JPH1057784A - Zeolite separation membrane and its production - Google Patents

Zeolite separation membrane and its production

Info

Publication number
JPH1057784A
JPH1057784A JP23469696A JP23469696A JPH1057784A JP H1057784 A JPH1057784 A JP H1057784A JP 23469696 A JP23469696 A JP 23469696A JP 23469696 A JP23469696 A JP 23469696A JP H1057784 A JPH1057784 A JP H1057784A
Authority
JP
Japan
Prior art keywords
zeolite
membrane
separation membrane
separation
porous substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23469696A
Other languages
Japanese (ja)
Other versions
JP3128517B2 (en
Inventor
Shinichi Nakao
真一 中尾
Izumi Kumakiri
泉 熊切
Takehisa Yamaguchi
猛央 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16974985&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH1057784(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP23469696A priority Critical patent/JP3128517B2/en
Publication of JPH1057784A publication Critical patent/JPH1057784A/en
Application granted granted Critical
Publication of JP3128517B2 publication Critical patent/JP3128517B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a zeolite separation membrane having high pressure resistance for use, excellent separation performance which can be used as a reverse osmosis membrane and a nanometer filter membrane, and to provide its production method. SOLUTION: Zeolite seed crystals having the average grain size of 0.4 to 8 times the average pore diameter of a base body are deposited all over the surface of a porous base body. Then the base body is dipped in a source material soln. having 1000 to 10000ppm total concn. of Si and Al and 10000 to 60000ppm alkali ion concn., and then subjected to hydrothermal synthesis to form a dense zeolite crystal film of 0.5 to 30μm thickness. The obtd. zeolite separation membrane shows >=1.0MPa pressure resistance for use.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、分離膜として使用
できる使用耐圧が高く、逆浸透膜用にも好適なゼオライ
ト分離膜とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zeolite separation membrane which can be used as a separation membrane, has a high withstand pressure and is suitable for a reverse osmosis membrane, and a method for producing the same.

【0002】[0002]

【従来の技術】ゼオライト結晶は結晶中に数オングスト
ロームの細孔を有しており、この細孔の分子ふるい特性
や特異な吸着特性を利用したガス分離膜、浸透気化分離
膜(以下、PV膜という)、逆浸透分離膜(以下RO膜
という)、メンブレンリアクター、ガスセンサー等への
応用が期待されている。特にRO膜では有機溶剤に対す
る安定性が高く、細孔径が揃っていて、耐熱性と耐薬品
性があり、使用耐圧を高められると期待できることか
ら、ゼオライト分離膜は水と有機溶剤との混合液から有
機溶剤を分離する分離膜として有機物のRO膜等と比べ
て優れた分離性能と耐久性を期待される。また、ゼオラ
イト膜はゼオライトの種類による吸着性の違いを利用し
て水や有機溶剤を選択的に透過させることができるた
め、ゼオライトの種類を選択して有機溶剤の混合液から
特定の有機溶剤を分離するなど、目的に応じた分離が可
能である。
2. Description of the Related Art Zeolite crystals have pores of several angstroms in the crystals, and gas separation membranes and pervaporation separation membranes (hereinafter referred to as PV membranes) utilizing the molecular sieving characteristics and unique adsorption characteristics of these pores. It is expected to be applied to reverse osmosis separation membranes (hereinafter referred to as RO membranes), membrane reactors, gas sensors, and the like. In particular, RO membranes are highly stable against organic solvents, have a uniform pore size, have heat resistance and chemical resistance, and can be expected to have higher withstand pressure. Therefore, a zeolite separation membrane is a mixed solution of water and an organic solvent. As a separation membrane for separating an organic solvent from water, excellent separation performance and durability are expected as compared with an organic RO membrane or the like. In addition, zeolite membranes can selectively permeate water and organic solvents by utilizing the difference in adsorptivity depending on the type of zeolite, so select the type of zeolite and select a specific organic solvent from a mixture of organic solvents. Separation according to the purpose, such as separation, is possible.

【0003】RO膜やPV膜を使用する分離方法によれ
ば、従来行なわれている蒸留法と比べて分離に要するエ
ネルギーが少なくてすみ、分離のランニングコストが安
い等のメリットがあるので、研究が盛んに行なわれてい
る。
According to the separation method using an RO membrane or a PV membrane, there is an advantage that the energy required for the separation is smaller and the running cost of the separation is lower as compared with the conventional distillation method. Is being actively conducted.

【0004】ゼオライト分離膜の製造方法としては、特
公平4−80726号に開示されているようにゾル又は
ゲルの懸濁液中に基材を浸漬して水熱合成する方法、特
開平7−89714号に開示されているように基材表面
にコーティングしたゾル又はゲルを蒸気中で水熱処理し
てゼオライト膜を合成する方法、特開平6−99044
号に開示されているように希薄な合成原料のゾルに基材
を浸漬し、水熱合成によって基材上にゼオライト膜を形
成する方法が知られている。
As a method for producing a zeolite separation membrane, a method of immersing a substrate in a suspension of a sol or a gel and hydrothermally synthesizing the same as disclosed in Japanese Patent Publication No. 4-80726 is disclosed. No. 89714, a method of synthesizing a zeolite membrane by hydrothermally treating a sol or gel coated on the surface of a substrate in steam.
A method is known in which a base material is immersed in a dilute sol of a synthetic raw material and a zeolite membrane is formed on the base material by hydrothermal synthesis as disclosed in Japanese Patent Application Laid-Open No. H11-163,078.

【0005】従来のゼオライト膜は、高アルカリアルミ
ノシリカゲルあるいはゾルを原料とする水熱処理によっ
て合成され、ゼオライト膜の形成過程は基材に付着せし
めたゲルがアモルファス状態から結晶化してゼオライト
膜になるモデルや、反応液中に生成したゼオライト結晶
が基材上に沈積して膜になるモデルがある。これらの水
熱合成法によるゼオライト膜は、通常膜厚が数十〜数百
μmと厚く、図2に示すように膜内に大きな空隙のある
ブリッジ構造を有している。
A conventional zeolite membrane is synthesized by hydrothermal treatment using high alkali alumino-silica gel or sol as a raw material. The process of forming the zeolite membrane is such that a gel attached to a substrate crystallizes from an amorphous state into a zeolite membrane. There is also a model in which zeolite crystals generated in a reaction solution are deposited on a substrate to form a film. These zeolite membranes produced by the hydrothermal synthesis method are usually as thick as several tens to several hundreds of micrometers, and have a bridge structure with large voids in the membrane as shown in FIG.

【0006】ブリッジ構造を有するゼオライト膜が形成
される理由は、反応液中に多くの結晶核が発生して基材
上に沈積したり、ゲルが結晶化するに際して大きい体積
減少を伴うことによると考えられる。膜内にブリッジ構
造(空隙)を有するゼオライト膜はブリッジ構造の部分
の強度が弱いため使用耐圧が劣るという欠点がある。ま
た、膜厚が数十〜数百μmと厚いと透過流束が小さいと
いう問題がある。このようなゼオライト膜はRO膜には
適さず、今のところゼオライト膜をRO膜に使用したと
いう報告はない。
The reason that a zeolite membrane having a bridge structure is formed is that many crystal nuclei are generated in a reaction solution and settle on a substrate, and a large volume decrease occurs when a gel is crystallized. Conceivable. A zeolite membrane having a bridge structure (void) in the membrane has a drawback that the strength of the portion of the bridge structure is weak and the working pressure is inferior. Further, when the film thickness is as thick as several tens to several hundreds μm, there is a problem that the permeation flux is small. Such a zeolite membrane is not suitable for an RO membrane, and there is no report that a zeolite membrane was used for an RO membrane at present.

【0007】特開平7−109116号にはこれらの欠
点が改善されたゼオライト膜の製造方法が開示されてい
る。すなわち、希薄なシリカゾルの溶液にゼオライト種
結晶を懸濁させてスラリーとし、このスラリーをアルミ
ナ基板に含浸してゼオライト結晶を付着せしめた後、必
要に応じて基板を洗浄、乾燥する。この基板をゼオライ
ト前駆体を含む反応液に浸漬して水熱合成し、付着した
ゼオライト結晶を核として基板上にゼオライト膜を形成
する。
JP-A-7-109116 discloses a method for producing a zeolite membrane in which these disadvantages are improved. That is, a zeolite seed crystal is suspended in a dilute silica sol solution to form a slurry, and this slurry is impregnated into an alumina substrate to allow the zeolite crystal to adhere, and then the substrate is washed and dried if necessary. This substrate is immersed in a reaction solution containing a zeolite precursor and hydrothermally synthesized, and a zeolite film is formed on the substrate using the attached zeolite crystals as nuclei.

