JPH10114516A - Production of zeolite film - Google Patents

Production of zeolite film

Info

Publication number
JPH10114516A
JPH10114516A JP28472496A JP28472496A JPH10114516A JP H10114516 A JPH10114516 A JP H10114516A JP 28472496 A JP28472496 A JP 28472496A JP 28472496 A JP28472496 A JP 28472496A JP H10114516 A JPH10114516 A JP H10114516A
Authority
JP
Japan
Prior art keywords
silica
zeolite membrane
substrate
zeolite
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28472496A
Other languages
Japanese (ja)
Other versions
JP3509427B2 (en
Inventor
Taisuke Ando
泰典 安藤
Masaki Kato
正樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP28472496A priority Critical patent/JP3509427B2/en
Publication of JPH10114516A publication Critical patent/JPH10114516A/en
Application granted granted Critical
Publication of JP3509427B2 publication Critical patent/JP3509427B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a uniform zeolite film a almost free from defects and having superior separating performance by forming a zeolite film on a porous substrate by hydrothermal synthesis using a sol of composite colloid consisting of silica and a metal oxide other than silica in a stock soln. SOLUTION: A stock soln. is prepd. by mixing NaOH with tetrapropylammonium bromide(TPABr), distilled water, a sol of alumina-silica composite colloid and a silica sol so that the molar ratio of TPABr:Na2 O:Al2 O3 : SiO2 :H2 O is regulated to 0.1:0.05:0.01:1:80. A cylindrical porous alumina substrate 3 is put in an autoclave, this autoclave is evacuated to expel bubbles from the substrate 3 and the ports in the substrate 3 are filled with the stock soln. A zeolite film 2 is formed on the substrate 3 by hydrothermal synthesis by holding at 170 deg.C under 8atm for 72hr and the substrate 3 is subjected to ultrasonic cleaning in hot water at 80 deg.C. Distilled water at ordinary temp. is substd. for the hot water and the substrate 3 is dried at 100 deg.C for 24hr and heat-treated at 600 deg.C for 2hr to remove the residual TPABr in the film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】ゼオライトは結晶中に数オン
グストロームの細孔を有しており、このゼオライトの結
晶中の細孔の分子ふるい効果を利用するガス分離膜、パ
ーベーパレーション分離膜、メンブレンリアクター、ガ
スセンサー等への応用が考えられている。本発明は、こ
れら用途に用いるゼオライト膜の製造方法に関する。
BACKGROUND OF THE INVENTION Zeolite has pores of several angstroms in its crystal. Gas separation membranes, pervaporation separation membranes, membrane reactors utilizing the molecular sieving effect of the pores in the zeolite crystals. Applications to gas sensors and the like are being considered. The present invention relates to a method for producing a zeolite membrane used for these applications.

【0002】[0002]

【従来の技術】従来知られているゼオライト膜の製造方
法には、特公平4−80726号に開示されているゾル
又はゲルから水熱合成するゼオライト膜の製造方法、特
開平7−89714号に開示されているゼオライト膜を
水蒸気中で水熱合成する製造方法、特開平6−9904
4号に開示されているゾルの原料液中に多孔質支持体を
浸漬して水熱合成するゼオライト膜の製造方法等があ
る。
2. Description of the Related Art A conventionally known method for producing a zeolite membrane includes a method for producing a zeolite membrane hydrothermally synthesized from a sol or a gel disclosed in Japanese Patent Publication No. 4-80726, and Japanese Patent Application Laid-Open No. 7-89714. Production method for hydrothermally synthesizing the disclosed zeolite membrane in steam, JP-A-6-9904
No. 4 discloses a method for producing a zeolite membrane in which a porous support is immersed in a raw material solution of a sol and hydrothermally synthesized.

【0003】シリカライトのように結晶の骨格がシリカ
のみからなる特殊なゼオライトを除いて、通常のゼオラ
イトはシリカとアルミナからなる結晶骨格を有する。ゼ
オライト膜を製造するゾルやゲルの原料として、シリカ
源にコロイダルシリカ、ケイ酸ナトリウム、水ガラス等
が使用され、アルミナ源に硝酸アルミニウム、水酸化ア
ルミニウム、硫酸アルミニウム、アルミン酸ナトリウム
等が使用される。たとえば Sano et al.( Bull. Chem.
Soc. Jpn. 65 1992 P145-154.)はシリカ源にコロイ
ダルシリカを、アルミナ源に硝酸アルミニ ウムを使用
して、特開平7−89714号ではシリカ源にケイ酸ナ
トリウム、アルミナ源に硫酸アルミニウムを使用して水
熱合成でゼオライト膜が製造されている。
[0003] Except for a special zeolite whose crystal skeleton is made of only silica such as silicalite, ordinary zeolites have a crystal skeleton made of silica and alumina. Colloidal silica, sodium silicate, water glass, etc. are used as the silica source and aluminum nitrate, aluminum hydroxide, aluminum sulfate, sodium aluminate, etc. are used as the alumina source as a raw material of the sol or gel for producing the zeolite membrane. . For example, Sano et al. (Bull. Chem.
Soc. Jpn. 65 1992 P145-154.) Uses colloidal silica as the silica source and aluminum nitrate as the alumina source. Japanese Patent Application Laid-Open No. 7-89714 discloses sodium silicate as the silica source and aluminum sulfate as the alumina source. Used to produce zeolite membranes by hydrothermal synthesis.

