
フェノール樹脂中に50重量%以上が好ましく、更に好
ましくは70重量%以上である。50重量%未満だと燃
焼しやすくなったり、吸湿率、弾性率が増大し、耐半田
クラック性を低下させる可能性がある。又、一般式
(1)で示されるエポキシ樹脂を用いたり、無機充填材
の配合量を増加すれば、全フェノール樹脂中の一般式
(2)で示されるフェノール樹脂の配合量を下げても、
難燃性が保たれる。一般式(1)で示されるエポキシ樹
脂と一般式(2)で示されるフェノール樹脂とを組合せ
て用いた場合には、半導体装置の低吸湿性、吸湿後の半
田処理での耐半田クラック性、密着性等の信頼性で最大
の効果が得られるので好ましい。全エポキシ樹脂のエポ
キシ基と全フェノール樹脂のフェノール性水酸基の当量
比については、エポキシ基数/フェノール性水酸基数=
0.7〜1.5が好ましく、0.7未満であっても、
1.5を越えても、エポキシ樹脂組成物の硬化性の低
下、或いは硬化物のTgの低下、耐湿信頼性の低下等が
生じる可能性がある。
Embedded image These phenol resins may be used alone or in combination of two or more. Other phenol resins may be used in combination as long as the characteristics of the phenol resin represented by the general formula (2) are not impaired. Phenol resins that can be used in combination include monomers, oligomers, and polymers having a phenolic hydroxyl group in the molecule, and include, for example, phenol novolak resins, cresol novolak resins, phenol aralkyl resins, naphthol aralkyl resins (phenylene skeleton, biphenylene skeleton, etc. ), Terpene-modified phenolic resins, dicyclopentadiene-modified phenolic resins, bisphenol A, triphenolmethane-type resins, and the like. These may be used alone or in combination of two or more. The amount of the phenol resin represented by the general formula (2) is preferably at least 50% by weight, more preferably at least 70% by weight, based on the whole phenol resin. If it is less than 50% by weight, it may be easy to burn, the moisture absorption and the elastic modulus may be increased, and the solder crack resistance may be reduced. Further, if the epoxy resin represented by the general formula (1) is used or the amount of the inorganic filler is increased, even if the amount of the phenol resin represented by the general formula (2) in all the phenol resins is reduced,
Flame retardancy is maintained. When the epoxy resin represented by the general formula (1) and the phenol resin represented by the general formula (2) are used in combination, the semiconductor device has low moisture absorption, solder cracking resistance in soldering after moisture absorption, It is preferable because the maximum effect can be obtained in reliability such as adhesion. Regarding the equivalent ratio of the epoxy group of all epoxy resins to the phenolic hydroxyl group of all phenolic resins, the number of epoxy groups / the number of phenolic hydroxyl groups =
0.7 to 1.5 is preferable, and even if it is less than 0.7,
If it exceeds 1.5, the curability of the epoxy resin composition may decrease, or the Tg of the cured product may decrease, and the moisture resistance reliability may decrease.

【0009】本発明に用いる硬化促進剤は、エポキシ基
とフェノール性水酸基との硬化反応を促進させるもので
あればよく、一般に封止材料に使用されているものを広
く使用することができる。例えば、トリブチルアミン、
1,8−ジアザビシクロ(5,4,0)ウンデセン−7
等のアミン系化合物、テトラフェニルホスホニウム・テ
トラナフトイックアシッドボレート、トリフェニルホス
フィン等の有機リン系化合物、2−メチルイミダゾール
等のイミダゾール化合物等が挙げられ、これらの内で
は、特に1,8−ジアザビシクロ(5,4,0)ウンデ
セン−7が各種基材に対する密着性の向上のために有効
であり、更にテトラフェニルホスホニウム・テトラナフ
トイックアシッドボレートはエポキシ樹脂組成物の常温
保管特性を大幅に向上させる効果がある。これらの硬化
促進剤は、単独でも2種類以上併用して用いても差し支
えない。
The curing accelerator used in the present invention may be any one which promotes a curing reaction between an epoxy group and a phenolic hydroxyl group, and those generally used for a sealing material can be widely used. For example, tributylamine,
1,8-diazabicyclo (5,4,0) undecene-7
And the like, an organic phosphorus compound such as tetraphenylphosphonium / tetranaphthoic acid borate and triphenylphosphine, and an imidazole compound such as 2-methylimidazole. Among these, 1,8-diazabicyclo is particularly preferred. (5,4,0) undecene-7 is effective for improving the adhesion to various substrates, and tetraphenylphosphonium / tetranaphthoic acid borate significantly improves the room temperature storage characteristics of the epoxy resin composition. effective. These curing accelerators may be used alone or in combination of two or more.