【0008】このゼオライトの水熱合成法では、ゼオラ
イト前駆体を含む反応液中に結晶核が生成してゼオライ
ト結晶が成長する副生ゼオライト結晶の生成を大幅に少
なくでき、基材上に結晶粒界の少ない緻密なゼオライト
膜を形成できるという。結晶核は反応液の過飽和度が高
いほど生成しやすく、反応液の過飽和度が高いとゼオラ
イトイの結晶成長が抑制される。反応液の過飽和度を低
くすると、結晶核の生成速度を一桁少なくでき、ゼオラ
イトが結晶成長しやすいので、予め基材に付着させてあ
る種結晶を成長させることによって緻密で結晶粒界の少
ないゼオライト結晶層からなるゼオライト膜を水熱合成
できるとしている。
In this hydrothermal synthesis method of zeolite, the generation of crystal nuclei in the reaction solution containing the zeolite precursor and the growth of zeolite crystals by-produced can greatly reduce the generation of zeolite crystals by-products. It is said that a dense zeolite membrane with few boundaries can be formed. The higher the degree of supersaturation of the reaction solution, the more easily the crystal nuclei are generated. If the degree of supersaturation of the reaction solution is high, the crystal growth of zeolite is suppressed. When the supersaturation degree of the reaction solution is lowered, the generation rate of crystal nuclei can be reduced by an order of magnitude, and zeolite can easily grow.Therefore, by growing a seed crystal previously attached to the base material, it is dense and has few crystal grain boundaries. It is stated that a zeolite membrane composed of a zeolite crystal layer can be hydrothermally synthesized.

【0009】しかし、特開平7−109116号で得ら
れたゼオライト膜がどのような構造と特性を有している
かについて実施例等による具体的なデータが示されてい
ない。実施例による具体的な成膜条件は不明であるが、
過飽和度の小さい反応液中で成膜するとしている。この
場合、過飽和度が小さいといっても反応溶液は過飽和で
あり、反応溶液中にも結晶核が生成してゼオライト結晶
が成長している。このことは、水熱合成時に反応液中で
生成したゼオライト結晶を分離して種結晶に利用するフ
ローシートが図示されていることから明白である。した
がって、特開平7−109116号に記載の方法によっ
てもゼオライト膜中にブリッジ構造ができるのを充分に
防げない。
[0009] However, there is no specific data in Examples or the like regarding the structure and characteristics of the zeolite membrane obtained in JP-A-7-109116. Although specific film forming conditions according to the examples are unknown,
It is stated that a film is formed in a reaction solution having a small degree of supersaturation. In this case, even if the degree of supersaturation is small, the reaction solution is supersaturated, and crystal nuclei are also generated in the reaction solution to grow zeolite crystals. This is apparent from the illustration of a flow sheet in which zeolite crystals generated in a reaction solution during hydrothermal synthesis are separated and used as seed crystals. Therefore, the formation of a bridge structure in the zeolite membrane cannot be sufficiently prevented by the method described in JP-A-7-109116.

【0010】[0010]

【発明が解決しようとする課題】本願発明は基材上に形
成されたゼオライト膜の使用耐圧が大きく、分離性能に
優れ、かつRO膜としても使用できるゼオライト分離膜
とその製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a zeolite separation membrane which has a high withstand voltage, is excellent in separation performance, and can be used as an RO membrane, and a method for producing the zeolite membrane formed on a substrate. It is in.

【0011】[0011]

【課題を解決するための手段】本願発明のゼオライト分
離膜は、多孔質基材上に厚さ0.5〜30μmの緻密な
ゼオライト結晶の膜が密着して形成されており、その分
離膜としての使用耐圧が1.0MPa以上あることを特
徴とする。
The zeolite separation membrane of the present invention comprises a dense zeolite crystal membrane having a thickness of 0.5 to 30 μm adhered on a porous substrate. Is characterized by having a withstand voltage of 1.0 MPa or more.

【0012】使用耐圧が1.0MPa以上という密着性
に優れたゼオライト膜は従来知られていない。このよう
に密着性、すなわち使用耐圧に優れたゼオライト膜は、
水熱合成の初期において種結晶の一部が消失して他の種
結晶が成長するような薄い原料溶液を水熱合成に用いる
ことによって始めて形成できる。この条件下で合成され
たゼオライト膜は、ゼオライト種結晶が多孔質基材上で
結晶成長してゼオライト結晶同志、及びゼオライト結晶
と多孔質基材とが密着した状態になる。使用される多孔
質基材の平均気孔径にもよるが、水熱合成時に多孔質基
材の平均気孔径の8倍以下のゼオライトの種結晶を使用
すれば、多孔質基材と密着した緻密なゼオライト結晶膜
となる。
[0012] A zeolite membrane excellent in adhesion with a working pressure of 1.0 MPa or more has not been known so far. As described above, the zeolite membrane having excellent adhesiveness, that is, excellent working pressure,
It can be formed only by using a thin raw material solution for hydrothermal synthesis in which a part of the seed crystal disappears and another seed crystal grows at the beginning of hydrothermal synthesis. In the zeolite membrane synthesized under these conditions, the zeolite seed crystal grows on the porous substrate, and the zeolite crystals and the zeolite crystal and the porous substrate come into close contact with each other. Depending on the average pore size of the porous substrate used, if a zeolite seed crystal having a pore size of 8 times or less the average pore size of the porous substrate is used during hydrothermal synthesis, dense Zeolite crystal film.

【0013】ゼオライト膜の厚さは、あまり大きいと合
成するのに長時間を要し、長時間かけて、あるいは繰り
返し水熱合成を行なうとゼオライト分離膜がコスト高に
なり、透過性能が低下することになるため、ゼオライト
膜の厚さは30μm以下としてある。ゼオライト膜の厚
さは、好ましくは1〜10μmである。
If the thickness of the zeolite membrane is too large, it takes a long time to synthesize, and if the hydrothermal synthesis is performed for a long time or repeatedly, the cost of the zeolite separation membrane increases and the permeation performance decreases. Therefore, the thickness of the zeolite membrane is set to 30 μm or less. The thickness of the zeolite membrane is preferably 1 to 10 μm.

【0014】本発明では、ゼオライト分離膜の使用耐圧
は、ゼオライト膜が形成されている側から多孔質基材の
方向に圧力を加えたときの使用耐圧をいう。ゼオライト
膜のゼオライト結晶が隙間なく多孔質基材の表面を覆う
ようにするには、ゼオライト種結晶は多孔質基材の表面
の一面に付着させなければならない。
In the present invention, the working pressure of the zeolite separation membrane means the working pressure when a pressure is applied from the side where the zeolite membrane is formed toward the porous substrate. In order for the zeolite crystals of the zeolite membrane to cover the surface of the porous substrate without gaps, the zeolite seed crystal must be attached to one surface of the surface of the porous substrate.

【0015】ゼオライト膜が0.5μmより薄いと使用
耐圧が劣ることになるが、ゼオライト結晶が30μmよ
り厚く形成されているゼオライト膜では、ゼオライト膜
中にブリッジ(空隙)が形成されやすく、ゼオライト膜
の耐圧強度が損なわれることがある。ゼオライト分離膜
の膜厚を0.5〜30μmの範囲とすることによって比
較的低コストで分離性能に優れたゼオライト分離膜を提
供できる。ゼオライト膜の膜厚は、安定して良好な耐圧
強度が得られるように、好ましくは1〜10μmとす
る。緻密なゼオライト膜とは、その断面を走査型電子顕
微鏡(SEM)で500倍に拡大して調べるとき、識別
しうる空隙が膜内に認められないものをいう。
When the zeolite membrane is thinner than 0.5 μm, the working pressure is inferior. However, in the zeolite membrane in which the zeolite crystal is formed thicker than 30 μm, a bridge (void) is easily formed in the zeolite membrane, and the zeolite membrane is formed. Pressure resistance may be impaired. By setting the thickness of the zeolite separation membrane in the range of 0.5 to 30 μm, it is possible to provide a zeolite separation membrane having relatively low cost and excellent separation performance. The thickness of the zeolite membrane is preferably 1 to 10 μm so that a good pressure resistance can be obtained stably. A dense zeolite membrane refers to a membrane in which no discernible void is found in the membrane when the cross section thereof is examined at a magnification of 500 times with a scanning electron microscope (SEM).

【0016】本発明のゼオライト分離膜の製造方法は、
多孔質基材の表面に、多孔質基材の平均気孔径の0.4
〜8倍の平均結晶粒径を有するゼオライト種結晶を一面
に付着させ、該多孔質基材をSiとAlを合わせた濃度
が1000〜10000ppmであり、アルカリイオン
濃度が10000〜60000ppmである原料溶液中
に浸漬して水熱合成することを特徴とする。
The method for producing a zeolite separation membrane of the present invention comprises:
On the surface of the porous substrate, the average pore diameter of the porous substrate is 0.4.
A raw material solution in which a zeolite seed crystal having an average crystal grain size of 88 times is adhered to one surface, and the porous substrate has a concentration of 1000 to 10000 ppm of a combination of Si and Al, and an alkali ion concentration of 10,000 to 60000 ppm. It is characterized in that it is immersed in and hydrothermally synthesized.