【0004】しかし、これらのゼオライト膜の製造方法
において、原料液にコロイダルシリカと硝酸アルミニウ
ムの水溶液を使用すると、アルミニウムイオンの影響で
コロイダルシリカが不安定化し、アルミニウムイオンの
濃度が増加するとゲル又は沈殿が生じる。また、原料液
にケイ酸ナトリウム水溶液と硫酸アルミニウム水溶液を
使用し、両者を混合すると混合時に沈殿が生じることか
ら、原料液のゾルやゲルは明らかに不均一である。
However, in these methods for producing a zeolite membrane, when an aqueous solution of colloidal silica and aluminum nitrate is used as a raw material liquid, the colloidal silica is destabilized by the influence of aluminum ions, and gel or precipitate is formed when the concentration of aluminum ions increases. Occurs. Further, when an aqueous solution of sodium silicate and an aqueous solution of aluminum sulfate are used as the raw material liquid, and the two are mixed, a precipitate is generated at the time of mixing, so that the sol or gel of the raw material liquid is obviously uneven.

【0005】ゾルやゲルの均一性が水熱合成によって形
成されるゼオライト膜の特性にどのような影響を及ぼす
かを調べるため、ZSM−5膜とシリカライト膜の性能
を比較してみる。ZSM−5膜とシリカライト膜はほぼ
同じ結晶構造を有しているが、シリカライト膜がアルミ
ナ成分を全く含まず、ZSM−5がアルミナ成分を含む
点で異なる。いずれのゼオライト膜も多くの研究者によ
り研究されているが、分離試験に供されたデータを比較
するとシリカライト膜が顕著に優れた分離性能を示し、
アルミナを含むZSM−5膜は分離性能が劣る。
In order to examine how the uniformity of the sol or gel affects the properties of a zeolite membrane formed by hydrothermal synthesis, the performance of a ZSM-5 membrane and a silicalite membrane will be compared. The ZSM-5 film and the silicalite film have substantially the same crystal structure, but differ in that the silicalite film does not contain any alumina component and ZSM-5 contains the alumina component. Although all zeolite membranes have been studied by many researchers, comparing the data subjected to the separation test, the silicalite membrane shows remarkably excellent separation performance,
ZSM-5 membranes containing alumina have poor separation performance.

【0006】その理由は、ZSM−5膜の水熱合成に使
用された原料液のゾルやゲルが不均一であり、その結果
合成されたゼオライト膜が不均一となり、多くの欠陥を
含むためと考えられる。このことは他の結晶系のゼオラ
イト(A型、Y型等)膜にも当然あてはまる。ゼオライ
ト膜中に欠陥が存在することによる影響は、ガス分離膜
のように高品位(無欠陥)のゼオライト膜が要求される
用途ほど大きく、分離性能の低下が顕著である。
The reason is that the sol or gel of the raw material liquid used for the hydrothermal synthesis of the ZSM-5 membrane is non-uniform, and as a result, the synthesized zeolite membrane becomes non-uniform and contains many defects. Conceivable. This is naturally applicable to other crystalline zeolite (A type, Y type, etc.) membranes. The effect of the presence of defects in the zeolite membrane is greater in applications where a high-quality (defect-free) zeolite membrane is required, such as a gas separation membrane, and the separation performance is significantly reduced.

【0007】シリカとアルミナからなる結晶骨格を有す
るゼオライト膜の製造方法を例に挙げて説明する。この
種のゼオライト膜を合成するには、シリカ源、アルミナ
源及びアルカリ源を含む原料液を調製し、これを多孔質
支持体上に塗布するか、この原料液中に多孔質支持体を
浸漬した状態で水熱合成し、ゼオライト膜を水熱合成す
る。通常シリカ源の溶液とアルミナ源の溶液を混合する
とゲルが生じるので、この原料液の混合系は不安定であ
る。この原料液を低濃度にすれば一見安定しているよう
に見えるが、少しの濃度変化でゲル化しやすく不安定で
あり、原料液は均一でない状態にある。
A method for producing a zeolite membrane having a crystal skeleton composed of silica and alumina will be described as an example. In order to synthesize this type of zeolite membrane, a raw material solution containing a silica source, an alumina source and an alkali source is prepared and applied to a porous support, or the porous support is immersed in this raw material solution. Then, hydrothermal synthesis is performed, and the zeolite membrane is hydrothermally synthesized. Normally, when a silica source solution and an alumina source solution are mixed, a gel is formed, so that the mixing system of this raw material liquid is unstable. When this raw material liquid is made to have a low concentration, it seems to be stable at first glance, but it is likely to be gelled by a small change in concentration and is unstable, and the raw material liquid is not in a uniform state.

【0008】実際の水熱合成においても、シリカ源にコ
ロイダルシリカを、アルミナ源に硝酸アルミニウムを使
用した水熱合成では、コロイダルシリカに硝酸アルミニ
ウム溶液を混合すると、アルミニウムイオンの影響でシ
リカのコロイドが不安定になり、アルミニウムイオンの
濃度が増加するとゲル化又は沈殿が生じる。また、シリ
カ源にケイ酸ナトリウムを、アルミナ源に硫酸アルミニ
ウム水溶液を使用して両者を混合する場合にもゲル化が
起きることから原料液は不均一である。
[0008] In the actual hydrothermal synthesis, in the hydrothermal synthesis using colloidal silica as a silica source and aluminum nitrate as an alumina source, when colloidal silica is mixed with an aluminum nitrate solution, colloid of silica is affected by aluminum ions. It becomes unstable and gelation or precipitation occurs as the concentration of aluminum ions increases. Also, when sodium silicate is used as a silica source and an aqueous solution of aluminum sulfate is used as an alumina source to mix the two, the raw material liquid is not uniform because gelation occurs.

