JPH0992286A - Graphitized vapor phase epitaxy carbon fiber for lithium ion secondary battery and lithium ion secondary battery - Google Patents

Graphitized vapor phase epitaxy carbon fiber for lithium ion secondary battery and lithium ion secondary battery

Info

Publication number
JPH0992286A
JPH0992286A JP8187677A JP18767796A JPH0992286A JP H0992286 A JPH0992286 A JP H0992286A JP 8187677 A JP8187677 A JP 8187677A JP 18767796 A JP18767796 A JP 18767796A JP H0992286 A JPH0992286 A JP H0992286A
Authority
JP
Japan
Prior art keywords
secondary battery
ion secondary
lithium ion
carbon fiber
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP8187677A
Other languages
Japanese (ja)
Inventor
Hiroshi Abe
浩史 阿部
Koji Murai
剛次 村井
Nobuo Kobayashi
伸雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP8187677A priority Critical patent/JPH0992286A/en
Publication of JPH0992286A publication Critical patent/JPH0992286A/en
Abandoned legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To prevent peeling off from a negative electrode and smooth the surface of the negative electrode by specifying the average diameter and the average fiber length of graphitized valor phase epitaxy carbon fibers for a lithium ion secondary battery negative electrode. SOLUTION: Graphitized vapor phase epitaxy carbon fibers for a lithium ion secondary battery negative electrode have an average diameter of 1-10μm, preferably 1.5-5μm, more preferably 2-3μm, and an average fiber length of 15-25μm, preferably 16-23μm, more preferably 18-22μm. The graphitized vapor phase epitaxy carbon fibers for the lithium ion secondary battery are easily dispersed, and contact between fibers is made good.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明はリチウムイオン二
次電池負極用黒鉛化気相成長炭素繊維、およびリチウム
イオン二次電池に関し、さらに詳しくは、電気特性に優
れ、リチウムイオン二次電池負極用として好適なリチウ
ムイオン二次電池負極用黒鉛化気相成長炭素繊維、およ
び充放電効率に優れ、かつサイクル寿命の長いリチウム
イオン二次電池に関する。
TECHNICAL FIELD The present invention relates to a graphitized vapor grown carbon fiber for a negative electrode of a lithium ion secondary battery and a lithium ion secondary battery. More specifically, it is excellent in electrical characteristics and used as a negative electrode of a lithium ion secondary battery. The present invention relates to a suitable graphitized vapor-grown carbon fiber for a negative electrode of a lithium ion secondary battery, and a lithium ion secondary battery having excellent charge / discharge efficiency and a long cycle life.

【0002】[0002]

【従来の技術】気相成長炭素繊維は、超微粒子状の鉄や
ニッケルなどの金属を触媒として炭素化合物を800〜
1,300℃に加熱することによりこれを熱分解して製
造することができる。この気相成長炭素繊維は熱処理す
ることにより容易に黒鉛構造に転化する特長を有してい
る。例えば2,800℃以上で加熱処理した黒鉛化気相
成長炭素繊維は、結晶欠陥の少ない黒鉛網面が繊維軸に
平行して発達している。それ故にこの黒鉛化気相成長炭
素繊維は、高強度かつ高弾性であり、しかも高い熱伝導
性や電気導電性を有している。
2. Description of the Related Art A vapor-grown carbon fiber is prepared by using a metal such as iron or nickel in the form of ultra-fine particles as a catalyst to form a carbon compound in an amount of 800 to 800 nm.
It can be produced by pyrolyzing it by heating it to 1,300 ° C. This vapor grown carbon fiber has a feature that it can be easily converted to a graphite structure by heat treatment. For example, in the graphitized vapor grown carbon fiber that has been heat-treated at 2,800 ° C. or higher, the graphite network surface with few crystal defects develops parallel to the fiber axis. Therefore, the graphitized vapor-grown carbon fiber has high strength and elasticity, and also has high thermal conductivity and electrical conductivity.

【0003】この黒鉛化気相成長炭素繊維の特性を利用
した応用例として、黒鉛化気相成長炭素繊維を電極活物
質として用いたリチウムイオン二次電池が挙げられる。
An example of application utilizing the characteristics of the graphitized vapor grown carbon fiber is a lithium ion secondary battery using the graphitized vapor grown carbon fiber as an electrode active material.

【0004】通常、このリチウムイオン二次電池は、電
極および電解液を有してなる。前記電極および電解液に
用いられる物質として下記のような具体例が挙げられ
る。
Usually, this lithium ion secondary battery comprises an electrode and an electrolytic solution. Specific examples of the substance used for the electrode and the electrolytic solution are as follows.

【0005】正極に用いられる物質としては、リチウム
含有複合酸化物たとえば、コバルト酸リチウム(LiC
oO2 )、マンガン酸リチウム(LiMn24 )、ニ
ッケル酸リチウム(LiNiO2 )などが挙げられる。
Materials used for the positive electrode include lithium-containing composite oxides such as lithium cobalt oxide (LiC).
oO 2 ), lithium manganate (LiMn 2 O 4 ), lithium nickel oxide (LiNiO 2 ) and the like.

【0006】負極に用いられる物質としては、炭素材料
たとえば、天然黒鉛、人造黒鉛、難黒鉛性炭素、メソカ
ーボンマイクロビーズ、ピッチ系炭素繊維、気相成長炭
素繊維などが挙げられる。
Examples of the substance used for the negative electrode include carbon materials such as natural graphite, artificial graphite, non-graphitizable carbon, mesocarbon microbeads, pitch-based carbon fiber and vapor grown carbon fiber.

【0007】電解液に用いられる物質としては、リチウ
ム塩と有機溶媒を混合した非水電解液が挙げられる。前
記リチウム塩としてはLiClO4 ,LiPF6 ,Li
BF4 ,LiAsF6 ,LiCF3 SO3 などが挙げら
れる。前記有機溶媒としてはプロピレンカーボネート、
エチレンカーボネート、ジメチルカーボネート、ジエチ
ルカーボネートなどが挙げられる。
Examples of the substance used in the electrolytic solution include a non-aqueous electrolytic solution in which a lithium salt and an organic solvent are mixed. Examples of the lithium salt include LiClO 4 , LiPF 6 , Li
BF 4, LiAsF 6, such as LiCF 3 SO 3 and the like. As the organic solvent, propylene carbonate,
Examples thereof include ethylene carbonate, dimethyl carbonate and diethyl carbonate.

【0008】上述の物質で構成されたリチウムイオン二
次電池は、他の電池と比較して、エネルギー密度が高い
こと、サイクル特性に優れていることおよび安全性が高
いことを特長としている。
The lithium ion secondary battery composed of the above-mentioned substances is characterized by having a high energy density, excellent cycle characteristics and high safety as compared with other batteries.