【0017】水熱合成に先立ってゼオライト種結晶を、
均等に一面に多孔質基材に付着させやすいことから、ゼ
オライト種結晶の平均結晶粒径は、多孔質基材の平均気
孔径の0.4〜8倍とする。ゼオライト種結晶の平均結
晶粒径は、好ましくは多孔質基材の平均気孔径の0.5
〜3倍とする。細か過ぎる種結晶を使用すると、基材中
に種結晶が侵入して種結晶の付着が不均一になる。種結
晶が大き過ぎると多孔質基材上に種結晶を付着させるの
が難しい。種結晶の基材への付着方法には、乾いたゼオ
ライト結晶の粉末を多孔質基材にこすり付けたり、種結
晶を水中に分散させた分散液を塗布したり、分散液中に
基材を浸漬するなどの方法がある。
Prior to hydrothermal synthesis, zeolite seed crystals are
The average crystal grain size of the zeolite seed crystal is set to be 0.4 to 8 times the average pore diameter of the porous substrate because it is easy to uniformly adhere to the porous substrate over the entire surface. The average crystal grain size of the zeolite seed crystal is preferably 0.5 times the average pore size of the porous substrate.
Up to three times. When a seed crystal that is too fine is used, the seed crystal penetrates into the substrate, and the attachment of the seed crystal becomes uneven. If the seed crystal is too large, it is difficult to attach the seed crystal on the porous substrate. The method of attaching the seed crystal to the base material includes rubbing the dried zeolite crystal powder on the porous base material, applying a dispersion liquid in which the seed crystal is dispersed in water, or coating the base material in the dispersion liquid. There is a method such as immersion.

【0018】多孔質基材表面に種結晶を一面に付着させ
た後、この多孔質基材を原料溶液中に浸漬して水熱合成
を行なう。水熱合成にはSiとAlを合せた濃度が10
00〜10000ppmであり、アルカリイオン濃度が
10000〜60000ppmである希薄な原料溶液を
使用する。SiとAlを併せた濃度が1000ppm未
満であるとゼオライト結晶の成長速度が非常に遅く、好
ましい膜厚のゼオライト膜を形成しにくい。
After the seed crystal is attached to the entire surface of the porous substrate, the porous substrate is immersed in a raw material solution to perform hydrothermal synthesis. For hydrothermal synthesis, the combined concentration of Si and Al is 10
A dilute raw material solution having an alkali ion concentration of 10,000 to 60,000 ppm is used. If the combined concentration of Si and Al is less than 1000 ppm, the growth rate of zeolite crystals is extremely slow, and it is difficult to form a zeolite film having a preferable thickness.

【0019】また、SiとAlを合せた濃度が1000
0ppm超であると、原料溶液が過飽和になって原料溶
液中にゼオライトの結晶核が生成し、原料溶液中で結晶
成長したゼオライト結晶が基材上に沈積して形成される
ゼオライト膜が不均質になり、膜中にブリッジ(空隙)
ができやすく、使用耐圧の高い分離膜を得るのが難し
い。アルカリイオン濃度は、大きい方がSiとAlを合
わせた濃度を高くでき、実用的なゼオライト結晶の成長
速度を確保できるので、アルカリイオン濃度は1000
0ppm以上とする。しかし、アルカリイオン濃度が大
き過ぎるとゼオライト結晶が原料溶液中に溶ける速度が
速くなり、結晶成長が進まないので60000ppm以
下とする。
Further, when the combined concentration of Si and Al is 1000
If it exceeds 0 ppm, the raw material solution becomes supersaturated, crystal nuclei of zeolite are generated in the raw material solution, and the zeolite membrane formed by depositing zeolite crystals grown in the raw material solution on the base material is heterogeneous. Becomes a bridge in the film
And it is difficult to obtain a separation membrane having a high withstand voltage. As the alkali ion concentration increases, the combined concentration of Si and Al can be increased, and a practical zeolite crystal growth rate can be ensured.
0 ppm or more. However, if the alkali ion concentration is too high, the rate at which the zeolite crystals dissolve in the raw material solution increases, and crystal growth does not proceed.

【0020】原料溶液中のシリカ、アルミナ及びアルカ
リの濃度は、種結晶の成長を最優先する組成になってい
なければならず、原料溶液は基材が配置されている水熱
合成の系内でゼオライト結晶について概ね飽和状態にな
っていなければならない。上記原料溶液の組成はこの条
件を充たすものであり、この構成の原料溶液を使用する
ことによって形成されるゼオライト膜中にブリッジ(空
隙)が生じない。
The concentrations of silica, alumina and alkali in the raw material solution must be such that the growth of the seed crystal is given the highest priority. The raw material solution is used in the hydrothermal synthesis system in which the base material is placed. The zeolite crystals must be largely saturated. The composition of the raw material solution satisfies this condition, and no bridges (voids) are generated in the zeolite membrane formed by using the raw material solution having this configuration.

【0021】[0021]

【発明の実施の形態】多孔質基材の気孔率は、少ないと
分離膜の透過性が小さくなり、ゼオライト膜の有効膜面
積も小さくなるので、多孔質基材の気孔率は10%以上
であるのが好ましい。また、多孔質基材の気孔率が大き
過ぎると基材自体の強度が低下し、ゼオライト膜の使用
耐圧が小さくなるので、多孔質基材の気孔率は50%以
下であるのが好ましい。基材のより好ましい気孔率は3
0〜40%である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As the porosity of the porous substrate is small, the permeability of the separation membrane is reduced and the effective membrane area of the zeolite membrane is also reduced, so that the porosity of the porous substrate is 10% or more. Preferably it is. Further, if the porosity of the porous substrate is too large, the strength of the substrate itself is reduced and the withstand pressure of the zeolite membrane is reduced. Therefore, the porosity of the porous substrate is preferably 50% or less. The more preferable porosity of the substrate is 3
0 to 40%.

【0022】多孔質基材の形状は、その表面にゼオライ
ト膜を形成し得るものであればよく、薄板状、筒状、ペ
レット状、中空糸状、ハニカム状などの形状のものを使
用できる。これらの基材の製造方法には、目的とする形
状に合わせてプレス成形法、押し出し成形法、泥漿鋳込
み法などを採用する。複層構造の基材の使用ももちろん
可能であり、この場合、たとえば第1の基材層の上にデ
ィップコート、スピンコートなどで第2の基材層を積層
したものを使用すればよい。
The shape of the porous substrate is not particularly limited as long as a zeolite membrane can be formed on the surface thereof, and may be a thin plate, a tube, a pellet, a hollow fiber, a honeycomb, or the like. As a method for producing these substrates, a press molding method, an extrusion molding method, a slurry casting method, or the like is employed according to a desired shape. It is of course possible to use a substrate having a multilayer structure. In this case, for example, a substrate obtained by laminating a second substrate layer on the first substrate layer by dip coating, spin coating, or the like may be used.

【0023】多孔質基材には、アルミナ質、ムライト
質、ジルコニア質、コージライト質等の各種のセラミッ
クス基材やステンレス鋼の粉末を焼結した多孔質金属等
を使用できるが、ゼオライト結晶との密着性が特に優れ
ていることから、多孔質基材としてはアルミナ質セラミ
ックスが好ましい。また、多孔質基材の平均気孔径は、
小さ過ぎると種結晶を付着させにくいので0.05μm
以上であるのが好ましい。逆に大き過ぎると種結晶が多
孔質基材中に侵入して種結晶の付着が不均一になるの
で、多孔質基材の平均気孔径は10μm以下とするのが
好ましい。より好ましい平均気孔径は0.1〜5μmで
ある。
As the porous substrate, various ceramic substrates such as alumina, mullite, zirconia, and cordierite, and porous metals obtained by sintering stainless steel powder can be used. Since alumina is particularly excellent, alumina ceramics is preferred as the porous substrate. The average pore diameter of the porous substrate is
If it is too small, it is difficult to attach seed crystals, so 0.05 μm
It is preferable that this is the case. On the other hand, if the size is too large, the seed crystal enters the porous substrate and the attachment of the seed crystal becomes uneven, so that the average pore diameter of the porous substrate is preferably 10 μm or less. A more preferable average pore diameter is 0.1 to 5 μm.

【0024】ゼオライト分離膜のゼオライト膜が形成さ
れている側から流体圧力を加える使用耐圧は、1.0M
Pa以上の圧力で分離膜として使用することができる。
使用耐圧が1.0MP以上あれば、従来使用耐圧が低か
ったために使用できないと考えられていたRO膜にも本
発明のゼオライト分離膜を使用できる。RO膜としては
使用耐圧の高い方が好ましいので、1.5MPa以上、
さらには2MPa以上の使用耐圧のある分離膜を使用す
るのが好ましい。ゼオライト分離膜の他の用途に、ナノ
濾過膜、ガス分離膜、PV膜などの分離膜があり、ガス
センサーにも使用できる。ナノ濾過膜としては使用耐圧
の大きいものが適している。
The working pressure for applying a fluid pressure from the side of the zeolite separation membrane where the zeolite membrane is formed is 1.0 M
It can be used as a separation membrane at a pressure of Pa or more.
If the working pressure is 1.0MP or more, the zeolite separation membrane of the present invention can be used also for an RO membrane which was conventionally considered to be unusable because the working pressure was low. As the RO film, it is preferable to use a high withstand voltage.
Further, it is preferable to use a separation membrane having a working pressure of 2 MPa or more. Other applications of zeolite separation membranes include nanofiltration membranes, gas separation membranes, separation membranes such as PV membranes, and can be used for gas sensors. As the nanofiltration membrane, a membrane having a large working pressure is suitable.