【0009】したがってこのような原料液を使用して製
造したゼオライトは均一でない。また、ゼオライト膜中
には多くの欠陥があり、分離膜に使用しても分離性能の
再現性が低かったり、実用性のある分離性能が得られな
いという結果になる。分離性能に優れたZSM−5等の
ゼオライト膜を水熱合成するには、これらの問題点を解
決する必要がある。しかし、原料液のゾルやゲルの均一
性と、安定性に着目して水熱合成で得られるゼオライト
膜について調べた報告はなく、その影響についても明ら
かでない。
Therefore, zeolite produced using such a raw material liquid is not uniform. In addition, there are many defects in the zeolite membrane, which results in poor reproducibility of the separation performance even when used for a separation membrane, or failure to obtain practical separation performance. To hydrothermally synthesize a zeolite membrane such as ZSM-5 having excellent separation performance, it is necessary to solve these problems. However, there is no report investigating the uniformity and stability of the sol or gel of the raw material liquid on the zeolite membrane obtained by hydrothermal synthesis, and the effect thereof is not clear.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、均一
で欠陥の少ない、優れた分離性能を示すシリカとシリカ
以外の金属酸化物を結晶骨格に有するゼオライト膜の製
造方法とゼオライト膜の提供にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a zeolite membrane having silica and a metal oxide other than silica in a crystal skeleton, which is uniform, has few defects, and has excellent separation performance, and a zeolite membrane. It is in.

【0011】[0011]

【課題を解決するための手段】本発明のゼオライト膜の
製造方法は、シリカとシリカ以外の金属酸化物を結晶の
骨格に有するゼオライト膜を、シリカとシリカ以外の金
属酸化物との複合コロイドのゾルを原料液に使用して多
孔質支持体上に水熱合成で形成することを特徴とする。
According to the method for producing a zeolite membrane of the present invention, a zeolite membrane having silica and a metal oxide other than silica in a crystal skeleton is formed by forming a composite colloid of silica and a metal oxide other than silica. It is characterized in that a sol is used as a raw material liquid and formed on a porous support by hydrothermal synthesis.

【0012】本発明者らは、この課題を解決しうるゼオ
ライト膜の製造方法として、アルミナとシリカからなる
複合コロイドゾルを原料液に使用するゼオライト膜の製
造方法を考えた。すなわち、シリカとアルミナが原子レ
ベルで混合した安定な複合コロイドゾルを原料液に使用
すれば、均一なゼオライトの水熱合成が可能になり、前
述の課題を解決できる。
The present inventors have considered a method for producing a zeolite membrane using a composite colloid sol comprising alumina and silica as a raw material liquid as a method for producing a zeolite membrane which can solve this problem. That is, if a stable composite colloidal sol in which silica and alumina are mixed at the atomic level is used as a raw material liquid, uniform hydrothermal synthesis of zeolite becomes possible, and the above-mentioned problem can be solved.

【0013】通常のゼオライト膜はシリカとアルミナか
らなる結晶骨格を有しているが、アルミナ以外の金属酸
化物を含むゼオライト膜についても、同じく複合コロイ
ドゾルを原液料に使用することで均一で優れた分離性能
を有するゼオライト膜を製造できる。
Although a normal zeolite membrane has a crystal skeleton composed of silica and alumina, a zeolite membrane containing a metal oxide other than alumina is also uniform and excellent by using a composite colloid sol as a stock solution. A zeolite membrane having separation performance can be manufactured.

【0014】[0014]

【発明の実施の形態】本発明のゼオライト膜の製造方法
についてはバリエーションが可能である。好ましい一例
として特願平7−329907に開示されている製造方
法に準ずる製造方法がある。すなわち、原料液にシリカ
とシリカ以外の金属酸化物からなる複合コロイドゾル、
アルカリ金属源及び水を使用し、必要に応じて結晶化促
進剤を添加してゼオライト膜を多孔質支持体上に水熱合
成で形成する。ゼオライトの結晶骨格を形成するシリカ
以外の金属酸化物としては、アルミナ、酸化鉄、酸化ク
ロム、イットリア、セリア、ランタン等がある。これら
の内、分離性能が良好な公知の各種のゼオライトが多く
存在し、かつ原料を安価に入手できることからアルミナ
を選択するのが好ましい。原料液の均一性を確保して均
質なゼオライト膜を形成するため、これらシリカ以外の
金属酸化物は、全量を複合コロイドゾルによって供給す
るのが好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method for producing a zeolite membrane of the present invention can be varied. As a preferred example, there is a manufacturing method according to the manufacturing method disclosed in Japanese Patent Application No. 7-329907. That is, a composite colloid sol comprising silica and a metal oxide other than silica in the raw material liquid,
A zeolite membrane is formed on a porous support by hydrothermal synthesis using an alkali metal source and water, and optionally adding a crystallization promoter. Metal oxides other than silica that form the crystal skeleton of zeolite include alumina, iron oxide, chromium oxide, yttria, ceria, lanthanum, and the like. Of these, it is preferable to select alumina because there are many known various zeolites having good separation performance and raw materials can be obtained at low cost. In order to form a homogeneous zeolite membrane by ensuring the uniformity of the raw material liquid, it is preferable that the entire amount of these metal oxides other than silica be supplied by a composite colloid sol.

【0015】アルカリ金属源には、水酸化ナトリウム、
水酸化カリウム、水酸化セシウム等を使用できる。ま
た、結晶化促進剤には、従来からゼオライトの水熱合成
に使用されているテトラプロピルアンモニウムブロマイ
ド(以下、TPABrと略す)、テトラブチルアンモニ
ウムブロマイド等を使用することができる。水熱合成し
うるゼオライト膜の結晶系の例として、ZSM−5、A
型、Y型等の各種ゼオライトを挙げることができる。
The alkali metal source includes sodium hydroxide,
Potassium hydroxide, cesium hydroxide and the like can be used. Further, as the crystallization promoter, tetrapropylammonium bromide (hereinafter abbreviated as TPABr), tetrabutylammonium bromide, or the like, which has been conventionally used for hydrothermal synthesis of zeolite, can be used. Examples of hydrothermally synthesized zeolite membrane crystal systems include ZSM-5, A
And various types of zeolites such as Y-type.