【0009】さらに上記リチウムイオン二次電池におい
て、特開平6−73615号公報に記載されたように、
従来から公知の気相成長炭素繊維、特に短い繊維長の気
相成長炭素繊維を負極に用いた場合には、初期容量は高
いが二次電池として十分なサイクル寿命を得ることがで
きなかった。一方、長い繊維長の気相成長炭素繊維を負
極に用いた場合には、集電体たとえば金属シートに気相
成長炭素繊維含有塗布液を塗布すると、気相成長炭素繊
維が剥離し、たとえ接着性良く気相成長炭素繊維含有塗
布液を塗布することができたとしても、形成された負極
の表面が平滑ではなくなる。
Further, in the above lithium ion secondary battery, as described in JP-A-6-73615,
When a conventionally known vapor-grown carbon fiber, in particular, a vapor-grown carbon fiber having a short fiber length is used for the negative electrode, the initial capacity is high, but a sufficient cycle life as a secondary battery cannot be obtained. On the other hand, when the vapor growth carbon fiber having a long fiber length is used for the negative electrode, when the coating liquid containing the vapor growth carbon fiber is applied to the current collector, for example, the metal sheet, the vapor growth carbon fiber is peeled off, and Even if the vapor-grown carbon fiber-containing coating liquid can be applied with good properties, the surface of the formed negative electrode is not smooth.

【0010】[0010]

【発明が解決しようとする課題】この発明の目的は、リ
チウムイオン二次電池における集電体から容易に剥離す
ることがなく、また負極の表面を平滑なものとすること
ができて、電気特性の優れたリチウムイオン二次電池負
極用黒鉛化気相成長炭素繊維を提供することにある。こ
の発明の他の目的は充放電効率およびサイクル寿命の長
いリチウムイオン二次電池の負極を好適に形成すること
のできる二次電池負極用黒鉛化気相成長炭素繊維を提供
することにある。この発明の他の目的は、充放電効率お
よびサイクル寿命の長いリチウムイオン二次電池を提供
することにある。
DISCLOSURE OF THE INVENTION The object of the present invention is to prevent the surface of the negative electrode from being easily peeled off from the current collector in the lithium ion secondary battery, and to make the surface of the negative electrode smooth, thereby improving the electrical characteristics. Another object of the present invention is to provide graphitized vapor-grown carbon fiber for a lithium ion secondary battery negative electrode. Another object of the present invention is to provide a graphitized vapor-grown carbon fiber for a secondary battery negative electrode, which can favorably form a negative electrode of a lithium ion secondary battery having long charge / discharge efficiency and long cycle life. Another object of the present invention is to provide a lithium ion secondary battery having long charge / discharge efficiency and long cycle life.

【0011】[0011]

【課題を解決するための手段】前記課題を解決するため
の請求項1に記載の発明は、平均直径が1〜10μmで
あり、平均繊維長が15〜25μmであることを特徴と
するリチウムイオン二次電池負極用黒鉛化気相成長炭素
繊維であり、請求項2に記載の発明は、前記請求項1に
記載のリチウムイオン二次電池用黒鉛化気相成長炭素繊
維から得られた負極を有してなることを特徴とするリチ
ウムイオン二次電池である。
The invention according to claim 1 for solving the above problems has an average diameter of 1 to 10 μm and an average fiber length of 15 to 25 μm. A graphitized vapor-grown carbon fiber for a secondary battery negative electrode, wherein the invention according to claim 2 provides a negative electrode obtained from the graphitized vapor-grown carbon fiber for a lithium ion secondary battery according to claim 1. A lithium-ion secondary battery characterized by having.

【0012】[0012]

【発明の実施の形態】−リチウムイオン二次電池負極用
黒鉛化気相成長炭素繊維−この発明のリチウムイオン二
次電池負極用黒鉛化気相成長炭素繊維は、その平均直径
が1〜10μmであり、好ましくは1.5〜5μmであ
り、さらに好ましくは2〜3μmである。
BEST MODE FOR CARRYING OUT THE INVENTION Graphitized vapor grown carbon fiber for negative electrode of lithium ion secondary battery-The graphitized vapor grown carbon fiber for negative electrode of lithium ion secondary battery of the present invention has an average diameter of 1 to 10 µm. Yes, it is preferably 1.5 to 5 μm, and more preferably 2 to 3 μm.

【0013】この発明のリチウムイオン二次電池負極用
黒鉛化気相成長炭素繊維は、その平均繊維長が15〜2
5μmの範囲内、好ましくは16〜23μm、さらに好
ましくは18〜22μmの範囲内にある。
The graphitized vapor grown carbon fiber for a negative electrode of a lithium ion secondary battery of the present invention has an average fiber length of 15 to 2
It is in the range of 5 μm, preferably 16 to 23 μm, more preferably 18 to 22 μm.

【0014】リチウムイオン二次電池負極用黒鉛化気相
成長炭素繊維の平均直径および平均繊維長が、前記範囲
内にあると、リチウムイオン二次電池負極用黒鉛化気相
成長炭素繊維の分散が容易に実現され、繊維同士の接触
も良好になる。
When the average diameter and the average fiber length of the graphitized vapor grown carbon fiber for the negative electrode of the lithium ion secondary battery are within the above ranges, the dispersion of the graphitized vapor grown carbon fiber for the negative electrode of the lithium ion secondary battery is dispersed. It is easily realized and the contact between fibers is good.

【0015】なお、リチウムイオン二次電池負極用黒鉛
化気相成長炭素繊維の平均直径および平均繊維長は、リ
チウムイオン二次電池負極用黒鉛化気相成長炭素繊維を
走査型電子顕微鏡写真に撮り、走査型電子顕微鏡写真を
観察し、走査型電子顕微鏡写真に写されたリチウムイオ
ン二次電池負極用黒鉛化気相成長炭素繊維から1,00
0のサンプルを無作為に選択し、選択したリチウムイオ
ン二次電池負極用黒鉛化気相成長炭素繊維の直径および
長さを測定し、1,000のサンプルについての値を平
均することにより、求められる。
The average diameter and average fiber length of the graphitized vapor-grown carbon fiber for negative electrode of lithium ion secondary battery are the same as those of the graphitized vapor-grown carbon fiber for negative electrode of lithium ion secondary battery taken by scanning electron microscope. The scanning electron micrograph was observed, and the graphitized vapor-grown carbon fiber for negative electrode of the lithium-ion secondary battery, which was photographed in the scanning electron micrograph, was used to form 1,00
0 sample was randomly selected, the diameter and length of the selected graphitized vapor-grown carbon fiber for lithium ion secondary battery negative electrode were measured, and the values for 1,000 samples were averaged to obtain To be

【0016】この発明のリチウムイオン二次電池負極用
黒鉛化気相成長炭素繊維は、その平均アスペクト比が5
〜15であると好ましく、さらに7.0〜12.5であ
るのが好ましい。リチウムイオン二次電池負極用黒鉛化
気相成長炭素繊維の平均アスペクト比が5〜15である
とこの発明の目的をさらに良く達成することができる。
The average aspect ratio of the graphitized vapor-grown carbon fiber for negative electrode of lithium ion secondary battery of the present invention is 5
It is preferable that it is -15, and it is more preferable that it is 7.0-12.5. If the average aspect ratio of the graphitized vapor grown carbon fiber for a negative electrode of a lithium ion secondary battery is 5 to 15, the object of the present invention can be further achieved.