【0025】ゼオライト結晶にはA型、Y型等のアルミ
ナ/シリカのモル比が大きい親水性のものから、ZSM
−5、シリカライト等のようにアルミナ/シリカのモル
比が低い疎水性のものがある。また、ゼオライト結晶中
のAlの個所にFe、Cr、Y等の元素を導入したゼオ
ライト結晶もある。ゼオライト膜にはこれらの中から使
用目的に合わせた種類のゼオライト結晶を選択するのが
好ましい。この場合、種結晶として目的とする種類のゼ
オライト種結晶を使用して水熱合成条件を調整すれば、
単一種のゼオライト結晶からなるゼオライト分離膜を製
造できる。
The zeolite crystals include those having a large alumina / silica molar ratio such as A-type and Y-type, and ZSM-type.
-5, there are hydrophobic substances such as silicalite having a low alumina / silica molar ratio. There is also a zeolite crystal in which an element such as Fe, Cr, or Y is introduced at a location of Al in the zeolite crystal. For the zeolite membrane, it is preferable to select a zeolite crystal of a type suitable for the purpose of use from these. In this case, if the hydrothermal synthesis conditions are adjusted using a target type of zeolite seed crystal as the seed crystal,
A zeolite separation membrane composed of a single type of zeolite crystal can be manufactured.

【0026】本発明の好ましいゼオライト分離膜では、
ゼオライト膜の密着強度が大きくなるように多孔質基材
にアルミナ質基材が使用される。アルミナ質基材を用い
るときにゼオライト膜の密着強度が大きくなる理由は、
アルミナ結晶中の原子間距離がゼオライト結晶中の原子
間距離と近いためと推定される。
In a preferred zeolite separation membrane of the present invention,
An alumina substrate is used as the porous substrate so that the adhesion strength of the zeolite membrane is increased. The reason why the adhesive strength of the zeolite membrane increases when using an alumina base material is as follows.
It is estimated that the interatomic distance in the alumina crystal is close to the interatomic distance in the zeolite crystal.

【0027】基材表面への種結晶の付着量が少ないと緻
密なゼオライト膜の形成が困難であり、逆に多過ぎると
膜中に空隙が形成されやすいので、ゼオライト種結晶の
基材表面への付着量は0.2〜3mg/cm2とするの
が好ましい。ゼオライト種結晶の基材表面へのより好ま
しい付着量は0.3〜1mg/cm2である。
If the amount of seed crystals attached to the substrate surface is small, it is difficult to form a dense zeolite membrane, and if it is too large, voids are likely to be formed in the film. Is preferably 0.2 to 3 mg / cm 2 . The more preferable amount of the zeolite seed crystal deposited on the substrate surface is 0.3 to 1 mg / cm 2 .

【0028】原料溶液の出発原料には、シリカ源として
シリカゾル、水ガラス、珪酸ナトリウムを使用でき、ア
ルミナ源としてアルミン酸ナトリウム、硝酸アルミニウ
ム、水酸化アルミニウムを使用でき、アルカリ源として
水酸化ナトリウム、炭酸ナトリウムなどを使用できる。
また、原料溶液に臭化テトラプロピルアンモニウム、水
酸化テトラプロピルアンモニウム等の結晶化剤を混合し
てもよい。
As a starting material for the raw material solution, silica sol, water glass, and sodium silicate can be used as a silica source, sodium aluminate, aluminum nitrate, and aluminum hydroxide can be used as an alumina source, and sodium hydroxide and carbonate can be used as an alkali source. Sodium or the like can be used.
Further, a crystallization agent such as tetrapropylammonium bromide or tetrapropylammonium hydroxide may be mixed with the raw material solution.

【0029】ゼオライト膜の水熱合成は、耐圧容器中に
密閉した状態、又は図3に示す冷却器を取り付けた常圧
下の容器中において、通常80〜250℃に加熱して3
〜180時間保持して行なう。水熱合成後、ゼオライト
を形成した基材は水で洗浄し、次いで乾燥する。結晶化
促進剤等の熱分解性成分を添加したときには、次いで熱
処理してこれらを除去する。ゼオライト膜の水熱合成
は、一回のみで好ましい性能が得られないとき、複数回
水熱合成を繰り返してゼオライト結晶を成長させて結晶
粒界を埋めることによって分離性能が向上することがあ
る。
In the hydrothermal synthesis of the zeolite membrane, the zeolite membrane is usually heated to 80 to 250 ° C. in a sealed state in a pressure vessel or in a vessel under normal pressure equipped with a cooler shown in FIG.
Hold for ~ 180 hours. After hydrothermal synthesis, the zeolite-formed substrate is washed with water and then dried. When a thermally decomposable component such as a crystallization accelerator is added, it is then heat-treated to remove it. When the hydrothermal synthesis of the zeolite membrane does not achieve the desired performance only once, the separation performance may be improved by repeating the hydrothermal synthesis a plurality of times to grow the zeolite crystals and fill the crystal grain boundaries.

【0030】[0030]

【実施例】以下、本発明を実施例によって具体的に説明
するが、本発明はこれらの実施例に限定されない。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples.

【0031】[実施例1]約20℃の室内で、逆浸透法
で精製した水(以下、逆浸透水という)に珪酸ナトリウ
ム、水酸化アルミニウム、水酸化ナトリウムを溶かし、
Na2O、Al23、SiO2及びH2Oのモル比が9
0:1:9:5760の原料溶液(Alを608pp
m、Siを2710ppm、Naを40300ppm含
む)とした。気孔率が38%、平均細孔径が1μm(水
銀ポロシメータによる積算気孔容積が50%の細孔
径)、厚さ3mm、直径47mmのアルミナ質基材(A
2399.9重量%)の表面に平均結晶粒径が1μm
のA型ゼオライトの種結晶を直接基材表面に擦り込んで
付着させた。
Example 1 In a room at about 20 ° C., sodium silicate, aluminum hydroxide, and sodium hydroxide were dissolved in water purified by a reverse osmosis method (hereinafter referred to as reverse osmosis water).
The molar ratio of Na 2 O, Al 2 O 3 , SiO 2 and H 2 O is 9
0: 1: 9: 5760 raw material solution (Al 608 pp
m, Si 2710 ppm and Na 40300 ppm). Alumina base material (A) having a porosity of 38%, an average pore diameter of 1 μm (pore diameter having an integrated pore volume of 50% by a mercury porosimeter), a thickness of 3 mm and a diameter of 47 mm
(99.9% by weight of l 2 O 3 ) with an average crystal grain size of 1 μm
A type zeolite seed crystal was directly rubbed and adhered to the substrate surface.

【0032】この基材の表面には一面に、約0.6mg
/cm2の種結晶が付着していた。次いでこの基材を前
記原料溶液を充たした図3に示す構成の水熱合成容器に
挿入し、原料溶液に浸して100rpmで撹拌しつつ常
圧下で80℃に加熱して5時間保持し、このアルミナ質
基材上にゼオライト膜を形成した。次いで容器から基材
を取り出し、洗浄後乾燥してゼオライト分離膜を得た。
また、水熱合成を開始5時間経過後に原料溶液の一部を
取り出して分析した結果、Al553ppm、Si28
70ppm、Na42200ppmであった。また、水
熱合成後の原料溶液をろ過したが、ろ紙上にはろ過物が
ほとんど残留しなかった。
On the surface of this substrate, about 0.6 mg
/ Cm 2 of seed crystal was attached. Next, this base material was inserted into a hydrothermal synthesis vessel having the structure shown in FIG. 3 filled with the raw material solution, immersed in the raw material solution, heated to 80 ° C. under normal pressure while stirring at 100 rpm, and held for 5 hours. A zeolite membrane was formed on an alumina substrate. Next, the substrate was taken out of the container, washed and dried to obtain a zeolite separation membrane.
After 5 hours from the start of the hydrothermal synthesis, a part of the raw material solution was taken out and analyzed. As a result, Al553 ppm, Si28
70 ppm and Na 42200 ppm. Further, the raw material solution after the hydrothermal synthesis was filtered, but almost no filtrate remained on the filter paper.