【0010】本発明で用いられる無機充填材は、例え
ば、溶融シリカ、球状シリカ、結晶シリカ、2次凝集シ
リカ、多孔質シリカ、2次凝集シリカ又は多孔質シリカ
を粉砕したシリカ、アルミナ、窒化珪素等が挙げられる
が、溶融シリカ、結晶シリカが好ましい。又、無機充填
材の形状としては、破砕状でも球状でもかまわないが、
耐半田クラック性を向上させるために高充填化する点
や、流動特性、機械強度及び熱的特性のバランスの点か
らは、球状溶融シリカが好ましい。最大粒径としては7
5μm以下が好ましく、平均粒径としては5〜25μm
が好ましい。粒度分布としては広いものが、成形時のエ
ポキシ樹脂組成物の溶融粘度を低減するために有効であ
る。これらの無機充填材は単独でも2種類以上併用して
用いても差し支えない。更に、シランカップリング剤等
で予め表面処理をしたものを用いてもよい。無機充填材
の含有量としては、全エポキシ樹脂組成物中に65〜9
5重量%が好ましい。65重量%未満だと、エポキシ樹
脂組成物の硬化物の吸湿量が増大し、しかも半田処理温
度での強度が低下してしまうため半田処理時に半導体装
置にクラックが生じ易くなり、一方、95重量%を越え
ると、エポキシ樹脂組成物の成形時の流動性が低下し未
充填やチップシフト、パッドシフトが発生し易くなる可
能性がある。
The inorganic filler used in the present invention is, for example, fused silica, spherical silica, crystalline silica, secondary aggregated silica, porous silica, silica obtained by pulverizing secondary aggregated silica or porous silica, alumina, silicon nitride. And the like, but fused silica and crystalline silica are preferred. Also, the shape of the inorganic filler may be crushed or spherical,
Spherical fused silica is preferred from the viewpoint of high filling to improve solder crack resistance and the balance of flow characteristics, mechanical strength, and thermal characteristics. The maximum particle size is 7
5 μm or less is preferable, and the average particle size is 5 to 25 μm.
Is preferred. A wide particle size distribution is effective for reducing the melt viscosity of the epoxy resin composition during molding. These inorganic fillers may be used alone or in combination of two or more. Further, a material which has been surface-treated with a silane coupling agent or the like in advance may be used. The content of the inorganic filler is 65 to 9 in the total epoxy resin composition.
5% by weight is preferred. If the content is less than 65% by weight, the amount of moisture absorbed by the cured product of the epoxy resin composition increases, and the strength at the soldering temperature is reduced, so that the semiconductor device is easily cracked at the time of soldering. %, The fluidity during molding of the epoxy resin composition is reduced, and unfilling, chip shift, and pad shift may easily occur.