【0016】原料液には、市販の複合コロイドゾルを使
用できる。複合コロイドゾルの製造方法としては、たと
えば特開平7−10522号に記載されている、アルカ
リ金属ケイ酸塩とアルカリ可溶の無機化合物をpH10
以上のアルカリ性水溶液中に同時に添加する複合酸化物
コロイドゾルの製造方法を好ましく採用できる。この方
法によれば、シリカとシリカ以外の金属酸化物を含む各
種の複合コロイドゾルの製造が可能である。これ以外の
製造方法によるものでも、単なる混合物でなく、シリカ
とシリカ以外の金属酸化物が原子レベルで混ざり合って
いる複合コロイドゾルであれば使用できる。
As the raw material liquid, a commercially available composite colloid sol can be used. As a method for producing a composite colloid sol, for example, an alkali metal silicate and an alkali-soluble inorganic compound described in JP-A No.
The above-described method for producing a composite oxide colloid sol simultaneously added to an alkaline aqueous solution can be preferably employed. According to this method, it is possible to produce various composite colloid sols containing silica and a metal oxide other than silica. Any other production method can be used as long as it is not a simple mixture but a composite colloid sol in which silica and a metal oxide other than silica are mixed at an atomic level.

【0017】多孔質支持体の材質には、金属、合金、セ
ラミックス等を使用できる。多孔質支持体の形状は、ゼ
オライト膜を形成しうる形状であればよく、板状、筒
状、ぺレット状、中空糸状、ハニカム状等の各種の形状
が考えられる。多孔質支持体の製造方法には、多孔質支
持体の形状に合わせ、押し出し成形、プレス成形、鋳込
み成形等の製造方法を選択できる。また、多孔質支持体
は、2層以上の多孔質層を有する支持体であってもよ
く、2層目以降の多孔質層はディップコート、吹き付
け、塗布などの方法で形成するとよい。
As the material of the porous support, metals, alloys, ceramics and the like can be used. The shape of the porous support may be a shape capable of forming a zeolite membrane, and various shapes such as a plate shape, a tubular shape, a pellet shape, a hollow fiber shape, and a honeycomb shape are conceivable. As a method for producing the porous support, a production method such as extrusion molding, press molding, and casting molding can be selected according to the shape of the porous support. The porous support may be a support having two or more porous layers, and the second and subsequent porous layers may be formed by a method such as dip coating, spraying, or coating.

【0018】水熱合成は、常圧の容器又は圧力容器中に
原料液と多孔質支持体を入れ、80〜250℃で3〜1
80時間行うのが好ましい。水熱合成後、ゼオライト膜
が形成された多孔質支持体を取り出し、洗浄、乾燥後、
熱処理を行い、結晶化促進剤等の熱分解性成分を除去し
てゼオライト膜を得る。このときの複合コロイドゾルの
原料液は、シリカとシリカ以外の金属酸化物を合量で1
000〜200000PPM含むものとするのが好まし
い。その理由は1000PPMより少ないとゼオライト
がほとんど結晶成長せず、200000PPMより多い
と水熱合成中に原料液中でゼオライトの結晶が生成し、
粉末状のゼオライトが支持体上に沈降、付着することに
よってゼオライト膜中に欠陥が導入されるからである。
In the hydrothermal synthesis, the raw material liquid and the porous support are placed in a vessel or a pressure vessel at normal pressure, and are heated at 80 to 250 ° C. for 3 to 1 hour.
It is preferably performed for 80 hours. After hydrothermal synthesis, take out the porous support on which the zeolite membrane is formed, wash and dry,
A heat treatment is performed to remove a thermally decomposable component such as a crystallization accelerator to obtain a zeolite membrane. At this time, the raw material liquid of the composite colloid sol contains silica and a metal oxide other than silica in a total amount of 1%.
It is preferable to include 2,000 to 200,000 PPM. The reason is that if the amount is less than 1000 PPM, the zeolite hardly grows crystals.
This is because defects are introduced into the zeolite membrane by the sedimentation and adhesion of the powdery zeolite on the support.

【0019】ゼオライト膜は支持体表面に形成されてい
ても、あるいは支持体の細孔の内部に形成されていても
よい。
The zeolite membrane may be formed on the surface of the support, or may be formed inside pores of the support.

【0020】[0020]

【実施例1】出発原料として、水酸化ナトリウム、TP
ABr、蒸留水、アルミナとシリカの複合コロイドゾル
(触媒化成工業社製USBB−120、Al23:Si
2のモル比が1:3)及びシリカゾル(触媒化成工業
社製S1−30)を用いた。これらの原料を、TPAB
r:Na2O:Al23:SiO2:H2Oのモル比が0.
1:0.05:0.01:1:80となるように混合
し、ゼオライト膜の原料液とした。この原料液と円筒状
アルミナ多孔質支持体(外形10mm、内径7mm、長
さ100mm、平均気孔径約1μm、気孔率37%)を
耐圧容器(オートクレーブ)に入れ、オートクレーブ内
を真空引きし、多孔質支持体から気泡を追い出して気孔
内を原料液で充たした後、8気圧、170℃に72時間
保持し、水熱合成した。
Example 1 As starting materials, sodium hydroxide, TP
ABr, distilled water, composite colloidal sol of alumina and silica (USBB-120, Al 2 O 3 : Si manufactured by Kasei Kasei Kogyo Co., Ltd.)
The molar ratio of O 2 is 1: 3) and was used silica sol (Catalysts & Chemicals Industries Co., Ltd. S1-30). These raw materials are converted to TPAB
The molar ratio of r: Na 2 O: Al 2 O 3 : SiO 2 : H 2 O is 0.
The mixture was mixed at a ratio of 1: 0.05: 0.01: 1: 80 to obtain a raw material liquid for a zeolite membrane. This raw material liquid and a cylindrical alumina porous support (outer diameter 10 mm, inner diameter 7 mm, length 100 mm, average pore diameter about 1 μm, porosity 37%) are placed in a pressure-resistant container (autoclave), and the inside of the autoclave is evacuated to a vacuum. After the bubbles were expelled from the porous support and the pores were filled with the raw material liquid, the mixture was held at 8 atm and 170 ° C. for 72 hours to perform hydrothermal synthesis.