【0033】得られたゼオライト分離膜の表面を走査型
電子顕微鏡(SEM)によって観察したところ、立方体
形状の結晶が基材の表面に一様に形成されていた。X線
回折で調べた結果、ゼオライト膜はA型ゼオライトのみ
からなることが分かった。ゼオライト膜の断面をSEM
で5000倍に拡大して観察して調べた結果、ゼオライ
ト膜中にはブリッジ構造(空隙)が認められず、緻密で
あった。また、ゼオライト膜の厚さは約6.3μmであ
った。図1は、実施例1で製造された緻密で使用耐圧の
大きいゼオライト分離膜の断面の模式図である。このゼ
オライト膜の使用耐圧は、後述するように6MPa以上
であった。
When the surface of the obtained zeolite separation membrane was observed with a scanning electron microscope (SEM), cubic crystals were formed uniformly on the surface of the substrate. As a result of examination by X-ray diffraction, it was found that the zeolite membrane was composed only of A-type zeolite. Cross section of zeolite membrane by SEM
As a result, the bridge structure (void) was not found in the zeolite membrane, and the zeolite membrane was dense. Further, the thickness of the zeolite membrane was about 6.3 μm. FIG. 1 is a schematic view of a cross section of a dense zeolite separation membrane having a large working pressure and manufactured in Example 1. The working pressure of this zeolite membrane was 6 MPa or more as described later.

【0034】[実施例2]実施例1と同じ原料を使用し
てNa2O、Al23、SiO2及びH2Oのモル比が
3.2:1:2.5:156の懸濁液を作り、これをろ
過した液(Alを610ppm、Siを2720pp
m、Naを38400ppm含む)を原料溶液に使用
し、他は実施例1と同じ条件で水熱合成を行なった。S
EMとX線回折で調べた結果、合成されたゼオライト膜
はA型ゼオライト結晶のみからなり、緻密で厚さが約
6.5μm、使用耐圧が5MPaであった。また、水熱
合成を開始5時間経過後に原料溶液の一部を取り出して
分析したところ、Alを557ppm、Siを2820
ppm、Naを35700ppm含んでいた。また、水
熱合成後の原料溶液をろ過したが、ろ紙上にはろ過物が
ほとんど残留せず、X線回折では調べられなかった。
Example 2 Using the same raw materials as in Example 1, a suspension having a molar ratio of Na 2 O, Al 2 O 3 , SiO 2 and H 2 O of 3.2: 1: 2.5: 156 was used. A turbid solution was prepared, and a filtered solution (610 ppm of Al, 2720 pp of Si)
(including 38,400 ppm of m, Na) was used for the raw material solution, and hydrothermal synthesis was performed under the same conditions as in Example 1 except for the above. S
As a result of examination by EM and X-ray diffraction, the synthesized zeolite membrane was composed of only A-type zeolite crystals, was dense, had a thickness of about 6.5 μm, and had a withstand pressure of 5 MPa. After 5 hours from the start of the hydrothermal synthesis, a part of the raw material solution was taken out and analyzed.
ppm and 35700 ppm of Na. In addition, the raw material solution after the hydrothermal synthesis was filtered, but the filtrate hardly remained on the filter paper, and could not be examined by X-ray diffraction.

【0035】[実施例3、4]実施例1において水熱合
成条件を90℃で5時間とし、他は実施例1と同じ条件
で水熱合成してゼオライト分離膜(実施例3)を得た。
また、実施例3で得られたゼオライト分離膜の上に、同
様に種結晶を塗布して同じ条件で水熱合成を行なう操作
を2回追加(合計3回)してゼオライト分離膜(実施例
4)を得た。これらをSEMとX線回折で調べた結果、
A型ゼオライト結晶のみからなる緻密なゼオライト膜が
基材上に形成されていた。基材上に形成されたゼオライ
ト膜の厚さは、それぞれ約7.7μmと約8.9μmで
あり、使用耐圧はいずれも6MPa以上であった。
[Examples 3 and 4] A zeolite separation membrane (Example 3) was obtained by hydrothermal synthesis under the same conditions as in Example 1 except that the hydrothermal synthesis conditions were 90 ° C. for 5 hours in Example 1. Was.
Further, the operation of applying a seed crystal in the same manner on the zeolite separation membrane obtained in Example 3 and performing hydrothermal synthesis under the same conditions is added twice (total of three times) to obtain a zeolite separation membrane (Example 3). 4) was obtained. As a result of examining these by SEM and X-ray diffraction,
A dense zeolite membrane consisting of only A-type zeolite crystals was formed on the substrate. The thicknesses of the zeolite membranes formed on the substrate were about 7.7 μm and about 8.9 μm, respectively, and the working pressure was 6 MPa or more.

【0036】[実施例5]実施例1において、多孔質基
材にSUS304の粉末を焼結した気孔率が30%で平
均気孔径が15μmの多孔質金属を使用し、他は実施例
1と同じ条件で水熱合成を行ない、ゼオライト膜の厚さ
が5.3μmのゼオライト分離膜を得た。このゼオライ
ト分離膜の使用耐圧は、後述するように6MPa以上で
あった。
Example 5 In Example 1, SUS304 powder was sintered on a porous substrate, and a porous metal having a porosity of 30% and an average pore diameter of 15 μm was used. Hydrothermal synthesis was performed under the same conditions to obtain a zeolite separation membrane having a zeolite membrane thickness of 5.3 μm. The working pressure of this zeolite separation membrane was 6 MPa or more as described later.

【0037】[比較例1]実施例1と同じ原料を使用し
てNa2O、Al23、SiO2及びH2Oのモル比が
3.2:1:2.5:78の懸濁液を作り、これをろ過
した液(Alを752ppm、Siを10200pp
m、Naを42800ppm含む)を原料溶液に使用
し、他は実施例1と同じ条件で水熱合成を行なった。S
EMとX線回折で調べた結果、基材の表面に塗布したA
型ゼオライト種結晶はほとんど成長しておらず、形成さ
れた厚さ約15μmの膜は緻密でなく、使用耐圧は0.
8MPa以下であった。この膜中には少量のフォージャ
サイトの混在が確認された。また、水熱合成後の原料溶
液をろ過したところ、ろ紙上に残留するろ過物中にフォ
ージャサイトが検出された。
COMPARATIVE EXAMPLE 1 Using the same raw material as in Example 1, a suspension having a molar ratio of Na 2 O, Al 2 O 3 , SiO 2 and H 2 O of 3.2: 1: 2.5: 78 was used. A turbid solution was prepared, and a filtered solution (752 ppm of Al, 10200 pp of Si)
m, Na was used for the raw material solution, and hydrothermal synthesis was performed under the same conditions as in Example 1 except for the above. S
As a result of examination by EM and X-ray diffraction, A
The type zeolite seed crystal hardly grows, the formed film having a thickness of about 15 μm is not dense, and the working withstand voltage is 0.
It was 8 MPa or less. It was confirmed that a small amount of faujasite was mixed in this film. Further, when the raw material solution after the hydrothermal synthesis was filtered, faujasite was detected in the filtrate remaining on the filter paper.

【0038】[比較例2、3]比較例1において、水熱
合成の条件を、温度80℃で10時間(比較例2)、温
度100℃で5時間(比較例3)とし、他は比較例1と
同じ条件で水熱合成を行ない、基材上にゼオライト膜を
形成した。SEMとX線回折で調べた結果、いずれにつ
いても基材の表面に塗布したA型ゼオライト結晶はほと
んど成長しておらず、形成された厚さ約15μmのゼオ
ライト膜は緻密でなく、使用耐圧は0.8MPa以下で
あった。この膜中には少量のフォージャサイト結晶の混
在が確認された。また、水熱合成後の原料溶液をろ過し
たところ、ろ紙上に残留したろ過物中にはフォージャサ
イト結晶が検出された。
Comparative Examples 2 and 3 In Comparative Example 1, the conditions for hydrothermal synthesis were 10 hours at 80 ° C. (Comparative Example 2) and 5 hours at 100 ° C. (Comparative Example 3). Hydrothermal synthesis was performed under the same conditions as in Example 1 to form a zeolite membrane on the substrate. As a result of examination by SEM and X-ray diffraction, the A-type zeolite crystal applied to the surface of the substrate hardly grew in any case, and the formed zeolite membrane having a thickness of about 15 μm was not dense, and the withstand voltage in use was It was 0.8 MPa or less. It was confirmed that a small amount of faujasite crystals were mixed in this film. Further, when the raw material solution after the hydrothermal synthesis was filtered, faujasite crystals were detected in the filtrate remaining on the filter paper.