【0011】本発明に用いられる一般式(3)で示され
る化合物、一般式(4)で示される化合物は、エポキシ
樹脂組成物中に含まれるイオン性不純物を捕捉する作用
を有する。一般式(4)で示される化合物は、一般式
(3)で示されるハイドロタルサイト類化合物を焼成し
て得ることもできる。又、一般式(3)で示される化合
物、一般式(4)で示される化合物は、結晶水を有して
いてもよい。これらは単独でも2種類以上併用して用い
ても差し支えない。一般式(3)で示される化合物、一
般式(4)で示される化合物は、イオン性不純物を捕捉
すると自身の中にイオン性不純物を吸収する構造とな
り、イオン性不純物を捕捉して不活性化させる。従っ
て、これらを配合したエポキシ樹脂組成物は、イオン性
不純物による半導体回路の腐食を抑え、耐湿信頼性、高
温保管性の向上が認められる。一般式(4)で示される
化合物は、一般式(3)で示されるハイドロタルサイト
類化合物と比較するとイオン捕捉能が高く、耐湿信頼性
や高温保管性の向上には効果が高いが、一方では、その
分子構造上、粒子間に隙間がたくさんあるため多湿下で
は吸湿性が高くなり、耐半田クラック性を低下させ易い
ので、配合量には注意を払う必要がある。又、一般式
(3)で示される化合物、一般式(4)で示される化合
物は、若干の難燃性を付与する効果もある。これらの難
燃剤としての効果は、従来の難燃剤として使用される水
酸化アルミニウムや水酸化マグネシウム等には及ばない
が、難燃機構は水酸化アルミニウムや水酸化マグネシウ
ム等と同様で、燃焼時に燃焼反応を阻害するものであ
る。本発明の一般式(1)のエポキシ樹脂及び一般式
(2)のフェノール樹脂を使用したエポキシ樹脂組成物
は高い難燃性を示すものの、一般式(1)のエポキシ樹
脂と一般式(2)のフェノール樹脂との系のみでは、U
L−94のV−0という難燃性を達成するまでには至ら
ない。そこで、このエポキシ樹脂組成物中に一般式
(3)で示される化合物及び/又は一般式(4)で示さ
れる化合物を用いると難燃性が向上しUL−94のV−
0を達成することが可能となる。
The compound represented by the general formula (3) and the compound represented by the general formula (4) used in the present invention have an action of trapping ionic impurities contained in the epoxy resin composition. The compound represented by the general formula (4) can also be obtained by calcining the hydrotalcite compound represented by the general formula (3). Further, the compound represented by the general formula (3) and the compound represented by the general formula (4) may have water of crystallization. These may be used alone or in combination of two or more. The compound represented by the general formula (3) and the compound represented by the general formula (4) have a structure in which the ionic impurities are absorbed therein when the ionic impurities are trapped, and the ionic impurities are trapped and inactivated. Let it. Therefore, the epoxy resin composition containing these compounds suppresses the corrosion of the semiconductor circuit due to ionic impurities, and improves the moisture resistance reliability and the high-temperature storage property. The compound represented by the general formula (4) has a higher ion-trapping ability than the hydrotalcite compound represented by the general formula (3), and is highly effective in improving moisture resistance reliability and high-temperature storage property. In such a case, due to its molecular structure, there are many gaps between the particles, so that the moisture absorption becomes high under humid conditions and the solder cracking resistance is apt to be reduced. Further, the compound represented by the general formula (3) and the compound represented by the general formula (4) also have an effect of imparting some flame retardancy. The effects of these flame retardants are not as good as those of aluminum hydroxide and magnesium hydroxide used as conventional flame retardants, but the flame retardant mechanism is the same as that of aluminum hydroxide and magnesium hydroxide. It inhibits the reaction. Although the epoxy resin composition of the present invention using the epoxy resin of the general formula (1) and the phenol resin of the general formula (2) shows high flame retardancy, the epoxy resin of the general formula (1) and the epoxy resin of the general formula (2) Only with phenolic resin
It is not enough to achieve the flame retardancy of V-0 of L-94. Therefore, when the compound represented by the general formula (3) and / or the compound represented by the general formula (4) is used in the epoxy resin composition, the flame retardancy is improved and the V- of UL-94 is improved.
0 can be achieved.