【0021】水熱合成後、ゼオライト膜が形成された多
孔質支持体を80℃の温水中で超音波洗浄し、常温の蒸
留水で置換した後、100℃で24時間乾燥した。その
後600℃で2時間熱処理し、ゼオライト膜中に残存す
るTPABrを除去した。ゼオライト膜はX線回折によ
って結晶系がZSM−5であることを確認した。またX
線回折の結果からゼオライト膜の細孔径が約0.6nm
と見積もられた。この細孔径は一般的なZSM−5の細
孔径と一致する。また、この膜の破断面をSEMで観察
し、支持体細孔内でゼオライト結晶が成長して膜を形成
していることが確認された。この水熱合成に使用した原
料液中に含まれるシリカとアルミナ(SiO2+Al2
3)を合わせた濃度は42400PPMであった。
After hydrothermal synthesis, the porous support on which the zeolite membrane was formed was ultrasonically washed in hot water at 80 ° C., replaced with distilled water at room temperature, and dried at 100 ° C. for 24 hours. Thereafter, heat treatment was performed at 600 ° C. for 2 hours to remove TPABr remaining in the zeolite membrane. The crystal system of the zeolite membrane was confirmed to be ZSM-5 by X-ray diffraction. Also X
From the results of X-ray diffraction, the pore diameter of the zeolite membrane was about 0.6 nm.
It was estimated. This pore diameter matches the pore diameter of general ZSM-5. Further, the fracture surface of this film was observed by SEM, and it was confirmed that zeolite crystals grew in the pores of the support to form a film. Silica and alumina (SiO 2 + Al 2 O) contained in the raw material liquid used for this hydrothermal synthesis
The combined concentration of 3 ) was 42400 PPM.

【0022】実施例1で試作したゼオライト膜を組み込
んだエレメントを用いて25℃で、二酸化炭素、窒素、
酸素、メタン、i−ブタンの各種純気体の透過試験を行
い、透過係数比を測定した。なお透過係数比とは各純気
体の透過率の比を表す。結果を表1に示す。表1から実
施例1により試作されたゼオライト膜は、種々の気体の
分離に有効であることが分かる。
Using the element incorporating the zeolite membrane prototyped in Example 1, carbon dioxide, nitrogen,
Permeation tests of various pure gases of oxygen, methane, and i-butane were performed, and the permeability coefficient ratio was measured. Here, the transmission coefficient ratio indicates a transmission ratio of each pure gas. Table 1 shows the results. From Table 1, it can be seen that the zeolite membrane experimentally manufactured in Example 1 is effective for separating various gases.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【実施例2】ゼオライト膜の原料液の調合比(モル比)
をTPABr:Na2O:Al23:SiO 2:H2O=
0.1:0.05:0.0025:1:80とした以外
は、実施例1と同様にして多孔質支持体上にZSM−5
膜を水熱合成で形成した。このゼオライト膜もX線回折
の結果から、結晶系がZSM−5であることを確認し
た。またX線回折の結果からゼオライト膜の細孔径は約
0.6nmと見積もられた。この細孔径は一般的なZS
M−5結晶の細孔径と一致する。この水熱合成に使用し
た原料液中に含まれるシリカとアルミナ(SiO2+A
23)を合せた濃度は41800PPMであった。
Example 2 Mixing ratio (molar ratio) of raw material liquid for zeolite membrane
To TPABr: Na 2 O: Al 2 O 3 : SiO 2 : H 2 O =
Except that the ratio was set to 0.1: 0.05: 0.0025: 1: 80, the ZSM-5 was placed on the porous support in the same manner as in Example 1.
The membrane was formed by hydrothermal synthesis. From the result of X-ray diffraction, it was confirmed that the zeolite membrane had a crystal system of ZSM-5. From the result of X-ray diffraction, the pore diameter of the zeolite membrane was estimated to be about 0.6 nm. This pore size is a general ZS
It matches the pore size of the M-5 crystal. Silica and alumina (SiO 2 + A) contained in the raw material liquid used for this hydrothermal synthesis
l 2 O 3 ) was 41800 PPM.

【0025】また、この膜の破断面をSEMで観察し、
支持体細孔内でゼオライト膜結晶が成長して膜を形成し
ていることが確認された。
Further, the fracture surface of this film was observed by SEM,
It was confirmed that zeolite membrane crystals grew in the pores of the support to form a membrane.

【0026】実施例2で試作したゼオライト膜を組み込
んだエレメントを用いて25℃で、二酸化炭素、窒素、
酸素、メタン、i−ブタンの各種純気体の透過試験を行
い、透過係数比を測定した。なお透過係数比とは各純気
体の透過率の比を表す。結果を表2に示す。表2から実
施例2により試作されたゼオライト膜は、種々の気体の
分離に有効であることが分る。
Using an element incorporating the zeolite membrane produced in Example 2 at 25 ° C., carbon dioxide, nitrogen,
Permeation tests of various pure gases of oxygen, methane, and i-butane were performed, and the permeability coefficient ratio was measured. Here, the transmission coefficient ratio indicates a transmission ratio of each pure gas. Table 2 shows the results. From Table 2, it can be seen that the zeolite membrane experimentally manufactured in Example 2 is effective for separating various gases.

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【比較例1】出発原料のアルミナ源である複合コロイド
ゾルの代りに硝酸アルミニウムを使用した以外は、実施
例1と同様にしてZSM−5膜を水熱合成した。得られ
たゼオライト膜をSEMで観察したところ、多孔質支持
体の表面が完全にZSM−5膜で覆われておらず、多孔
質支持体の表面が露出している部分が確認された。この
水熱合成に使用した原料液中に含まれるシリカとアルミ
ナ(SiO2+Al23)を合せた濃度は42400P
PMであった。
Comparative Example 1 A ZSM-5 membrane was hydrothermally synthesized in the same manner as in Example 1 except that aluminum nitrate was used instead of the composite colloid sol as the starting material alumina source. When the obtained zeolite membrane was observed by SEM, it was confirmed that the surface of the porous support was not completely covered with the ZSM-5 membrane, and that the surface of the porous support was exposed. The total concentration of silica and alumina (SiO 2 + Al 2 O 3 ) contained in the raw material liquid used for the hydrothermal synthesis is 42400 P
PM.