【0039】[比較例4、5]実施例1と同じ原料を使
用してNa2O、Al23、SiO2及びH2Oのモル比
が2:1:2:120の過飽和の原料溶液(Alを25
000ppm、Siを25900ppm、Naを426
00ppm含む)を作り、水熱合成の条件を温度100
℃で3.5時間(比較例4)、温度100℃で5時間
(比較例5)とし、他は実施例1と同じ条件で水熱合成
を行なった。得られた分離膜をSEMとX線回折で調べ
た結果、いずれについても基材の表面に塗布したA型ゼ
オライト結晶はほとんど成長しておらず、形成された膜
の厚さは約70μmであり、ゼオライト膜は緻密といえ
ず、種結晶の隙間にはゲル状物質が存在しているのを認
めた。このゼオライト膜の使用耐圧は0.8MPa以下
であった。また、水熱合成後の原料溶液をろ過し、洗浄
後乾燥したろ過物をX線回折で調べた結果、A型ゼオラ
イトとフォージャサイトの存在を認めた。
[Comparative Examples 4 and 5] Using the same raw materials as in Example 1, supersaturated raw materials having a molar ratio of Na 2 O, Al 2 O 3 , SiO 2 and H 2 O of 2: 1: 2: 120 Solution (Al 25
000 ppm, 25900 ppm of Si, 426 ppm of Na
And the hydrothermal synthesis conditions were adjusted to 100
The hydrothermal synthesis was performed under the same conditions as in Example 1 except that the temperature was 3.5 hours at 5 ° C. (Comparative Example 4) and the temperature was 100 hours at 100 ° C. (Comparative Example 5). As a result of examining the obtained separation membrane by SEM and X-ray diffraction, the A-type zeolite crystal applied to the surface of the substrate hardly grew in any case, and the thickness of the formed membrane was about 70 μm. The zeolite membrane was not dense, and it was recognized that a gel-like substance was present in the gaps between the seed crystals. The working pressure of this zeolite membrane was 0.8 MPa or less. Further, the raw material solution after the hydrothermal synthesis was filtered, and the filtrate after washing and drying was examined by X-ray diffraction. As a result, the presence of A-type zeolite and faujasite was recognized.

【0040】[比較例6]比較例5において、水熱合成
条件を80℃とし、他は比較例5と同じ条件で水熱合成
を行なった。得られた分離膜をSEMとX線回折で調べ
た結果、いずれについても基材の表面に塗布したA型ゼ
オライト結晶はほとんど成長しておらず、形成されたゼ
オライト膜は厚さ約50μmであって緻密でなく、種結
晶の隙間にゲル状物質が存在しているのを認めた。この
ゼオライト膜の使用耐圧は0.8MPa以下であった。
また、水熱合成後の原料溶液をろ過し、洗浄後乾燥した
ろ過物をX線回折で調べた結果、A型ゼオライトとフォ
ージャサイトの存在を認めた。
Comparative Example 6 Hydrothermal synthesis was performed under the same conditions as in Comparative Example 5 except that the hydrothermal synthesis conditions were set to 80 ° C. As a result of examining the obtained separation membrane by SEM and X-ray diffraction, in each case, the A-type zeolite crystals applied to the surface of the substrate hardly grew, and the formed zeolite membrane was about 50 μm in thickness. It was not dense and it was recognized that a gel-like substance was present in the gaps between the seed crystals. The working pressure of this zeolite membrane was 0.8 MPa or less.
Further, the raw material solution after the hydrothermal synthesis was filtered, and the filtrate after washing and drying was examined by X-ray diffraction. As a result, the presence of A-type zeolite and faujasite was recognized.

【0041】[比較例7]実施例1と同じ原料を使用し
てNa2O、Al23、SiO2及びH2Oのモル比が
1:0.5:1:60の過飽和の原料溶液(Alを25
000ppm、Siを25900ppm、Naを426
00ppm含む)を使用し、水熱合成の条件を温度10
0℃で3時間とした以外は実施例1と同じ条件で水熱合
成を行ない、ゼオライト膜の膜厚が30μmのA型ゼオ
ライトの分離膜を得た。この分離膜は後述するように、
使用耐圧が0.8MPaであった。
Comparative Example 7 A supersaturated material having the same molar ratio of Na 2 O, Al 2 O 3 , SiO 2 and H 2 O as 1: 0.5: 1: 60 using the same raw material as in Example 1. Solution (Al 25
000 ppm, 25900 ppm of Si, 426 ppm of Na
And hydrothermal synthesis conditions at a temperature of 10
Hydrothermal synthesis was carried out under the same conditions as in Example 1 except that the temperature was changed to 0 ° C. for 3 hours to obtain an A-type zeolite separation membrane having a zeolite membrane thickness of 30 μm. This separation membrane, as described below,
The working pressure was 0.8 MPa.

【0042】[比較例8]実施例1と同じ原料を使用し
てNa2O、Al23、SiO2及びH2Oのモル比が
1:0.5:1:120の原料溶液(Alを12500
ppm、Siを13000ppm、Naを21000p
pm含む)を使用し、水熱合成の条件を温度100℃で
3時間とした以外は実施例1と同じ条件で水熱合成を行
ない、ゼオライト膜の膜厚が30μmのA型ゼオライト
の分離膜を得た。この分離膜は後述するように、使用耐
圧が0.9MPaであった。
Comparative Example 8 Using the same raw materials as in Example 1, a raw material solution having a molar ratio of Na 2 O, Al 2 O 3 , SiO 2 and H 2 O of 1: 0.5: 1: 120 ( 12500 Al
ppm, Si 13000ppm, Na 21000p
pm), and the hydrothermal synthesis was performed under the same conditions as in Example 1 except that the hydrothermal synthesis was performed at a temperature of 100 ° C. for 3 hours, and the zeolite membrane had a 30 μm-thick A-type zeolite separation membrane. I got The working pressure of this separation membrane was 0.9 MPa as described later.

【0043】以上の水熱合成試験の結果から、SiとA
lを合わせた濃度が1000〜10000ppmであ
り、アルカリイオン濃度が10000〜60000pp
mである原料溶液中に種結晶を一面に塗布された多孔質
基材を浸漬して水熱合成を行なうと、多孔質基材の表面
に緻密なゼオライト膜が密着したゼオライト分離膜を製
造できることが分かる。また、本発明によるゼオライト
膜の実施例では、水熱合成の少なくとも初期において原
料溶液中のAlとSiの濃度がほとんど変わっておら
ず、ゼオライト膜の形成に原料溶液中のAlとSiが消
費されていないことから、主として基材に塗布された種
結晶がゼオライト膜の形成に使用されたと考える。
From the results of the above hydrothermal synthesis test, Si and A
l is 1,000 to 10,000 ppm, and the alkali ion concentration is 10,000 to 60,000 pp.
When a porous substrate coated with a seed crystal on one side is immersed in a raw material solution of m and hydrothermal synthesis is performed, a zeolite separation membrane in which a dense zeolite membrane adheres to the surface of the porous substrate can be manufactured. I understand. Further, in the embodiment of the zeolite membrane according to the present invention, Al and Si concentrations in the raw material solution hardly change at least at the initial stage of hydrothermal synthesis, and Al and Si in the raw material solution are consumed to form the zeolite membrane. Therefore, it is considered that the seed crystal mainly applied to the substrate was used for forming the zeolite membrane.

【0044】[試験例1]実施例1で製造したゼオライ
ト分離膜を逆浸透水中に保管しておいたものを使用して
RO分離試験を行なった。すなわち、図4に示す構成の
装置を使用し、30℃の恒温槽中において、10重量%
のエタノール水溶液を供給液とし、100rpmで撹拌
しつつ膜面における濃度分極の影響を抑えた。また、操
作圧力を最大8MPaまで上げ、透過液側に氷のコール
ドトラップを用いてエタノールの蒸発を防ぎ、供給液と
透過液の濃度をガスクロマトグラフで測定した。
Test Example 1 An RO separation test was performed using the zeolite separation membrane produced in Example 1 stored in reverse osmosis water. That is, using the apparatus having the configuration shown in FIG.
Was used as a feed solution, and the effect of concentration polarization on the membrane surface was suppressed while stirring at 100 rpm. The operating pressure was increased to a maximum of 8 MPa, the evaporation of ethanol was prevented using a cold trap on the permeate side, and the concentrations of the feed solution and the permeate were measured by gas chromatography.

【0045】供給側のエタノール濃度をCf(重量%)
とし、透過側のエタノール濃度をCp(重量%)とする
とき、見かけの阻止率RobsをRobs=(Cf−C
p)/Cfによって求めた。操作圧1.5MPaにおけ
るRO試験の結果を図5に示す。図5−aから、試験開
始直後には基材中に含まれる水が混じるため阻止率が高
いが、徐々に減少して60時間経過後に定常状態になっ
た。このゼオライト分離膜では1.5MPaの操作圧で
10重量%のエタノール水溶液から40%以上の阻止率
でRO分離が可能であることが分かった。図5−bは透
過流束の経時変化を示すが、経時変化は認められなかっ
た。
The concentration of ethanol on the supply side was changed to Cf (% by weight).
When the ethanol concentration on the permeation side is Cp (% by weight), the apparent rejection ratio Robs is expressed as Robs = (Cf−C
p) / Cf. The results of the RO test at an operating pressure of 1.5 MPa are shown in FIG. As shown in FIG. 5-a, immediately after the start of the test, the rejection was high due to the mixing of water contained in the base material, but it gradually decreased and reached a steady state after 60 hours. With this zeolite separation membrane, it was found that RO separation was possible with a rejection of 40% or more from a 10% by weight aqueous ethanol solution at an operating pressure of 1.5 MPa. FIG. 5-b shows the change over time of the permeation flux, but no change over time was observed.