【0012】一般式(3)で示される化合物及び一般式
(4)で示される化合物は、流動性、充填性を考慮する
と、最大粒径としては75μm以下が好ましく、平均粒
径は0.5〜25μmが好ましい。粒度分布の広いもの
が、成形時のエポキシ樹脂組成物の溶融粘度を低減する
ために有効である。又、一般式(3)で示される化合物
と一般式(4)で示される化合物との合計量としては、
全エポキシ樹脂組成物中に0.05〜5重量%が好まし
い。0.05重量%未満だと、イオン捕捉効果が小さい
ので耐湿信頼性や高温保管性を向上する効果が低く、
又、難燃性付与という点でも不十分となる可能性があ
る。5重量%を越えるとエポキシ樹脂組成物の硬化性が
低下し、又、半導体素子を搭載する基板との密着力の低
下、更には、一般式(4)で示される化合物ではエポキ
シ樹脂組成物の吸湿率が大きくなり耐半田クラック性が
低下する可能性がある。
The compound represented by the general formula (3) and the compound represented by the general formula (4) preferably have a maximum particle size of 75 μm or less and an average particle size of 0.5 in consideration of fluidity and filling property. 2525 μm is preferred. Those having a wide particle size distribution are effective for reducing the melt viscosity of the epoxy resin composition during molding. The total amount of the compound represented by the general formula (3) and the compound represented by the general formula (4) is as follows:
0.05 to 5% by weight of the total epoxy resin composition is preferred. If the content is less than 0.05% by weight, the effect of improving the moisture resistance reliability and high-temperature storage property is low because the ion capturing effect is small,
In addition, there is a possibility that the flame retardancy may be insufficient. If the content exceeds 5% by weight, the curability of the epoxy resin composition decreases, the adhesion to the substrate on which the semiconductor element is mounted decreases, and the epoxy resin composition of the compound represented by the general formula (4) has a lower viscosity. There is a possibility that the moisture absorption rate increases and the solder crack resistance decreases.

【0013】本発明のエポキシ樹脂組成物は、(A)〜
(E)成分の他、必要に応じてカップリング剤、カーボ
ンブラック、ベンガラ等の着色剤、天然ワックス、合成
ワックス等の離型剤、シリコーンオイル、難燃剤、ゴム
等の低応力添加剤等の種々の添加剤等を適宜配合しても
差し支えない。特に無機充填材と有機物の両者に反応性
を有しているカップリング剤は、半導体素子を搭載する
基板とエポキシ樹脂組成物の硬化物との接着界面に作用
し、接着力を向上させ、耐半田クラック性等の信頼性を
向上させるので好ましい。本発明のエポキシ樹脂組成物
は、(A)〜(E)成分、及びその他の添加剤等をミキ
サー等を用いて充分に均一に常温混合した後、熱ロール
又はニーダー等で溶融混練し、冷却後粉砕して得られ
る。本発明のエポキシ樹脂組成物を用いて、半導体素子
等の電子部品を封止し、半導体装置を製造するには、ト
ランスファーモールド、コンプレッションモールド、イ
ンジェクションモールド等の成形方法で成形硬化すれば
よい。
The epoxy resin composition of the present invention comprises (A)
In addition to the component (E), if necessary, a coupling agent, a coloring agent such as carbon black and red iron oxide, a release agent such as a natural wax and a synthetic wax, a low stress additive such as a silicone oil, a flame retardant, and a rubber. Various additives and the like may be appropriately compounded. In particular, the coupling agent having a reactivity with both the inorganic filler and the organic substance acts on the bonding interface between the substrate on which the semiconductor element is mounted and the cured product of the epoxy resin composition, improves the bonding strength, It is preferable because reliability such as solder cracking is improved. The epoxy resin composition of the present invention is prepared by sufficiently mixing the components (A) to (E) and other additives at room temperature using a mixer or the like, and then kneading with a hot roll or a kneader and cooling. It is obtained by subsequent grinding. In order to manufacture a semiconductor device by encapsulating an electronic component such as a semiconductor element using the epoxy resin composition of the present invention, the molding may be performed by a molding method such as a transfer mold, a compression mold, and an injection mold.

【0014】[0014]

【実施例】以下に実施例を挙げて詳細に説明するが、本
発明はこれら実施例によりなんら限定されるものでな
い。配合単位は重量部とする。 式(5)で示されるエポキシ樹脂A(軟化点60℃、エポキシ当量270) 7.7重量部
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples. The mixing unit is parts by weight. 7.7 parts by weight of an epoxy resin A represented by the formula (5) (softening point: 60 ° C., epoxy equivalent: 270)

【化7】 Embedded image

【0015】 式(6)で示されるフェノール樹脂C(軟化点75℃、水酸基当量195) 5.3重量部[0015] 5.3 parts by weight of phenolic resin C represented by the formula (6) (softening point: 75 ° C., hydroxyl equivalent: 195)