【0029】[0029]

【比較例2】ゼオライト膜の原料液の調合比(モル比)
を、TPABr:Na2O:Al23:SiO2:H2O=
0.1:0.05:0.0025:1:80とした以外
は、比較例1 と同様にしてZSM−5膜を水熱合成し
た。このゼオライト膜はX線回折の結果から結晶系がZ
SM−5であると確認された。またX線回折の結果か
ら、ゼオライト膜の細孔径は約0.6nmと見積もら
れ、一般的なZSM−5の細孔径と一致した。比較例1
の場合と異なり、SEMによる観察では多孔質支持体の
表面は完全にゼオライト膜で覆われていて、ゼオライト
膜には欠陥が観察されなかった。この水熱合成に使用し
た原料液中に含まれるシリカとアルミナ(SiO2+A
23)を合せた濃度は41800PPMであった。
Comparative Example 2 Mixing ratio (molar ratio) of zeolite membrane raw material liquid
Is converted to TPABr: Na 2 O: Al 2 O 3 : SiO 2 : H 2 O =
A ZSM-5 membrane was hydrothermally synthesized in the same manner as in Comparative Example 1 except that the ratio was set to 0.1: 0.05: 0.0025: 1: 80. The crystal system of this zeolite membrane was Z based on the result of X-ray diffraction.
It was confirmed to be SM-5. Also, from the results of X-ray diffraction, the pore diameter of the zeolite membrane was estimated to be about 0.6 nm, which coincided with the pore diameter of general ZSM-5. Comparative Example 1
Unlike the case of the above, the surface of the porous support was completely covered with the zeolite membrane in observation by SEM, and no defect was observed in the zeolite membrane. Silica and alumina (SiO 2 + A) contained in the raw material liquid used for this hydrothermal synthesis
l 2 O 3 ) was 41800 PPM.

【0030】また、この膜の破断面をSEMで観察し、
支持体の細孔内でゼオライト結晶が成長して膜を形成し
ていることが確認された。
Further, the fracture surface of this film was observed by SEM,
It was confirmed that zeolite crystals grew in the pores of the support to form a film.

【0031】[0031]

【評価結果】得られたゼオライト膜の分離特性を評価す
るため、水熱合成した上記ゼオライト膜をガス分離試験
に供した。ガス分離試験は以下のようにして行った。図
1に示す円筒状のゼオライト分離膜のサンプル1の多孔
質支持体の一方の開口をアクリル板4で密封し、他方の
ガス導入管6を取り付けた側を接続部材5(商品名スウ
ェージロック)を介してガスクロマトグラフに連結し
た。CO210容量%、N290容量%の混合気体を円筒
状のサンプル1の外周側から供給し、ゼオライト膜を透
過した気体をガスクロマトグラフで分析し、数1の式に
より透過率および分離係数を算出した。得られた結果
(分離係数、透過率)を表1にまとめて示す。
[Evaluation Results] In order to evaluate the separation characteristics of the obtained zeolite membrane, the above-mentioned hydrothermally synthesized zeolite membrane was subjected to a gas separation test. The gas separation test was performed as follows. One opening of the porous support of the cylindrical zeolite separation membrane sample 1 shown in FIG. 1 is sealed with an acrylic plate 4, and the other side to which the gas introduction pipe 6 is attached is connected to a connecting member 5 (trade name Swagelok). Via a gas chromatograph. A mixed gas of 10% by volume of CO 2 and 90% by volume of N 2 was supplied from the outer peripheral side of the cylindrical sample 1, and the gas permeated through the zeolite membrane was analyzed by gas chromatography. Was calculated. The obtained results (separation coefficient, transmittance) are summarized in Table 1.

【0032】[0032]

【数1】 (Equation 1)

【0033】ここでQは透過率(mol/m2・s・P
a)、Aは透過量(mol)、Prは供給側 圧力(P
a)、Ppは透過側圧力(Pa)、Sは膜面積(m2)、
tは時間(s)である 。また分離係数α*は数2の式に
より算出した。(ガス種1がCO2、ガス種2がN2
Here, Q is the transmittance (mol / m 2 · s · P
a), A is the permeation amount (mol), Pr is the supply pressure (P
a), P p is the permeate pressure (Pa), S is the membrane area (m 2 ),
t is time (s). Further, the separation coefficient α * was calculated by the equation (2). (Gas type 1 is CO 2 , gas type 2 is N 2 )

【0034】[0034]

【数2】 (Equation 2)

【0035】ここでPrは供給側ガスの全圧(Pa)、
pは透過側ガスの全圧(Pa)、Rpは透過側流量(m
ol/min.)、Paは開放圧(Pa)、Tは温度
(K)、Toは標準温度(K)、Poは標準圧(Pa)、
p1は透過側ガス(1)濃度容量(%)、Cr1は供給側
ガス(1)濃度容量(%)、Cp2は透過側ガス(2)濃
度容量(%)、Cr2は供給側ガス(2)濃度容量
(%)、Q1はガス(1)透過率(mol/m2・s・P
a)、Q2はガス(2) 透過率(mol/m2・s・P
a)、α*は分離係数である。
Here, Pr is the total pressure (Pa) of the supply gas,
P p is the total pressure (Pa) of the permeate gas, and R p is the permeate flow rate (m
ol / min. ), P a is the opening pressure (Pa), T is temperature (K), T o is the standard temperature (K), P o is the standard pressure (Pa),
C p1 is the permeate gas (1) concentration capacity (%), C r1 is the supply gas (1) concentration capacity (%), C p2 is the permeate gas (2) concentration capacity (%), and C r2 is the supply side. Gas (2) concentration capacity (%), Q 1 is gas (1) transmittance (mol / m 2 · s · P
a), Q 2 is gas (2) permeability (mol / m 2 · s · P
a), α * is a separation coefficient.