【0046】また、操作圧を4、6、8MPaと上げた
ときの透過流束(Flux)と阻止率の経時変化を図6
に示す。図6−aから分かるように、操作圧を4、6M
Paと上げても膜構造は安定しており、透過流束と阻止
率は50時間後も経時変化を示さず、10重量%のエタ
ノール水溶液で20%程度の阻止率が得られた。このR
O分離膜は8MPaの操作圧においても、10時間まで
安定した性能を示したが、20時間経過後に透過流束が
急激に増加し、阻止性能が損なわれた。試験後のこのR
O分離膜の表面には、幅0.2μm程度の亀裂が縦横に
生じているのが認められ、膜の断面についても亀裂が観
察された。
FIG. 6 shows the change over time of the permeation flux (Flux) and the rejection when the operating pressure was increased to 4, 6, and 8 MPa.
Shown in As can be seen from FIG.
Even when the pressure was increased to Pa, the membrane structure was stable, and the permeation flux and rejection did not change over time even after 50 hours, and a rejection of about 20% was obtained with a 10% by weight aqueous ethanol solution. This R
The O-separation membrane exhibited stable performance up to 10 hours even at an operating pressure of 8 MPa, but after 20 hours, the permeation flux increased sharply, impairing the blocking performance. This R after the test
Cracks having a width of about 0.2 μm were observed on the surface of the O-separation membrane, and cracks were also observed on the cross section of the membrane.

【0047】また、実施例5で製造したゼオライト分離
膜及び比較例7と比較例8で製造したゼオライト分離膜
をそれぞれRO分離試験に供した。実施例5で製造した
ゼオライト分離膜は6MPaの圧力を50時間かけても
実施例1のゼオライト分離膜と同様に安定した分離性能
を示した。他方、比較例7と比較例8で製造したゼオラ
イト分離膜はそれぞれ0.8MPaと0.9MPaに圧
力を上げたときに、透過率が急激に上昇して分離膜が破
損した。破損したゼオライト分離膜には、SEMによる
観察でいずれもクラックが認められた。
Further, the zeolite separation membrane produced in Example 5 and the zeolite separation membrane produced in Comparative Examples 7 and 8 were each subjected to an RO separation test. The zeolite separation membrane produced in Example 5 showed stable separation performance similarly to the zeolite separation membrane of Example 1 even when the pressure of 6 MPa was applied for 50 hours. On the other hand, when the zeolite separation membranes produced in Comparative Examples 7 and 8 were respectively increased in pressure to 0.8 MPa and 0.9 MPa, the transmittance increased sharply and the separation membranes were broken. Cracks were observed in each of the damaged zeolite separation membranes by SEM observation.

【0048】[試験例2]実施例3、4で製造したゼオ
ライト分離膜を使用してPV分離試験を行なった。すな
わち、図7に示す構成の装置を用い、30℃の恒温槽中
において、供給液を0〜90重量%のエタノール水溶液
とし、供給液及び透過液の濃度をガスクロマトグラフで
測定した。供給側のエタノールと水のモル濃度をそれぞ
れX1モル%とX2モル%とし、透過側のエタノールと水
のモル濃度をそれぞれY1モル%とY2モル%とすると
き、分離係数αをα=(X1・Y2)/(X2・Y1)によ
って計算し、求めた。得られた結果を図8に示す。図8
−aから分かるように、実施例4のゼオライト分離膜を
使用したPV分離試験では、90重量%のエタノール水
溶液を供給液とするとき、約400という高い分離性能
が得られた。図8−bは透過流束を示す。
Test Example 2 A PV separation test was performed using the zeolite separation membranes produced in Examples 3 and 4. That is, using a device having the configuration shown in FIG. 7, in a thermostat at 30 ° C., the supply liquid was a 0 to 90% by weight aqueous ethanol solution, and the concentrations of the supply liquid and the permeate were measured by gas chromatography. When the molar concentrations of ethanol and water on the supply side are X 1 mol% and X 2 mol%, respectively, and the molar concentrations of ethanol and water on the permeation side are Y 1 mol% and Y 2 mol%, respectively, the separation coefficient α is α = (X 1 · Y 2 ) / (X 2 · Y 1 ). FIG. 8 shows the obtained results. FIG.
As can be seen from -a, in the PV separation test using the zeolite separation membrane of Example 4, a high separation performance of about 400 was obtained when a 90% by weight aqueous ethanol solution was used as a feed solution. FIG. 8-b shows the permeation flux.

【0049】[0049]

【発明の効果】本発明により、緻密で薄く、使用圧力の
高いゼオライト分離膜の提供が可能になった。本発明に
よるゼオライト分離膜は使用圧力が高いので、従来のゼ
オライト分離膜では適さなかったRO膜やナノ濾過膜の
用途にも好適である。このような使用耐圧の高いゼオラ
イト膜は、多孔質基材の表面一面に種結晶を付着せしめ
ておき、少なくとも水熱合成の初期において、主に種結
晶がゼオライト膜の形成に使用されるような薄い原料溶
液を使用することによって形成できる。
According to the present invention, it is possible to provide a zeolite separation membrane that is dense, thin, and has a high working pressure. Since the zeolite separation membrane according to the present invention has a high working pressure, it is also suitable for use in RO membranes and nanofiltration membranes that were not suitable with conventional zeolite separation membranes. Such a zeolite membrane having a high withstand pressure has a seed crystal adhered to the entire surface of the porous substrate, and at least at the initial stage of hydrothermal synthesis, the seed crystal is mainly used for forming the zeolite membrane. It can be formed by using a thin raw material solution.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるゼオライト分離膜の断面を示す模
式図
FIG. 1 is a schematic view showing a cross section of a zeolite separation membrane according to the present invention.

【図2】従来のゼオライト分離膜の断面を示す模式図FIG. 2 is a schematic view showing a cross section of a conventional zeolite separation membrane.

【図3】本発明の実施例において使用された水熱合成装
置の概要を示す断面図
FIG. 3 is a sectional view showing an outline of a hydrothermal synthesis apparatus used in an example of the present invention.

【図4】本発明の試験例で使用した逆浸透分離装置の概
要図
FIG. 4 is a schematic diagram of a reverse osmosis separation device used in a test example of the present invention.

【図5】本発明のゼオライト分離膜を逆浸透分離に使用
したときの透過流束と見掛け阻止率Robsの経時変化
を示すグラフ
FIG. 5 is a graph showing the change over time of the permeation flux and the apparent rejection ratio Robs when the zeolite separation membrane of the present invention is used for reverse osmosis separation.

【図6】本発明のゼオライト分離膜を逆浸透分離に使用
し、圧力を変えたときの透過流束と見掛け阻止率Rob
sの経時変化を示すグラフ
FIG. 6 shows the permeation flux and apparent rejection Rob when the pressure is changed using the zeolite separation membrane of the present invention for reverse osmosis separation.
Graph showing change over time of s

【図7】本発明の試験例で使用した浸透気化分離装置の
概要図
FIG. 7 is a schematic diagram of a pervaporation separation apparatus used in a test example of the present invention.

【図8】本発明のゼオライト分離膜を浸透気化分離に使
用したときの透過流束と分離係数αを示すグラフ
FIG. 8 is a graph showing permeation flux and separation coefficient α when the zeolite separation membrane of the present invention is used for pervaporation separation.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】多孔質基材上に厚さ0.5〜30μmの緻
密なゼオライト結晶の膜が密着して形成されており、そ
の分離膜としての使用耐圧が1.0MPa以上あること
を特徴とするゼオライト分離膜。
1. A dense zeolite crystal film having a thickness of 0.5 to 30 .mu.m is formed on a porous substrate in close contact with each other, and has a withstand pressure of 1.0 MPa or more as a separation film. Zeolite separation membrane.
【請求項2】多孔質基材の気孔率が10〜50%で、そ
の平均気孔径が0.05〜10μmである請求項1に記
載のゼオライト分離膜。
2. The zeolite separation membrane according to claim 1, wherein the porosity of the porous substrate is 10 to 50%, and the average pore diameter is 0.05 to 10 μm.
【請求項3】多孔質基材がアルミナ質である請求項1又
は2に記載のゼオライト分離膜。
3. The zeolite separation membrane according to claim 1, wherein the porous substrate is made of alumina.
【請求項4】ゼオライト分離膜が逆浸透膜用又はナノ濾
過膜用である請求項1〜3のいずれかに記載のゼオライ
ト分離膜。
4. The zeolite separation membrane according to claim 1, wherein the zeolite separation membrane is for a reverse osmosis membrane or a nanofiltration membrane.
【請求項5】多孔質基材の表面に、多孔質基材の平均気
孔径の0.4〜8倍の平均結晶粒径を有するゼオライト
種結晶を一面に付着させた後、該多孔質基材をSiとA
lを合わせた濃度が1000〜10000ppmであ
り、アルカリイオン濃度が10000〜60000pp
mである原料溶液中に浸漬して水熱合成することを特徴
とするゼオライト分離膜の製造方法。
5. After a zeolite seed crystal having an average crystal grain diameter of 0.4 to 8 times the average pore diameter of the porous substrate is adhered to the entire surface of the porous substrate, the porous substrate Materials are Si and A
l is 1,000 to 10,000 ppm, and the alkali ion concentration is 10,000 to 60,000 pp.
m.
【請求項6】基材の表面に0.2〜3mg/cm2のゼ
オライト種結晶を付着させる請求項5に記載のゼオライ
ト分離膜の製造方法。
6. The method for producing a zeolite separation membrane according to claim 5, wherein a zeolite seed crystal of 0.2 to 3 mg / cm 2 is attached to the surface of the substrate.
JP23469696A 1996-08-16 1996-08-16 Zeolite separation membrane and method for producing the same Expired - Lifetime JP3128517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23469696A JP3128517B2 (en) 1996-08-16 1996-08-16 Zeolite separation membrane and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23469696A JP3128517B2 (en) 1996-08-16 1996-08-16 Zeolite separation membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1057784A true JPH1057784A (en) 1998-03-03
JP3128517B2 JP3128517B2 (en) 2001-01-29