【化8】 1,8−ジアザビシクロ(5,4,0)ウンデセン−7(以下、DBUという ) 0.2重量部 球状溶融シリカ(平均粒径22μm) 85.0重量部 Mg0.7Al0.31.15(平均粒径3μm。以下、M1という) 0.5重 量部 カーボンブラック 0.3重量部 カルナバワックス 0.3重量部 その他の添加剤 0.7重量部 をミキサーを用いて常温で混合し、70〜110℃でロ
ールを用いて混練し、冷却後粉砕し、タブレット化して
エポキシ樹脂組成物を得た。このエポキシ樹脂組成物を
以下の方法で評価した。結果を表1に示す。
Embedded image 1,8-diazabicyclo (5,4,0) undecene-7 (hereinafter referred to as DBU) 0.2 part by weight Spherical fused silica (average particle size 22 μm) 85.0 parts by weight Mg 0.7 Al 0.3 O 1.15 (average particle size 0.5 parts by weight Carbon black 0.3 parts by weight Carnauba wax 0.3 parts by weight Other additives 0.7 parts by weight were mixed at room temperature using a mixer, and the mixture was mixed at 70 to 110 ° C. The mixture was kneaded using a roll, cooled, pulverized and tabletted to obtain an epoxy resin composition. This epoxy resin composition was evaluated by the following method. Table 1 shows the results.

【0016】評価方法 ・スパイラルフロー:EMMI−1−66に準じたスパ
イラルフロー測定用の金型を用いて、金型温度175
℃、注入圧力6.9MPa、硬化時間120秒で測定し
た。単位はcm。 ・熱時曲げ強度・熱時曲げ弾性率:低圧トランスファー
成形機を用いて、金型温度175℃、注入圧力6.9M
Pa、硬化時間120秒の条件で試験片を成形し、熱時
曲げ強度、及び熱時曲げ弾性率をJIS K 6911
に準じて(240℃で)測定した。単位はいずれもN/
mm2。 ・吸湿率:低圧トランスファー成形機を用いて金型温度
175℃、注入圧力9.8MPa、硬化時間120秒の
条件で直径50mm、厚さ3mmの円盤状試験片を成形
し、ポストキュアとして175℃で8時間処理した。試
験片の吸湿処理前と85℃、相対湿度85%の環境下で
168時間処理した後の重量変化を測定し、試験片の吸
湿率を百分率で示した。単位は重量%。 ・耐湿信頼性:低圧トランスファー成形機を用いて、金
型温度175℃、注入圧力9.8MPa、硬化時間12
0秒の条件で16SOP(厚さ1.95mm、チップサ
イズ3.5mm×3.0mm)を成形した。ポストキュ
アとして175℃で8時間処理した。封止したテスト用
素子のプレッシャークッカー試験(125℃、圧力2.
2×105Pa)を行い、回路のオープン不良を測定
し、不良発生時間で表した。単位は時間。 ・耐半田クラック性:得られた材料をタブレット化し、
低圧トランスファー成形機を用いて金型温度175℃、
注入圧力9.8MPa、硬化時間120秒の条件で80
pQFP(厚さ2.0mm、チップサイズ6mm×6m
m)を成形した。ポストキュアとして175℃で8時間
処理したパッケージ6個を、85℃、相対湿度85%の
環境下で168時間処理した後、IRリフロー処理(2
60℃)を行った。処理後の内部の剥離及びクラックの
有無を超音波探傷装置で観察し、不良パッケージの個数
を数えた。不良パッケージの個数がn個であるとき、n
/6と表示する。 ・高温保管性:低圧トランスファー成形機を用いて金型
温度175℃、注入圧力6.9MPa、硬化時間120
秒の条件で16pDIP(チップサイズ3mm×3.5
mm)成形した。ポストキュアとして175℃で8時間
処理後、高温保管試験(150℃、1000時間及び1
85℃、1000時間)を行い、配線間の電気抵抗値が
初期値に対し20%増加したパッケージを不良と判定し
た。10配線間中の不良率を百分率で示した。単位は
%。 ・難燃性:得られた材料をタブレット化し、低圧トラン
スファー成形機を用いて、175℃、注入圧力6.9M
Pa、硬化時間120秒の条件で試験片を成形し、UL
−94垂直試験(試験片厚さ1/8inch)を行っ
た。
Evaluation method Spiral flow: Using a mold for measuring spiral flow according to EMMI-1-66, mold temperature 175
C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds. The unit is cm.・ Heat bending strength ・ Heat bending elasticity: Using a low-pressure transfer molding machine, mold temperature 175 ° C, injection pressure 6.9M
A test piece was molded under the conditions of Pa and a curing time of 120 seconds, and the flexural strength under heat and the flexural modulus under heat were measured according to JIS K 6911.