【0036】表3に分離試験の結果をまとめて示す。シ
リカ/アルミナのモル比が100/1のZSM−5膜で
は、アルミナ源に硝酸アルミニウムを用いて水熱合成し
たゼオライト膜(比較例1)ではガス分離性能を示さな
いのに対し、同一組成の原料液で複合コロイドゾルを使
用したゼオライト膜(実施例1)では良好なガス分離性
能を示した。またシリカ/アルミナのモル比が400/
1の膜(実施例2、比較例2)においても、複合コロイ
ドゾルを原料液に用いた実施例2の場合に、優れた分離
性能を示した。
Table 3 summarizes the results of the separation test. In the ZSM-5 membrane having a silica / alumina molar ratio of 100/1, a zeolite membrane hydrothermally synthesized using aluminum nitrate as an alumina source (Comparative Example 1) does not exhibit gas separation performance, whereas the ZSM-5 membrane has the same composition. The zeolite membrane using the composite colloid sol as the raw material liquid (Example 1) showed good gas separation performance. The silica / alumina molar ratio is 400 /
The membrane of Example 1 (Example 2, Comparative Example 2) also showed excellent separation performance in Example 2 in which the composite colloid sol was used as a raw material liquid.

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【発明の効果】以上の試験結果から分かるように、ゼオ
ライト膜の原料液に複合コロイドゾルを使用して多孔質
支持体上にゼオライト膜を水熱合成で形成する本発明の
製造方法によって、多孔質支持体上に形成されるゼオラ
イト膜の均一性が向上し、ゼオライト膜中の欠陥を顕著
に少なくでき、優れた分離性能を有するゼオライト膜を
製造できる。このような本発明の製造方法によるゼオラ
イト膜は、ガス分離膜、パーベーパレーション分離膜、
メンブレンリアクター、ガスセンサー等の用途に優れた
分離性能を有する分離膜として使用できる。
As can be seen from the above test results, the production method of the present invention in which a zeolite membrane is formed on a porous support by hydrothermal synthesis using a composite colloid sol as a raw material liquid for the zeolite membrane, The uniformity of the zeolite membrane formed on the support is improved, defects in the zeolite membrane can be significantly reduced, and a zeolite membrane having excellent separation performance can be manufactured. Such a zeolite membrane according to the production method of the present invention is a gas separation membrane, a pervaporation separation membrane,
It can be used as a separation membrane having excellent separation performance for applications such as membrane reactors and gas sensors.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法によるゼオライト膜の試験に
供した円筒状のゼオライト分離膜のサンプルの縦断面で
ある。
FIG. 1 is a longitudinal section of a sample of a cylindrical zeolite separation membrane subjected to a test of a zeolite membrane according to the production method of the present invention.

【符号の説明】[Explanation of symbols]

1:分離膜サンプル 2:ゼオライト膜 3:多孔質支持体 4:アクリル板 5:接続部材 6:ガス導入管 1: Separation membrane sample 2: Zeolite membrane 3: Porous support 4: Acrylic plate 5: Connection member 6: Gas inlet tube

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】シリカとシリカ以外の金属酸化物を結晶骨
格に有するゼオライト膜を、シリカとシリカ以外の金属
酸化物との複合コロイドゾルを原料液に使用して多孔質
支持体上に水熱合成で形成することを特徴とするゼオラ
イト膜の製造方法。
1. A hydrothermal synthesis on a porous support using a zeolite membrane having silica and a metal oxide other than silica in a crystal skeleton as a raw material solution using a composite colloidal sol of silica and a metal oxide other than silica. A method for producing a zeolite membrane.
【請求項2】複合コロイドゾルを使用した原料液がシリ
カとシリカ以外の金属酸化物を合量で1000〜200
000PPM含むものである請求項1に記載のゼオライ
ト膜の製造方法。
2. A raw material liquid using a composite colloidal sol is 1000 to 200 in total of silica and a metal oxide other than silica.
The method for producing a zeolite membrane according to claim 1, wherein the zeolite membrane contains 000 PPM.
【請求項3】シリカ以外の金属酸化物がアルミナであ
り、アルミナ源がすべて複合コロイドゾルによって供給
される請求項1又は2に記載のゼオライト膜の製造方
法。
3. The method for producing a zeolite membrane according to claim 1, wherein the metal oxide other than silica is alumina, and the alumina source is all supplied by a composite colloid sol.
JP28472496A 1996-10-07 1996-10-07 Method for producing zeolite membrane Expired - Lifetime JP3509427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28472496A JP3509427B2 (en) 1996-10-07 1996-10-07 Method for producing zeolite membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28472496A JP3509427B2 (en) 1996-10-07 1996-10-07 Method for producing zeolite membrane

Publications (2)

Publication Number Publication Date
JPH10114516A true JPH10114516A (en) 1998-05-06
JP3509427B2 JP3509427B2 (en) 2004-03-22

Family

ID=17682171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28472496A Expired - Lifetime JP3509427B2 (en) 1996-10-07 1996-10-07 Method for producing zeolite membrane

Country Status (1)