Family

ID=16974985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23469696A Expired - Lifetime JP3128517B2 (en) 1996-08-16 1996-08-16 Zeolite separation membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP3128517B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000023378A1 (en) * 1998-10-20 2000-04-27 Ngk Insulators, Ltd. Zeolite composite film and process for producing the same
WO2003026789A1 (en) * 2001-09-19 2003-04-03 Ngk Insulators,Ltd. Zeolite laminated composite and zeolite membrane reactor using the same
WO2004085030A1 (en) 2003-03-27 2004-10-07 Japan Science And Technology Agency Method of concentrating fine particle dispersion and method of recovering fine particle
JP2005262043A (en) * 2004-03-17 2005-09-29 Bussan Nanotech Research Institute Inc Porous substrate
JP2005262189A (en) * 2004-03-17 2005-09-29 Bussan Nanotech Research Institute Inc Separation membrane and production method for separation membrane
JP2006212551A (en) * 2005-02-04 2006-08-17 Hitachi Zosen Corp Filter member and its manufacturing method
JP2008253931A (en) * 2007-04-06 2008-10-23 Hitachi Zosen Corp Manufacturing method for separation membrane
JP2010029741A (en) * 2008-07-24 2010-02-12 National Institute Of Advanced Industrial & Technology Zeolite-ceramic composite, composite membrane, and method for manufacturing the same
JP2013212488A (en) * 2012-03-06 2013-10-17 Mitsubishi Chemicals Corp Method for manufacturing porous support/zeolite membrane composite
JP2016047530A (en) * 2010-08-25 2016-04-07 三菱化学株式会社 Recovery method of alcohol from alcohol-water mixture
JP2018038977A (en) * 2016-09-08 2018-03-15 国立大学法人 東京大学 Manufacturing method of zeolite separation membrane
WO2020179432A1 (en) * 2019-03-04 2020-09-10 日本碍子株式会社 Zeolite membrane composite body, zeolite membrane composite body production method, and separation method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5937569B2 (en) 2011-03-22 2016-06-22 日本碍子株式会社 Separation membrane structure made of honeycomb-shaped ceramic
CN103429329A (en) 2011-03-22 2013-12-04 日本碍子株式会社 Porous body and honeycomb-shaped ceramic separation-membrane structure
CN104203379B (en) 2012-03-30 2016-05-11 日本碍子株式会社 Honeycomb shape ceramic porous article, its manufacture method and honeycomb shape ceramic separation film structure
EP2832429B1 (en) 2012-03-30 2019-02-20 NGK Insulators, Ltd. Honeycomb shaped porous ceramic body, manufacturing method for same, and honeycomb shaped ceramic separation membrane structure
CN114146575A (en) 2014-11-25 2022-03-08 三菱化学株式会社 Porous support-zeolite membrane composite and method for producing porous support-zeolite membrane composite

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU754663B2 (en) * 1998-10-20 2002-11-21 Ngk Insulators, Ltd. Zeolite composite film and process for producing the same
US6667265B1 (en) 1998-10-20 2003-12-23 Ngk Insulators, Ltd. Zeolite composite film and process for producing the same
WO2000023378A1 (en) * 1998-10-20 2000-04-27 Ngk Insulators, Ltd. Zeolite composite film and process for producing the same
WO2003026789A1 (en) * 2001-09-19 2003-04-03 Ngk Insulators,Ltd. Zeolite laminated composite and zeolite membrane reactor using the same
US6936560B2 (en) 2001-09-19 2005-08-30 Ngk Insulators, Ltd. Zeolite laminated composite and zeolite membrane reactor using the same
WO2004085030A1 (en) 2003-03-27 2004-10-07 Japan Science And Technology Agency Method of concentrating fine particle dispersion and method of recovering fine particle
JP4506251B2 (en) * 2004-03-17 2010-07-21 三菱化学株式会社 Separation membrane and method for producing separation membrane
JP2005262043A (en) * 2004-03-17 2005-09-29 Bussan Nanotech Research Institute Inc Porous substrate
JP2005262189A (en) * 2004-03-17 2005-09-29 Bussan Nanotech Research Institute Inc Separation membrane and production method for separation membrane
JP2006212551A (en) * 2005-02-04 2006-08-17 Hitachi Zosen Corp Filter member and its manufacturing method
JP2008253931A (en) * 2007-04-06 2008-10-23 Hitachi Zosen Corp Manufacturing method for separation membrane
JP2010029741A (en) * 2008-07-24 2010-02-12 National Institute Of Advanced Industrial & Technology Zeolite-ceramic composite, composite membrane, and method for manufacturing the same
JP2016047530A (en) * 2010-08-25 2016-04-07 三菱化学株式会社 Recovery method of alcohol from alcohol-water mixture
JP2013212488A (en) * 2012-03-06 2013-10-17 Mitsubishi Chemicals Corp Method for manufacturing porous support/zeolite membrane composite
JP2018038977A (en) * 2016-09-08 2018-03-15 国立大学法人 東京大学 Manufacturing method of zeolite separation membrane
WO2020179432A1 (en) * 2019-03-04 2020-09-10 日本碍子株式会社 Zeolite membrane composite body, zeolite membrane composite body production method, and separation method
CN113490541A (en) * 2019-03-04 2021-10-08 日本碍子株式会社 Zeolite membrane composite, method for producing zeolite membrane composite, and method for separating zeolite membrane composite
JPWO2020179432A1 (en) * 2019-03-04 2021-11-18 日本碍子株式会社 Zeolite Membrane Complex, Method for Producing Zeolite Membrane Complex, and Method for Separation
DE112020001055T5 (en) 2019-03-04 2021-12-23 Ngk Insulators, Ltd. Zeolite Membrane Composite Material, Method of Making Zeolite Membrane Composite Material, and Separation Method

Also Published As

Publication number Publication date
JP3128517B2 (en) 2001-01-29

Similar Documents

Publication Publication Date Title
JP3128517B2 (en) Zeolite separation membrane and method for producing the same
JP3868479B2 (en) Separation membrane
JP5108525B2 (en) Method for producing zeolite membrane
US20090000475A1 (en) Zeolite membrane structures and methods of making zeolite membrane structures
JP4204273B2 (en) DDR type zeolite membrane composite and method for producing the same
US6689195B1 (en) Crystalline molecular sieve layers and processes for their manufacture
JPWO2005014481A1 (en) Zeolite membrane production method and production apparatus, and zeolite tubular separation membrane obtained by this method
JP5481075B2 (en) Method for producing zeolite membrane
WO2007037066A1 (en) Process for producing zeolite separation membrane
JP3764309B2 (en) Zeolite membrane forming method
JP3757115B2 (en) Zeolite seed crystal and method for producing zeolite membrane using the seed crystal
JP2012016688A (en) Heat crack-prevented zeolite separation film, and method of manufacturing the same
KR100903952B1 (en) A method for preparing of hydrophilic zeolite membrane
JP3537908B2 (en) Method for producing Y-type zeolite membrane and liquid mixture separation membrane
JP2004002160A (en) Method for coating zeolite crystal, substrate coated therewith, production method for zeolite membrane, zeolite membrane, and separation method using the membrane
WO2005021141A1 (en) Gas separating body and method for producing same
JP2004082008A (en) Method of manufacturing zeolite membrane having separation factor decided by seed crystal depositing method
JP2004344755A (en) Thin zeolite composite film
JP2002249313A (en) Method for coating with zeolite crystal, substrate coated with the same, method for manufacturing zeolite film, zeolite film and method of separation
JP2003238147A (en) Method of synthesizing mfi-type zeolite, mfi-type zeolite crystal, substrate coated with mfi-type zeolite, method of manufacturing zeolite film, and method for separation
JP3530807B2 (en) Manufacturing method of mixture separation membrane device and mixture separation membrane device
JP4506251B2 (en) Separation membrane and method for producing separation membrane
JP5148044B2 (en) Porous substrate
WO2007081024A1 (en) Process for production of zeolite separation membrane
Zhang et al. Modification of carbon membranes and preparation of carbon–zeolite composite membranes with zeolite growth

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001024

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071110

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term