(At 240 ° C.). The unit is N /
mm 2 . Moisture absorption: A low pressure transfer molding machine was used to mold a disk-shaped test piece having a diameter of 50 mm and a thickness of 3 mm at a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 120 seconds, and 175 ° C. as post cure. For 8 hours. The weight change of the test piece before and after the treatment for 168 hours in an environment of 85 ° C. and a relative humidity of 85% was measured, and the moisture absorption rate of the test piece was shown as a percentage. The unit is% by weight. -Moisture resistance reliability: using a low pressure transfer molding machine, mold temperature 175 ° C, injection pressure 9.8MPa, curing time 12
A 16 SOP (thickness 1.95 mm, chip size 3.5 mm × 3.0 mm) was formed under the condition of 0 second. Post-curing was performed at 175 ° C. for 8 hours. Pressure cooker test (125 ° C., pressure 2.
2 × 10 5 Pa), the open failure of the circuit was measured, and the result was represented by the failure occurrence time. The unit is time.・ Solder cracking resistance: tablet the obtained material,
Using a low pressure transfer molding machine, mold temperature 175 ° C,
An injection pressure of 9.8 MPa and a curing time of 120 seconds are 80
pQFP (2.0 mm thick, chip size 6 mm x 6 m
m) was molded. Six packages which were post-cured at 175 ° C. for 8 hours were processed at 85 ° C. and a relative humidity of 85% for 168 hours, and then subjected to IR reflow treatment (2).
60 ° C.). The presence or absence of internal peeling and cracking after the treatment was observed with an ultrasonic flaw detector, and the number of defective packages was counted. When the number of defective packages is n, n
/ 6 is displayed. High-temperature storage property: using a low-pressure transfer molding machine, mold temperature 175 ° C, injection pressure 6.9 MPa, curing time 120
16pDIP (chip size 3mm × 3.5)
mm). After post-curing at 175 ° C for 8 hours, a high-temperature storage test (150 ° C, 1000 hours and 1 hour)
(85 ° C., 1000 hours), and the package in which the electric resistance between the wirings increased by 20% from the initial value was determined to be defective. The percentage of defects among the 10 wirings is shown as a percentage. Units%. -Flame retardancy: tablet the obtained material and use a low-pressure transfer molding machine at 175 ° C and an injection pressure of 6.9M.
The test piece was molded under the conditions of Pa, curing time of 120 seconds, and UL
A -94 vertical test (specimen thickness 1/8 inch) was performed.