Country Link
JP (1) JP3509427B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005519012A (en) * 2002-02-27 2005-06-30 ボルボ テクノロジー コーポレイション Hydrogen fuel generation system for fuel cells
WO2006132237A1 (en) 2005-06-10 2006-12-14 Bussan Nanotech Research Institute, Inc. Manufacturing device for zeolite membrane
JP2007029795A (en) * 2005-07-22 2007-02-08 Bussan Nanotech Research Institute Inc Manufacturing method of zeolite membrane
US7951738B2 (en) 2005-09-28 2011-05-31 Mitsubishi Chemical Corporation Process for producing zeolite separation membrane
JP2012501286A (en) * 2008-08-29 2012-01-19 コーニング インコーポレイテッド Preparation method of inorganic membrane
US8258069B2 (en) 2005-09-01 2012-09-04 Mitsubishi Chemical Corporation Zeolitic separation membrane and process for producing the same
US8263179B2 (en) 2006-02-24 2012-09-11 Mitsubishi Chemical Corporation Process for producing zeolite separation membrane
JP2012232891A (en) * 2011-04-27 2012-11-29 Chinese Petrochemical Dev Corp Titanium-silicalite molecular sieve, method for preparing the same and method for preparing cyclohexanone oxime using the molecular sieve
WO2016084846A1 (en) * 2014-11-25 2016-06-02 日本碍子株式会社 Method for manufacturing zeolite membrane structure
WO2019159782A1 (en) * 2018-02-15 2019-08-22 日本碍子株式会社 Gas separation device, gas separation method, and gas separation membrane

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005519012A (en) * 2002-02-27 2005-06-30 ボルボ テクノロジー コーポレイション Hydrogen fuel generation system for fuel cells
US8105548B2 (en) 2005-06-10 2012-01-31 Mitsubishi Chemical Corporation Manufacturing device for zeolite membrane
WO2006132237A1 (en) 2005-06-10 2006-12-14 Bussan Nanotech Research Institute, Inc. Manufacturing device for zeolite membrane
JPWO2006132237A1 (en) * 2005-06-10 2009-01-08 三菱化学株式会社 Zeolite membrane production equipment
JP4650489B2 (en) * 2005-06-10 2011-03-16 三菱化学株式会社 Zeolite membrane production equipment
JP2007029795A (en) * 2005-07-22 2007-02-08 Bussan Nanotech Research Institute Inc Manufacturing method of zeolite membrane
US8258069B2 (en) 2005-09-01 2012-09-04 Mitsubishi Chemical Corporation Zeolitic separation membrane and process for producing the same
US7951738B2 (en) 2005-09-28 2011-05-31 Mitsubishi Chemical Corporation Process for producing zeolite separation membrane
US8263179B2 (en) 2006-02-24 2012-09-11 Mitsubishi Chemical Corporation Process for producing zeolite separation membrane
JP2012501286A (en) * 2008-08-29 2012-01-19 コーニング インコーポレイテッド Preparation method of inorganic membrane
JP2012232891A (en) * 2011-04-27 2012-11-29 Chinese Petrochemical Dev Corp Titanium-silicalite molecular sieve, method for preparing the same and method for preparing cyclohexanone oxime using the molecular sieve
WO2016084846A1 (en) * 2014-11-25 2016-06-02 日本碍子株式会社 Method for manufacturing zeolite membrane structure
CN107073409A (en) * 2014-11-25 2017-08-18 日本碍子株式会社 The manufacture method of Zeolite membrane structures body
JPWO2016084846A1 (en) * 2014-11-25 2017-10-19 日本碍子株式会社 Method for producing zeolite membrane structure
US10625215B2 (en) 2014-11-25 2020-04-21 Ngk Insulators, Ltd. Method for manufacturing zeolite membrane structure
WO2019159782A1 (en) * 2018-02-15 2019-08-22 日本碍子株式会社 Gas separation device, gas separation method, and gas separation membrane
CN111699032A (en) * 2018-02-15 2020-09-22 日本碍子株式会社 Gas separation device, gas separation method, and gas separation membrane
JPWO2019159782A1 (en) * 2018-02-15 2021-01-28 日本碍子株式会社 Gas separation device, gas separation method and gas separation membrane
US11986778B2 (en) 2018-02-15 2024-05-21 Ngk Insulators, Ltd. Gas separation apparatus, method of gas separation, and gas separation membrane

Also Published As

Publication number Publication date
JP3509427B2 (en) 2004-03-22

Similar Documents

Publication Publication Date Title
US6140263A (en) Process for the production of supported zeolite membranes, and zeolite membranes so produced
US6582495B2 (en) Process for preparing supported zeolitic membranes by temperature-controlled crystallisation
US20150044130A1 (en) Metal doped zeolite membrane for gas separation
JP4209085B2 (en) Zeolite composite membrane and method for producing the same
CA2290248A1 (en) Membrane comprising a porous carrier and a layer of a molecular sieve and its preparation
WO2005087356A1 (en) Separation membrane
JP5051816B2 (en) Philipsite type zeolite composite membrane and method for producing the same
JP4494685B2 (en) Zeolite laminated composite and production method thereof
JPWO2014069676A1 (en) Ceramic separation membrane structure and repair method thereof
JP5051815B2 (en) Marinoite-type zeolite composite membrane and method for producing the same
JPH10114516A (en) Production of zeolite film
US8043988B2 (en) FAU-structural-type supported zeolite membranes, their process for preparation and their applications
JP3316173B2 (en) Substrate for supporting zeolite membrane
JP4984566B2 (en) Method for producing zeolite separation membrane
JP4759724B2 (en) Zeolite membrane and method for producing the same
JPH1057784A (en) Zeolite separation membrane and its production
JP2002201020A (en) Zeolite seed crystal, and method for producing zeolite membrane using the seed crystal
JP2002128512A (en) Ceramic material, ceramic membrane and use thereof
US20220241732A1 (en) Zeolite film composite body, method for producing same, and fluid separation method
JP2004002160A (en) Method for coating zeolite crystal, substrate coated therewith, production method for zeolite membrane, zeolite membrane, and separation method using the membrane
JPWO2005021141A1 (en) Gas separator and method for producing the same
JP2005125313A (en) Zeolite-membrane supporting base material and zeolite-membrane composite body
EP0674939B1 (en) Process for producing an inorganic gas separation membrane
JP3770504B2 (en) Zeolite membrane and method for producing the same
MXPA04002548A (en) Zeolite laminated composite and zeolite membrane reactor using the same.

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031222

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term