【0017】この発明のリチウムイオン二次電池負極用
黒鉛化気相成長炭素繊維は、高度に発達した黒鉛構造を
有し、縮合環状の黒鉛網面の発達度合いの点から、黒鉛
網面間距離(doo2 )は通常大きくとも0.338n
m、好ましくは、大きくとも0.337nm、更に好ま
しくは、0.3355〜0.3365nmである。
The graphitized vapor-grown carbon fiber for a lithium ion secondary battery negative electrode of the present invention has a highly developed graphite structure, and in view of the degree of development of a condensed ring-shaped graphite network surface, the distance between graphite network surfaces is (D oo2 ) is usually at most 0.338n
m, preferably at most 0.337 nm, more preferably 0.3355 to 0.3365 nm.

【0018】この黒鉛網面間距離は、「炭素技術I」
(科学技術社出版、1970年発行)の第55頁に記載
のX線回折から求める学振法により、測定可能である。
The distance between the graphite mesh planes is "Carbon Technology I".
It can be measured by the Gakushin method, which is obtained from X-ray diffraction as described on page 55 of (Science and Technology Publishing, published in 1970).

【0019】また、この発明のリチウムイオン二次電池
負極用黒鉛化気相成長炭素繊維は、その縮合環状の黒鉛
網面が重なった厚さすなわち黒鉛結晶子の厚さ(Lc
が通常小さくとも40nm、好ましくは小さくとも60
nm、更に好ましくは小さくとも80nmである。
Further, the graphitized vapor-grown carbon fiber for a negative electrode of a lithium ion secondary battery of the present invention has a thickness in which the condensed ring-shaped graphite network surfaces are superposed, that is, the thickness of the graphite crystallite (L c ).
Is usually at least 40 nm, preferably at least 60 nm
nm, and more preferably at least 80 nm.

【0020】この黒鉛結晶子の厚さは、「炭素技術I」
(科学技術社出版、1970年発行)の第55頁に記載
のX線回折から求める学振法により、測定可能である。
The thickness of this graphite crystallite is "Carbon Technology I".
It can be measured by the Gakushin method, which is obtained from X-ray diffraction as described on page 55 of (Science and Technology Publishing, published in 1970).

【0021】この発明のリチウムイオン二次電池負極用
黒鉛化気相成長炭素繊維は、電子スピン共鳴吸収法によ
り測定したその好ましいスピン密度が大きくとも8×1
18spins/g 、さらに好ましくは大きくとも7×1018
spins/g である。
The graphitized vapor grown carbon fiber for a negative electrode of a lithium ion secondary battery of the present invention has a preferable spin density of at most 8 × 1 as measured by an electron spin resonance absorption method.
0 18 spins / g, more preferably at most 7 × 10 18
It is spins / g.

【0022】このスピン密度は、電子スピン共鳴吸収法
により測定することができる。
This spin density can be measured by the electron spin resonance absorption method.

【0023】この発明のリチウムイオン二次電池負極用
黒鉛化気相成長炭素繊維は、以下のようにして、好適に
製造することができる。
The graphitized vapor grown carbon fiber for a negative electrode of a lithium ion secondary battery of the present invention can be suitably manufactured as follows.

【0024】すなわち、この発明のリチウムイオン二次
電池負極用黒鉛化気相成長炭素繊維は、特定の長さを有
する黒鉛化気相成長炭素繊維を、適宜の切断手段で切断
することにより製造されることができる。
That is, the graphitized vapor-grown carbon fiber for lithium ion secondary battery negative electrode of the present invention is produced by cutting the graphitized vapor-grown carbon fiber having a specific length by an appropriate cutting means. You can

【0025】ここで前記黒鉛化気相成長炭素繊維は、気
相成長炭素繊維を黒鉛化処理することにより得ることが
できる。
The graphitized vapor grown carbon fiber can be obtained by subjecting the vapor grown carbon fiber to graphitization.

【0026】前記気相成長炭素繊維は、気相成長法によ
り製造することができる。
The vapor grown carbon fiber can be produced by a vapor growth method.

【0027】気相成長法により気相成長炭素繊維を製造
する方法としては、いわゆる基板成長法と流動気相法と
がある。基板成長法は、基板に触媒金属例えば遷移金属
もしくは遷移金属化合物を担持させ、高温度に加熱しな
がら、その基板上に炭素源ガスたとえば炭化水素ガスを
流通させることにより、基板表面に炭素繊維を生成させ
る方法であり、流動気相法は、基板を使用せず、触媒金
属源たとえば触媒金属を提供することのできる金属化合
物と炭素源たとえば炭素化合物たとえば炭化水素とを気
化して高温の反応管中に流通させることにより、空間中
に炭素繊維を生成させる方法である。なお、炭素源と触
媒金属源とは同一の化合物であっても良く、そのような
好適な化合物としてフェロセンのようなメタロセンが挙
げられる。
As a method for producing a vapor grown carbon fiber by the vapor growth method, there are a so-called substrate growth method and a fluidized vapor phase method. In the substrate growth method, a catalyst metal such as a transition metal or a transition metal compound is supported on the substrate, and a carbon source gas such as a hydrocarbon gas is circulated on the substrate while being heated to a high temperature, whereby carbon fibers are formed on the substrate surface. The fluidized vapor phase method is a method of producing a high temperature reaction tube without using a substrate by vaporizing a metal compound capable of providing a catalyst metal source such as a catalyst metal and a carbon source such as a carbon compound such as a hydrocarbon. This is a method of generating carbon fibers in the space by circulating the carbon fibers inside. The carbon source and the catalyst metal source may be the same compound, and such a suitable compound includes metallocene such as ferrocene.