【0017】実施例2〜6、比較例1〜4 表1の配合に従い、実施例1と同様にしてエポキシ樹脂
組成物を作製し、実施例1と同様にして評価した。結果
を表1に示す。又、実施例1以外で用いた材料を以下に
示す。ビフェニル型エポキシ樹脂B(融点105℃、エ
ポキシ当量193)、フェノールアラルキル樹脂D(ビ
フェニレン骨格は含有していない。軟化点75℃、水酸
基当量175)、Mg0.7Al0.3(OH)1.2(CO3
0.6(平均粒径3μm。以下、M2という)。
Examples 2 to 6, Comparative Examples 1 to 4 Epoxy resin compositions were prepared in the same manner as in Example 1 according to the formulations shown in Table 1, and evaluated in the same manner as in Example 1. Table 1 shows the results. The materials used in the examples other than Example 1 are shown below. Biphenyl type epoxy resin B (melting point 105 ° C, epoxy equivalent 193), phenol aralkyl resin D (does not contain biphenylene skeleton. Softening point 75 ° C, hydroxyl equivalent 175), Mg 0.7 Al 0.3 (OH) 1.2 (CO 3 )
0.6 (average particle size: 3 μm; hereinafter, referred to as M2).

【表1】 [Table 1]

【0018】[0018]

【発明の効果】本発明に従うと、成形性に優れ、ハロゲ
ン系難燃剤、アンチモン化合物、水酸化アルミニウム、
水酸化マグネシウム等の従来の難燃剤を使用していない
半導体封止用エポキシ樹脂組成物が得られ、これを用い
た半導体装置は、耐湿信頼性、耐半田クラック性、高温
保管性、難燃性に優れている。
According to the present invention, excellent moldability, halogen-based flame retardant, antimony compound, aluminum hydroxide,
An epoxy resin composition for semiconductor encapsulation that does not use a conventional flame retardant such as magnesium hydroxide can be obtained, and a semiconductor device using the same can provide moisture resistance reliability, solder crack resistance, high temperature storage properties, and flame retardancy. Is excellent.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 23/31 Fターム(参考) 4J002 CD071 CE002 DE146 DE186 EN027 EU117 EU137 EW017 EW177 FD010 FD157 GQ05 4J036 AB16 AC02 AD07 AD08 AD10 AE05 AE07 AF05 AF06 AF08 DC05 DC06 DC41 DC46 DD07 FA01 FA03 FA05 FB06 FB08 JA07 4M109 AA01 BA01 CA21 EA03 EB03 EB04 EB07 EB12 EB18 EC01 EC05 EC20 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) H01L 23/31 F term (Reference) 4J002 CD071 CE002 DE146 DE186 EN027 EU117 EU137 EW017 EW177 FD010 FD157 GQ05 4J036 AB16 AC02 AD07 AD08 AD10 AE05 AE07 AF05 AF06 AF08 DC05 DC06 DC41 DC46 DD07 FA01 FA03 FA05 FB06 FB08 JA07 4M109 AA01 BA01 CA21 EA03 EB03 EB04 EB07 EB12 EB18 EC01 EC05 EC20

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (A)一般式(1)で示されるエポキシ
樹脂、(B)一般式(2)で示されるフェノール樹脂、
(C)硬化促進剤、(D)無機充填材、及び(E)一般
式(3)で示される化合物及び/又は一般式(4)で示
される化合物を必須成分とすることを特徴とする半導体
封止用エポキシ樹脂組成物。 【化1】 (式中のRは、水素原子又は炭素数1〜9までのアルキ
ル基から選択される基であり、互いに同一であっても異
なっていても良い。nは平均値で、1〜5の正数) 【化2】 (式中のRは、水素原子又は炭素数1〜9までのアルキ
ル基から選択される基であり、互いに同一であっても異
なっていても良い。nは平均値で、1〜5の正数) MgaAlb(OH)c(CO3d (3) MgxAlyz (4) (式中のa、b、c、d、x、y、zは0.1以上の正
数)
(A) an epoxy resin represented by the general formula (1), (B) a phenol resin represented by the general formula (2),
A semiconductor comprising (C) a hardening accelerator, (D) an inorganic filler, and (E) a compound represented by the general formula (3) and / or a compound represented by the general formula (4) as essential components. Epoxy resin composition for sealing. Embedded image (R in the formula is a group selected from a hydrogen atom or an alkyl group having 1 to 9 carbon atoms and may be the same or different. N is an average value of 1 to 5 Number) (R in the formula is a group selected from a hydrogen atom or an alkyl group having 1 to 9 carbon atoms and may be the same or different. N is an average value of 1 to 5 Number) Mg a Al b (OH) c (CO 3 ) d (3) Mg x Al y O z (4) (where a, b, c, d, x, y, and z are not less than 0.1) positive number)
【請求項2】 請求項1記載のエポキシ樹脂組成物を用
いて半導体素子を封止してなることを特徴とする半導体
装置。
2. A semiconductor device comprising a semiconductor element encapsulated with the epoxy resin composition according to claim 1.
JP2000382101A 2000-12-15 2000-12-15 Epoxy resin composition and semiconductor device Pending JP2002179773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000382101A JP2002179773A (en) 2000-12-15 2000-12-15 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000382101A JP2002179773A (en) 2000-12-15 2000-12-15 Epoxy resin composition and semiconductor device

Publications (1)

Publication Number Publication Date
JP2002179773A true JP2002179773A (en) 2002-06-26