【0028】具体的には、特開昭52−107320
号、特開昭57−117622号、特開昭58−156
512号、特開昭58−180615号、特開昭60−
185818号、特開昭60−224815号、特開昭
60−231821号、特開昭61−132630号、
特開昭61−132600号、特開昭61−13266
3号、特開昭61−225319号、特開昭61−22
5322号、特開昭61−225325号、特開昭61
−225327号、特開昭61−225328号、特開
昭61−2275425号、特開昭61−282427
号、特開平5−222619号の各公報に記載の方法に
より製造される気相成長炭素繊維を黒鉛化気相成長炭素
繊維の原料として使用することができる。
Specifically, Japanese Patent Laid-Open No. 52-107320
No. 57-176622 and 58-156.
512, JP-A-58-180615, JP-A-60-
185818, JP-A-60-224815, JP-A-60-231821, JP-A-61-132630,
JP-A-61-132600, JP-A-61-132666
3, JP-A-61-225319, JP-A-61-222.
5322, JP-A-61-225325, JP-A-61
-225327, JP-A-61-225328, JP-A-61-2275425, and JP-A-61-282427.
The vapor-grown carbon fibers produced by the method described in JP-A-5-222619 can be used as a raw material for the graphitized vapor-grown carbon fibers.

【0029】黒鉛化気相成長炭素繊維は、前記気相成長
炭素繊維を2,000℃以上、好ましくは2,000℃
〜3,000℃の範囲に加熱処理することにより黒鉛化
することにより製造されることができる。
The graphitized vapor-grown carbon fiber is obtained by adding the vapor-grown carbon fiber to 2,000 ° C. or higher, preferably 2,000 ° C.
It can be produced by graphitizing by heat treatment in the range of up to 3,000 ° C.

【0030】加熱処理の雰囲気としては不活性ガス雰囲
気が通常採用される。加熱処理時間は通常5分以上であ
る。
An inert gas atmosphere is usually adopted as the atmosphere for the heat treatment. The heat treatment time is usually 5 minutes or longer.

【0031】この発明においては、前記のようにして得
られた黒鉛化気相成長炭素繊維の平均繊維長が20〜1
00μm、好ましくは30〜70μmである黒鉛化気相
成長炭素繊維を適宜の切断手段により切断することによ
り、この発明のリチウムイオン二次電池負極用黒鉛化気
相成長炭素繊維を得ることができる。
In the present invention, the average fiber length of the graphitized vapor grown carbon fiber obtained as described above is 20 to 1
The graphitized vapor grown carbon fiber having a size of 00 μm, preferably 30 to 70 μm is cut by an appropriate cutting means to obtain the graphitized vapor grown carbon fiber for a negative electrode of a lithium ion secondary battery of the present invention.

【0032】前記切断手段としては、高衝撃力をもって
繊維を破断することのできるハイブリダイザ、あるいは
高圧縮力をもって繊維塊を加圧圧縮するプレス機、静水
圧等方加圧装置(CIP)、加圧ロール装置等を挙げる
ことができる。
As the cutting means, a hybridizer capable of breaking the fibers with a high impact force, a press machine for pressurizing and compressing the fiber mass with a high compressive force, a hydrostatic isotropic pressure device (CIP), a pressurizing device A roll device or the like can be used.

【0033】ハイブリダイザを採用する場合、その回転
数を2,000〜6,000rpmにして、1〜5分間
の処理条件を採用するのが好ましい。
When the hybridizer is used, it is preferable to set the rotation speed to 2,000 to 6,000 rpm and to adopt the processing condition for 1 to 5 minutes.

【0034】加圧圧縮による場合、その加圧圧縮力は、
100〜3,000kg/cm2 であり、好ましくは3
00〜2,000kg/cm2 であり、さらに好ましく
は500〜1,500kg/cm2 である。
In the case of pressure compression, the pressure compression force is
100 to 3,000 kg / cm 2 , preferably 3
It is from 00 to 2,000 kg / cm 2 , and more preferably from 500 to 1,500 kg / cm 2 .

【0035】この発明のリチウムイオン二次電池負極用
黒鉛化気相成長炭素繊維は、リチウムイオン二次電池負
極として好適である。
The graphitized vapor-grown carbon fiber for a lithium ion secondary battery negative electrode of the present invention is suitable as a lithium ion secondary battery negative electrode.

【0036】−リチウムイオン二次電池− この発明のリチウムイオン二次電池は正極、負極および
電解液を有する。
-Lithium Ion Secondary Battery- The lithium ion secondary battery of the present invention has a positive electrode, a negative electrode and an electrolytic solution.

【0037】正極に用いられる物質としては、リチウム
イオン二次電池の正極として用いられることのできる物
質を制限なく挙げることができ、好適例としてリチウム
含有複合酸化物たとえば、コバルト酸リチウム(LiC
oO2 )、マンガン酸リチウム(LiMn24 )、ニ
ッケル酸リチウム(LiNiO2 )などが挙げられる。
Examples of the substance used for the positive electrode include substances that can be used for the positive electrode of a lithium ion secondary battery without any limitation. Suitable examples are lithium-containing composite oxides such as lithium cobalt oxide (LiC).
oO 2 ), lithium manganate (LiMn 2 O 4 ), lithium nickel oxide (LiNiO 2 ) and the like.

【0038】負極に用いられる物質は、この発明のリチ
ウムイオン二次電池負極用黒鉛化気相成長炭素繊維であ
る。
The substance used for the negative electrode is the graphitized vapor grown carbon fiber for negative electrode of the lithium ion secondary battery of the present invention.

【0039】電解液に用いられる物質としては、リチウ
ムイオン二次電池の電解液として用いられることのでき
る物質を制限なく挙げることができ、具体的にはリチウ
ム塩と有機溶媒とを混合した非水電解液などが挙げられ
る。前記リチウム塩としてはLiClO4 ,LiPF
6 ,LiBF4 ,LiAsF6 ,LiCF3 SO3 など
が挙げられる。前記有機溶媒としてはプロピレンカーボ
ネート、エチレンカーボネート、ジメチルカーボネー
ト、ジエチルカーボネートなどの有機炭酸化合物、これ
らの混合物、および有機炭酸化合物とその他の添加剤と
の混合物などが挙げられる。これらの中でも好ましいの
は、エチレンカーボネート、ジメチルカーボネート、ジ
エチルカーボネートなどの有機炭酸化合物である。
Examples of the substance used in the electrolytic solution include substances that can be used as the electrolytic solution of a lithium ion secondary battery without any limitation, and specifically, non-aqueous substances obtained by mixing a lithium salt and an organic solvent. Examples include electrolytes. Examples of the lithium salt include LiClO 4 and LiPF
6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 and the like can be mentioned. Examples of the organic solvent include organic carbonate compounds such as propylene carbonate, ethylene carbonate, dimethyl carbonate, and diethyl carbonate, mixtures thereof, and mixtures of organic carbonate compounds with other additives. Among these, organic carbonate compounds such as ethylene carbonate, dimethyl carbonate and diethyl carbonate are preferable.

【0040】リチウムイオン二次電池としては、ボタン
型二次電池、円筒型二次電池、角型二次電池、コイン型
二次電池等の形態を挙げることができる。
The lithium ion secondary battery may be in the form of a button type secondary battery, a cylindrical type secondary battery, a square type secondary battery, a coin type secondary battery or the like.