Family

ID=18849989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000382101A Pending JP2002179773A (en) 2000-12-15 2000-12-15 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP2002179773A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040981A (en) * 2001-07-30 2003-02-13 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2004067717A (en) * 2002-08-01 2004-03-04 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2004107584A (en) * 2002-09-20 2004-04-08 Hitachi Chem Co Ltd Epoxy resin molding material for encapsulation and electronic part device provided with element
JP2005336418A (en) * 2004-05-31 2005-12-08 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006124418A (en) * 2004-10-26 2006-05-18 Sumitomo Bakelite Co Ltd Semiconductor device
JP2017082052A (en) * 2015-10-26 2017-05-18 住友ベークライト株式会社 Epoxy resin composition and semiconductor device using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04359064A (en) * 1991-06-04 1992-12-11 Sekisui Chem Co Ltd Thermoplastic resin composition reduced in ion elution
JPH1121423A (en) * 1997-07-02 1999-01-26 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device using the same
JPH11140166A (en) * 1997-11-11 1999-05-25 Shin Etsu Chem Co Ltd Epoxy resin composition for semiconductor sealing and semiconductor device
JPH11323089A (en) * 1998-05-15 1999-11-26 Shin Etsu Chem Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device
JP2000017150A (en) * 1998-06-29 2000-01-18 Shin Etsu Chem Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04359064A (en) * 1991-06-04 1992-12-11 Sekisui Chem Co Ltd Thermoplastic resin composition reduced in ion elution
JPH1121423A (en) * 1997-07-02 1999-01-26 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device using the same
JPH11140166A (en) * 1997-11-11 1999-05-25 Shin Etsu Chem Co Ltd Epoxy resin composition for semiconductor sealing and semiconductor device
JPH11323089A (en) * 1998-05-15 1999-11-26 Shin Etsu Chem Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device
JP2000017150A (en) * 1998-06-29 2000-01-18 Shin Etsu Chem Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040981A (en) * 2001-07-30 2003-02-13 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2004067717A (en) * 2002-08-01 2004-03-04 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2004107584A (en) * 2002-09-20 2004-04-08 Hitachi Chem Co Ltd Epoxy resin molding material for encapsulation and electronic part device provided with element
JP2005336418A (en) * 2004-05-31 2005-12-08 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP4608950B2 (en) * 2004-05-31 2011-01-12 住友ベークライト株式会社 Epoxy resin composition and semiconductor device
JP2006124418A (en) * 2004-10-26 2006-05-18 Sumitomo Bakelite Co Ltd Semiconductor device
JP2017082052A (en) * 2015-10-26 2017-05-18 住友ベークライト株式会社 Epoxy resin composition and semiconductor device using the same

Similar Documents

Publication Publication Date Title
EP0926196B1 (en) Epoxy resin compositions for encapsulating semiconductors, and semiconductor devices
JP4774784B2 (en) Epoxy resin composition and semiconductor device
JP2002179773A (en) Epoxy resin composition and semiconductor device
JP3377933B2 (en) Epoxy resin composition and semiconductor device using the same
JP4677761B2 (en) Epoxy resin composition and semiconductor device
JP2002212397A (en) Epoxy resin composition and semiconductor device
JP5098125B2 (en) Epoxy resin composition and semiconductor device
JPH11302501A (en) Epoxy resin composition and semiconductor device
JPH10158360A (en) Epoxy resin composition
JP4765294B2 (en) Semiconductor device
JP3390335B2 (en) Semiconductor device
JP2001158852A (en) Epoxy resin composition and semiconductor device
JP2001049084A (en) Epoxy resin composition and semiconductor apparatus
JP2003064157A (en) Epoxy resin composition and semiconductor device
JP2001329142A (en) Epoxy resin composition and semiconductor device
JP2007077237A (en) Epoxy resin composition for sealing semiconductor, and semiconductor device by using the same
JP2001226561A (en) Epoxy resin composition and semiconductor device
JP2002317102A (en) Epoxy resin composition and semiconductor device
JP2004091533A (en) Epoxy resin composition and semiconductor device
JP2002179882A (en) Epoxy resin composition and semiconductor device
JPH11100491A (en) Epoxy resin composition and semiconductor device
JP2001335679A (en) Epoxy resin composition and semi-conductor device
JP2002293886A (en) Epoxy resin composition and semiconductor device
JP4524837B2 (en) Epoxy resin composition and semiconductor device
JP2003206391A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706