【0041】この発明のリチウムイオン二次電池は、こ
の発明のリチウムイオン二次電池用黒鉛化気相成長炭素
繊維を負極として組み込んでなる限り、その構造には特
に制限がなく、従来から公知の構造を採用することがで
きる。
The lithium-ion secondary battery of the present invention is not particularly limited in its structure as long as it incorporates the graphitized vapor-grown carbon fiber for lithium-ion secondary battery of the present invention as a negative electrode, and has been conventionally known. A structure can be adopted.

【0042】[0042]

【実施例】【Example】

(実施例1) (1)リチウムイオン二次電池用黒鉛化気相成長炭素繊
維の製造 平均直径2μmおよび平均繊維長50μmの気相成長炭
素繊維を、アルゴンガス雰囲気下に2,800℃に30
分かけて黒鉛化処理をすることにより、黒鉛化気相成長
炭素繊維を製造した。この黒鉛化気相成長炭素繊維は、
平均アスペクト比が25であり、黒鉛網面間距離(d
oo2 )が0.3361nmであり、黒鉛結晶子の厚さ
(Lc )が130nmであった。
Example 1 (1) Production of Graphitized Vapor-Grown Carbon Fiber for Lithium-Ion Secondary Battery Vapor-grown carbon fiber having an average diameter of 2 μm and an average fiber length of 50 μm was heated to 2,800 ° C. under an argon gas atmosphere at 30 ° C.
Graphitized vapor-grown carbon fibers were produced by performing graphitization treatment over a period of time. This graphitized vapor grown carbon fiber is
The average aspect ratio is 25, and the distance between graphite network planes (d
oo2 ) was 0.3361 nm, and the thickness of graphite crystallite (L c ) was 130 nm.

【0043】この黒鉛化気相成長炭素繊維40gをハイ
ブリダイザー(NHS−1、(株)奈良機械製作所製)
に装填して、4,000rpm(周速50m/s)にて
2分間高衝撃処理をした。高衝撃処理をして得られた炭
素繊維からランダムに選ばれた1,000本の繊維を走
査型電子顕微鏡写真に撮り、その平均繊維長および平均
直径を既述した方法により測定したところ、平均繊維長
は20.4μmであり、平均直径は2μmであった。よ
って、この切断処理により得られたものは、この発明の
リチウムイオン二次電池負極用黒鉛化気相成長炭素繊維
であった。
40 g of this graphitized vapor grown carbon fiber was used as a hybridizer (NHS-1, manufactured by Nara Machinery Co., Ltd.).
And subjected to high impact treatment at 4,000 rpm (peripheral speed 50 m / s) for 2 minutes. 1,000 fibers randomly selected from the carbon fibers obtained by the high impact treatment were taken on a scanning electron micrograph, and the average fiber length and average diameter were measured by the method described above. The fiber length was 20.4 μm and the average diameter was 2 μm. Therefore, what was obtained by this cutting treatment was the graphitized vapor-grown carbon fiber for a negative electrode of a lithium ion secondary battery of the present invention.

【0044】(2)リチウムイオン二次電池負極用黒鉛
化気相成長炭素繊維の評価 充放電試験による評価 以下のようにして負極である作用極を作製した。すなわ
ち、ポリフッ化ビニリデン(PVDF)0.1gをN−
メチル−2−ピロリドン0.8ミリリットルに溶解し
た。得られた溶液に前記(1)のリチウムイオン二次電
池負極用黒鉛化気相成長炭素繊維0.9gを加え、乳鉢
で混合した。
(2) Evaluation of Graphitized Vapor-Grown Carbon Fiber for Lithium Ion Secondary Battery Negative Electrode Evaluation by Charge and Discharge Test A negative electrode working electrode was prepared as follows. That is, 0.1 g of polyvinylidene fluoride (PVDF) is N-
It was dissolved in 0.8 ml of methyl-2-pyrrolidone. 0.9 g of the graphitized vapor-grown carbon fibers for lithium ion secondary battery negative electrode of the above (1) was added to the obtained solution and mixed in a mortar.

【0045】さらに、上記混合物を1×5cmのニッケ
ルメッシュに、塗布面積が1×1cmとなるように、塗
布し、110℃で24時間かけて乾燥することによっ
て、負極(作用極)を得た。このとき、塗布層は容易に
剥離することがなく、しかも負極の表面は平滑であっ
た。
Further, the above mixture was applied to a nickel mesh of 1 × 5 cm so that the coating area was 1 × 1 cm, and dried at 110 ° C. for 24 hours to obtain a negative electrode (working electrode). . At this time, the coating layer was not easily peeled off, and the surface of the negative electrode was smooth.

【0046】前記作用極、金属リチウムである対極、金
属リチウムである参照極および1モルのLiClO4
エチレンカーボネート(EC)およびジエチルカーボネ
ート(DEC)の混合溶媒(EC/DEC=1/1容積
比)に溶解してなる電解液を有する三電極式ビーカセル
を、組み立てた。電流密度を25mA/カーボン1gに
し、作用極と参照極間電圧(充放電電圧)を0〜2.5
Vにして、充電容量、放電容量および充放電効率を測定
した。結果を表1に示した。
The working electrode, the counter electrode which is metallic lithium, the reference electrode which is metallic lithium and 1 mol of LiClO 4 are mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (EC / DEC = 1/1 volume ratio). A three-electrode type beaker cell having an electrolyte solution dissolved therein was assembled. The current density is 25 mA / g of carbon, and the voltage between the working electrode and the reference electrode (charge / discharge voltage) is 0 to 2.5.
The charging capacity, the discharging capacity, and the charging / discharging efficiency were measured at V. The results are shown in Table 1.

【0047】円筒型電池によるサイクル試験 以下のようにして負極を作製した。すなわち、ポリフッ
化ビニリデン(PVDF)30gをN−メチル−2−ピ
ロリドン420ミリリットルに溶解した。得られた溶液
に前記(1)のリチウムイオン二次電池負極用黒鉛化気
相成長炭素繊維270gを加え、超音波分散機で十分に
分散した。得られた分散液を銅製シート(厚み10μ
m、縦3m、横200mm)に塗布し、乾燥後に電極を
プレス機で加圧成形した。成形後、幅39mm、長さ4
50mmにカットし、これを負極とした。得られた負極
においては、繊維が剥離することもなく、負極の表面は
平滑であった。
Cycle test using a cylindrical battery A negative electrode was prepared as follows. That is, 30 g of polyvinylidene fluoride (PVDF) was dissolved in 420 ml of N-methyl-2-pyrrolidone. 270 g of the graphitized vapor-grown carbon fiber for lithium ion secondary battery negative electrode of the above (1) was added to the obtained solution and sufficiently dispersed by an ultrasonic disperser. A copper sheet (thickness 10 μ
m, length 3 m, width 200 mm), and after drying, the electrode was pressure-molded by a press machine. After molding, width 39mm, length 4
It was cut into 50 mm and used as a negative electrode. In the obtained negative electrode, the fiber was not peeled off, and the surface of the negative electrode was smooth.

【0048】正極を以下のようにして作製した。PVD
F20gをN−メチル−2−ピロリドン350ミリリッ
トル中に溶解して溶液を得た。
A positive electrode was produced as follows. PVD
A solution was obtained by dissolving 20 g of F in 350 ml of N-methyl-2-pyrrolidone.

【0049】次に、LiCoO2 445gと、人造黒鉛
20gと、アセチレンブラック15gとをボールミル中
に入れて混合し、混合物を得た。
Next, 445 g of LiCoO 2 , 20 g of artificial graphite and 15 g of acetylene black were put in a ball mill and mixed to obtain a mixture.

【0050】前記混合物と前記溶液とを混合し、超音波
分散機により十分に分散させて分散液を得た。
The above mixture and the above solution were mixed and sufficiently dispersed by an ultrasonic disperser to obtain a dispersion liquid.

【0051】前記分散液をアルミニウムシート(厚さ2
0μm)に塗布した。このときの塗布面積は300×1
5cmであった。
An aluminum sheet (thickness 2
0 μm). The application area at this time is 300 × 1
5 cm.

【0052】塗布後、前記アルミニウムシートに電極を
プレス機で加圧成形した。成形後、幅38mm、長さ4
30mmにカットし、これを正極とした。
After coating, the aluminum sheet was pressure-molded with an electrode using a pressing machine. Width 38mm, length 4 after molding
It was cut into 30 mm and used as a positive electrode.

【0053】以下のようにしてリチウムイオン二次電池
を作製した。前記正極および前記負極を、多孔質ポリプ
ロピレンシートのセパレータを介してロール状に巻き上
げた。このロール状の巻物を直径16mmおよび高さ5
0mmの円筒型電池缶に納め、負極リード線を缶底に溶
接した。次いで、破裂板と閉塞蓋とガスケットとを有し
てなる正極キャップに正極リード線を溶接した。前記電
池缶内に、LiPF6を1モルの濃度になるようにエチ
レンカーボネート(EC)とプロピレンカーボネート
(PC)とジエチルカーボネート(DEC)との混合溶
媒(容積比;EC/PC/DEC=2/1/2)に溶解
してなる電解液を入れ、前記正極キャップを負極缶の開
口部にかしめた。これにより、円筒型リチウムイオン二
次電池が得られた。
A lithium ion secondary battery was manufactured as follows. The positive electrode and the negative electrode were wound up in a roll shape via a porous polypropylene sheet separator. This roll-shaped roll has a diameter of 16 mm and a height of 5
It was placed in a 0 mm cylindrical battery can and the negative electrode lead wire was welded to the bottom of the can. Next, a positive electrode lead wire was welded to a positive electrode cap having a rupture disk, a closing lid, and a gasket. Wherein in the battery can, a mixed solvent (volume ratio of the LiPF 6 1 mol of ethylene carbonate to a concentration of (EC) and propylene carbonate (PC) and diethyl carbonate (DEC); EC / PC / DEC = 2 / The electrolyte solution dissolved in (1/2) was put into the positive electrode cap, and the positive electrode cap was caulked in the opening of the negative electrode can. As a result, a cylindrical lithium ion secondary battery was obtained.

【0054】充放電電流を600mA、充放電電圧(負
極−正極間電圧)を2.5〜4.1Vとして、前記円筒
型リチウムイオン二次電池の充放電を100サイクル行
った。1サイクル目、50サイクル目および100サイ
クル目の放電容量を測定し、その結果を表2に示した。
また、100サイクル目放電容量と50サイクル目放電
容量との比(100サイクル目放電容量/50サイクル
目放電容量)を放電容量比として表2に示した。
The cylindrical lithium ion secondary battery was charged and discharged 100 cycles by setting the charge / discharge current to 600 mA and the charge / discharge voltage (voltage between the negative electrode and the positive electrode) to 2.5 to 4.1 V. The discharge capacities at the first cycle, the 50th cycle and the 100th cycle were measured, and the results are shown in Table 2.
Table 2 shows the ratio of the 100th cycle discharge capacity to the 50th cycle discharge capacity (100th cycle discharge capacity / 50th cycle discharge capacity) as the discharge capacity ratio.

【0055】(実施例2) (1)リチウムイオン二次電池用黒鉛化気相成長炭素繊
維の製造 平均直径3μmおよび平均繊維長50μmの気相成長炭
素繊維を、アルゴンガス雰囲気下に2,800℃に30
分かけて黒鉛化処理をすることにより、黒鉛化気相成長
炭素繊維を製造した。この黒鉛化気相成長炭素繊維は、
平均アスペクト比が17であり、黒鉛網面間距離(d
oo2 )が0.3364nmであり、黒鉛結晶子の厚さ
(Lc )が90nmであった。
Example 2 (1) Production of Graphitized Vapor-Grown Carbon Fiber for Lithium-Ion Secondary Battery Vapor-grown carbon fiber having an average diameter of 3 μm and an average fiber length of 50 μm was charged in an argon gas atmosphere at 2,800. 30 to ℃
Graphitized vapor-grown carbon fibers were produced by performing graphitization treatment over a period of time. This graphitized vapor grown carbon fiber is
The average aspect ratio is 17, and the distance between graphite mesh planes (d
oo2 ) was 0.3364 nm, and the thickness (L c ) of the graphite crystallite was 90 nm.

【0056】この黒鉛化気相成長炭素繊維40gをハイ
ブリダイザー(NHS−1、(株)奈良機械製作所製)
に装填して、4,000rpm(周速50m/s)にて
2分間高衝撃処理をした。高衝撃処理をして得られた炭
素繊維からランダムに選ばれた1,000本の繊維を走
査型電子顕微鏡写真に撮り、その平均繊維長および平均
直径を既述した方法により測定したところ、平均繊維長
は21.8μmであり、平均直径は3μmであった。よ
って、この切断処理により得られたものは、この発明の
リチウムイオン二次電池負極用黒鉛化気相成長炭素繊維
であった。
40 g of this graphitized vapor grown carbon fiber was hybridized (NHS-1, manufactured by Nara Machinery Co., Ltd.)
And subjected to high impact treatment at 4,000 rpm (peripheral speed 50 m / s) for 2 minutes. 1,000 fibers randomly selected from the carbon fibers obtained by the high impact treatment were taken on a scanning electron micrograph, and the average fiber length and average diameter were measured by the method described above. The fiber length was 21.8 μm and the average diameter was 3 μm. Therefore, what was obtained by this cutting treatment was the graphitized vapor-grown carbon fiber for a negative electrode of a lithium ion secondary battery of the present invention.

【0057】(2)リチウムイオン二次電池負極用黒鉛
化気相成長炭素繊維の評価 このリチウムイオン二次電池負極用黒鉛化気相成長炭素
繊維を用いて前記実施例1におけるのと同様の三電極式
ビーカセルを、組み立てた。前記実施例1におけるのと
同様にして、充填容量、放電容量、および充放電効率を
測定した。結果を表1に示した。また、前記実施例1に
おけるのと同様にして円筒型リチウムイオン二次電池を
組み立ててサイクル試験を行い、その結果を表2に示し
た。
(2) Evaluation of Graphitized Vapor Growth Carbon Fiber for Lithium Ion Secondary Battery Negative Electrode Using this graphitized vapor phase grown carbon fiber for lithium ion secondary battery negative electrode, the same three steps as in Example 1 were performed. An electrode type beaker cell was assembled. The filling capacity, the discharge capacity, and the charging / discharging efficiency were measured in the same manner as in Example 1. The results are shown in Table 1. In addition, a cylindrical lithium ion secondary battery was assembled and a cycle test was conducted in the same manner as in Example 1, and the results are shown in Table 2.

【0058】(比較例1)前記実施例1で使用されたの
と同じ黒鉛化気相成長炭素繊維を、ハイブリダイザー
(NHS−1、(株)奈良機械製作所製)に装填して、
8,000rpm(周速100m/s)にて2分間高衝
撃処理をした。高衝撃処理をして得られた炭素繊維から
ランダムに選ばれた1,000本の繊維を電子顕微鏡写
真に撮り、その平均繊維長および平均直径を既述した方
法により測定したところ、平均繊維長は11.6μmで
あり、平均直径は2μmであった。
Comparative Example 1 The same graphitized vapor-grown carbon fiber used in Example 1 was loaded into a hybridizer (NHS-1, manufactured by Nara Machinery Co., Ltd.),
A high impact treatment was performed for 2 minutes at 8,000 rpm (peripheral speed 100 m / s). 1,000 fibers randomly selected from the carbon fibers obtained by high impact treatment were taken on an electron micrograph and the average fiber length and average diameter were measured by the method described above. Was 11.6 μm and the average diameter was 2 μm.

【0059】このリチウムイオン二次電池負極用黒鉛化
気相成長炭素繊維を用いて前記実施例1におけるのと同
様の三電極式ビーカセルを、組み立てた。前記実施例1
におけるのと同様にして、充電容量、放電容量および充
放電効率を測定した。結果を表1に示した。また前記実
施例1におけるのと同様に円筒型リチウムイオン二次電
池を組み立ててサイクル試験を行い、その結果を表2に
示した。
Using this graphitized vapor-grown carbon fiber for negative electrode of lithium ion secondary battery, a three-electrode type beaker cell similar to that in Example 1 was assembled. Example 1
The charge capacity, discharge capacity, and charge / discharge efficiency were measured in the same manner as in. The results are shown in Table 1. Further, a cylindrical lithium ion secondary battery was assembled and a cycle test was conducted in the same manner as in Example 1, and the results are shown in Table 2.

【0060】(比較例2)前記実施例2で使用されたの
と同じ黒鉛化気相成長炭素繊維を、ハイブリダイザー
(NHS−1、(株)奈良機械製作所製)に装填して、
8,000rpm(周速100m/s)にて2分間高衝
撃処理をした。高衝撃処理をして得られた炭素繊維から
ランダムに選ばれた1,000本の繊維を走査型電子顕
微鏡写真に撮り、その平均繊維長および平均直径を既述
した方法により測定したところ、平均繊維長は13.7
μmであり、平均直径は3μmであった。
Comparative Example 2 The same graphitized vapor-grown carbon fiber used in Example 2 was loaded into a hybridizer (NHS-1, manufactured by Nara Machinery Co., Ltd.),
A high impact treatment was performed for 2 minutes at 8,000 rpm (peripheral speed 100 m / s). 1,000 fibers randomly selected from the carbon fibers obtained by the high impact treatment were taken on a scanning electron micrograph, and the average fiber length and average diameter were measured by the method described above. Fiber length is 13.7
The average diameter was 3 μm.

【0061】このリチウムイオン二次電池負極用黒鉛化
気相成長炭素繊維を用いて前記実施例1におけるのと同
様の三電極式ビーカセルを、組み立てた。前記実施例1
におけるのと同様にして、充電容量、放電容量および充
放電効率を測定した。結果を表1に示した。また前記実
施例1におけるのと同様に円筒型リチウムイオン二次電
池を組み立ててサイクル試験を行い、その結果を表2に
示した。
A three-electrode type beaker cell similar to that in Example 1 was assembled using this graphitized vapor-grown carbon fiber for negative electrode of lithium ion secondary battery. Example 1
The charge capacity, discharge capacity, and charge / discharge efficiency were measured in the same manner as in. The results are shown in Table 1. Further, a cylindrical lithium ion secondary battery was assembled and a cycle test was conducted in the same manner as in Example 1, and the results are shown in Table 2.

【0062】(比較例3)前記実施例1で使用されたの
と同じ黒鉛化気相成長炭素繊維を、ハイブリダイザー
(NHS−1、(株)奈良機械製作所製)に装填して、
4,000rpm(周速50m/s)にて30秒間高衝
撃処理をした。高衝撃処理をして得られた炭素繊維から
ランダムに選ばれた1,000本の繊維を走査型電子顕
微鏡写真に撮り、その平均繊維長および平均直径を既述
した方法により測定したところ、平均繊維長は31.3
μmであり、平均直径は2μmであった。
(Comparative Example 3) The same graphitized vapor grown carbon fiber used in Example 1 was loaded into a hybridizer (NHS-1, manufactured by Nara Machinery Co., Ltd.),
High impact treatment was performed for 30 seconds at 4,000 rpm (peripheral speed 50 m / s). 1,000 fibers randomly selected from the carbon fibers obtained by the high impact treatment were taken on a scanning electron micrograph, and the average fiber length and average diameter were measured by the method described above. Fiber length is 31.3
The average diameter was 2 μm.

【0063】このリチウムイオン二次電池負極用黒鉛化
気相成長炭素繊維を用いて前記実施例1におけるのと同
様の三電極式ビーカセルを、組み立てた。なお、負極の
表面は平滑ではなかった。前記実施例1におけるのと同
様にして、充電容量、放電容量および充放電効率を測定
した。結果を表1に示した。
Using this graphitized vapor-grown carbon fiber for negative electrode of lithium ion secondary battery, a three-electrode type beaker cell similar to that in Example 1 was assembled. The surface of the negative electrode was not smooth. The charge capacity, discharge capacity and charge / discharge efficiency were measured in the same manner as in Example 1. The results are shown in Table 1.

【0064】[0064]

【表1】 [Table 1]

【0065】[0065]

【表2】 [Table 2]

【0066】[0066]

【発明の効果】この発明によると、負極から剥離するこ
とがなく、しかも負極の平面を平滑にすることができ、
さらには初回の充放電効率を大幅に改善し、サイクル特
性の向上したリチウムイオン二次電池を形成するのに好
適なリチウムイオン二次電池用黒鉛化気相成長炭素繊維
を提供することができる。
According to the present invention, the plane of the negative electrode can be smoothed without peeling from the negative electrode.
Furthermore, it is possible to provide a graphitized vapor-grown carbon fiber for a lithium-ion secondary battery, which is suitable for forming a lithium-ion secondary battery with improved cycle characteristics by significantly improving the initial charge / discharge efficiency.

【0067】この発明によると、充放電効率が高く、し
かもサイクル特性の優れたリチウムイオン二次電池を提
供することができる。
According to the present invention, it is possible to provide a lithium ion secondary battery having high charge / discharge efficiency and excellent cycle characteristics.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平均直径が1〜10μmであり、平均繊
維長が15〜25μmであることを特徴とするリチウム
イオン二次電池負極用黒鉛化気相成長炭素繊維。
1. A graphitized vapor grown carbon fiber for a negative electrode of a lithium ion secondary battery, having an average diameter of 1 to 10 μm and an average fiber length of 15 to 25 μm.
【請求項2】 前記請求項1に記載のリチウムイオン二
次電池用黒鉛化気相成長炭素繊維から得られた負極を有
してなることを特徴とするリチウムイオン二次電池。
2. A lithium-ion secondary battery comprising a negative electrode obtained from the graphitized vapor-grown carbon fiber for a lithium-ion secondary battery according to claim 1.
JP8187677A 1995-07-18 1996-07-17 Graphitized vapor phase epitaxy carbon fiber for lithium ion secondary battery and lithium ion secondary battery Abandoned JPH0992286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8187677A JPH0992286A (en) 1995-07-18 1996-07-17 Graphitized vapor phase epitaxy carbon fiber for lithium ion secondary battery and lithium ion secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-181798 1995-07-18
JP18179895 1995-07-18
JP8187677A JPH0992286A (en) 1995-07-18 1996-07-17 Graphitized vapor phase epitaxy carbon fiber for lithium ion secondary battery and lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JPH0992286A true JPH0992286A (en) 1997-04-04

Family

ID=26500823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8187677A Abandoned JPH0992286A (en) 1995-07-18 1996-07-17 Graphitized vapor phase epitaxy carbon fiber for lithium ion secondary battery and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JPH0992286A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109594A (en) * 2001-10-01 2003-04-11 Showa Denko Kk Electrode material, manufacturing method of the same, electrode for battery using the same, and battery using the electrode
JP2008112734A (en) * 2007-11-30 2008-05-15 Hitachi Chem Co Ltd Carbon powder for lithium secondary battery negative electrode, manufacturing method therefor, negative electrode for the lithium secondary battery, and the lithium secondary battery
JP2011181524A (en) * 2011-06-06 2011-09-15 Hitachi Chem Co Ltd Carbon powder for lithium secondary battery negative electrode, method of manufacturing the same, negative electrode for lithium secondary battery, and lithium secondary battery
CN114835111A (en) * 2022-05-30 2022-08-02 中北大学 Nano spiral graphite fiber material and preparation method and application thereof
CN114835111B (en) * 2022-05-30 2024-04-30 中北大学 Nano spiral graphite fiber material and preparation method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109594A (en) * 2001-10-01 2003-04-11 Showa Denko Kk Electrode material, manufacturing method of the same, electrode for battery using the same, and battery using the electrode
JP2008112734A (en) * 2007-11-30 2008-05-15 Hitachi Chem Co Ltd Carbon powder for lithium secondary battery negative electrode, manufacturing method therefor, negative electrode for the lithium secondary battery, and the lithium secondary battery
JP2011181524A (en) * 2011-06-06 2011-09-15 Hitachi Chem Co Ltd Carbon powder for lithium secondary battery negative electrode, method of manufacturing the same, negative electrode for lithium secondary battery, and lithium secondary battery
CN114835111A (en) * 2022-05-30 2022-08-02 中北大学 Nano spiral graphite fiber material and preparation method and application thereof
CN114835111B (en) * 2022-05-30 2024-04-30 中北大学 Nano spiral graphite fiber material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
CN104969386B (en) Composite active material, manufacturing method for composite active material, and lithium secondary battery including composite active material
EP2703530B1 (en) Method for manufacturing carbon-fiber materi
JP3930002B2 (en) High density electrode and battery using the electrode
JP4040381B2 (en) Composite graphite particles, method for producing the same, negative electrode for lithium ion secondary battery and lithium ion secondary battery
CN102203989B (en) Negative electrode material for nonaqueous secondary battery
TWI344714B (en) High density electrode and battery using the electrode
EP2469629A2 (en) Amorphous anode active material, preparation method of electrode using same, secondary battery containing same, and hybrid capacitor
JP3538500B2 (en) Non-aqueous electrolyte secondary battery
JP4927384B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
EP1738425A1 (en) Anode active material with improved electrochemical properties and electrochemical device comprising the same
JP2010161081A (en) Anode material for lithium ion secondary battery and method for manufacturing the same
KR102065256B1 (en) Silicone based negative active material, preparing method of the same and lithium ion secondary battery including the same
JP7461476B2 (en) Negative electrode active material, its manufacturing method, secondary battery, and device including secondary battery
JPH09213335A (en) Lithium secondary cell
KR101407606B1 (en) Method for preparing positive active material for rechargeable lithium battery, positive active material prepared using same, and rechargeable lithium battery including same
JP3643522B2 (en) Nonaqueous electrolyte secondary battery
KR100326444B1 (en) Lithium secondary battery
JP4672958B2 (en) Graphite particles, lithium ion secondary battery, negative electrode material therefor and negative electrode
CN114730875A (en) Negative electrode active material, method for preparing same, secondary battery, and battery module, battery pack, and device including secondary battery
JPH09115504A (en) Electrode for battery and its manufacture
JP2002241117A (en) Graphite based carbon material, manufacturing method therefor, negative electrode material for lithium secondary battery, and lithium secondary battery
US20220246909A1 (en) Lithium metal anode and method for making the same
JPH0992286A (en) Graphitized vapor phase epitaxy carbon fiber for lithium ion secondary battery and lithium ion secondary battery
WO2021172443A1 (en) Secondary-battery negative electrode, method for manufacturing same, and secondary battery
CN114223072A (en) Negative active material, method of preparing the same, secondary battery, and device including the secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040528

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20040708